JPH0631444A - One-side automatic penetration welding method - Google Patents

One-side automatic penetration welding method

Info

Publication number
JPH0631444A
JPH0631444A JP21087792A JP21087792A JPH0631444A JP H0631444 A JPH0631444 A JP H0631444A JP 21087792 A JP21087792 A JP 21087792A JP 21087792 A JP21087792 A JP 21087792A JP H0631444 A JPH0631444 A JP H0631444A
Authority
JP
Japan
Prior art keywords
welding
groove
torch
welding wire
bead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21087792A
Other languages
Japanese (ja)
Other versions
JP2734306B2 (en
Inventor
Yuji Sugitani
祐司 杉谷
Bunketsu Mou
文傑 毛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP4210877A priority Critical patent/JP2734306B2/en
Publication of JPH0631444A publication Critical patent/JPH0631444A/en
Application granted granted Critical
Publication of JP2734306B2 publication Critical patent/JP2734306B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Butt Welding And Welding Of Specific Article (AREA)

Abstract

PURPOSE:To optimize the reinforcement of weld shape of reverse side beads by controlling the supply speed of a welding wire and the torch voltage between a welding tip and materials to be welded in one-side automatic penetration welding. CONSTITUTION:The one-side automatic penetration welding is executed by placing a backing strip 2 to the rear surface of a groove formed between the two materials 1 and 1 to be welded, passing a welding wire 4 through a welding torch 3, blowing a shielding gas toward the groove, moving the welding torch 3 at a specified speed to the groove under the control of the height of the welding torch 3 in such a manner that a specified welding current is supplied via the tip to the welding wire 4 and executing the welding while supplying the specified welding current to the welding wire 4. The above-mentioned welding is executed by controlling the supply speed of the welding wire 4 and the torch voltage. The specified bead height is maintained regardless of the shape change of the groove and the optimum reinforcement of weld shape of the reverse side beads is maintained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、片面自動裏波溶接方
法、特に、ルートギャップ距離等の開先形状変化によら
ず一定のビード高さを維持し且つ裏ビードの予盛り形状
を最適に維持することができる片面自動裏波溶接方法に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a single-sided automatic back bead welding method, and in particular, it maintains a constant bead height regardless of changes in the groove shape such as the root gap distance and optimizes the pre-bead shape of the back bead The present invention relates to a single-sided automatic backside welding method that can be maintained.

【0002】[0002]

【従来の技術】例えば、2枚の鋼板等の被溶接物をその
間に形成された開先の長手方向に沿って、消耗溶接電極
としての溶接ワイヤを用いて片面裏波アーク溶接法によ
って互いに接合するに当たり、所望の初層ビード形状を
確保するには、従来、溶接前に開先形状データ、即ち、
ルートギャップ距離、開先角度およびルート面高さ等を
開先の長手方向に沿って予め計測しておき、開先形状に
合った最適溶接条件の基で溶接を行うのが一般的であっ
た。
2. Description of the Related Art For example, two objects to be welded such as steel plates are joined to each other along a longitudinal direction of a groove formed therebetween by a single-sided backside arc welding method using a welding wire as a consumable welding electrode. In order to secure the desired initial layer bead shape, conventionally, the groove shape data before welding, that is,
It was common to measure the root gap distance, groove angle, root surface height, etc. in advance along the longitudinal direction of the groove and perform welding under the optimum welding conditions suitable for the groove shape. .

【0003】しかしながら、上述した方法によれば、予
め開先形状データを計測する必要があるので、最近で
は、ルートギャップ距離等の開先形状データの変動値を
テレビカメラ等によって溶接中に自動的に測定し、この
測定データ、および、制御器にインプットされた、異な
る溶接条件毎に予め求めた実験式によって自動溶接する
方法が提案されている。
However, according to the above-mentioned method, since it is necessary to measure the groove shape data in advance, recently, the variation value of the groove shape data such as the root gap distance is automatically measured during welding by the television camera or the like. A method is proposed in which automatic welding is performed by using the measured data and the experimental data previously input for each different welding condition and input to the controller.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上述し
た先願技術によれば、実験式を、異なる溶接条件毎に実
験により求める必要があるので大変な労力を必要とし、
このようにして作成した実験式には汎用性がないといっ
た問題があった。
However, according to the above-mentioned prior application technique, it is necessary to obtain an empirical formula by an experiment for each different welding condition, which requires a great deal of labor,
There is a problem that the empirical formula created in this way is not versatile.

【0005】従って、この発明の目的は、異なる溶接条
件毎に予め実験式を求める必要がなく、ルートギャップ
距離等の開先形状変化によらず一定のビード高さを維持
し且つ裏ビードの予盛り形状を最適に維持することがで
きる片面自動裏波溶接方法を提供することにある。
Therefore, the object of the present invention is to eliminate the need to previously obtain an empirical formula for each different welding condition, to maintain a constant bead height regardless of the change in the groove shape such as the root gap distance, and to predict the back bead. It is an object of the present invention to provide a single-sided automatic backside welding method capable of maintaining the heap shape optimally.

【0006】[0006]

【課題を解決するための手段】この発明は、2つの被溶
接物の間に形成された開先の裏面に裏当板をあてがい、
前記開先に向けて消耗電極としての溶接ワイヤを溶接ト
ーチを通して連続的に供給し、前記溶接トーチを通して
前記開先に向けてシールドガスを吹き付け、前記溶接ワ
イヤにチップを介して一定の溶接電流が供給されるよう
に前記溶接トーチの高さ制御を行い、前記溶接トーチを
一定の溶接速度で前記開先に沿って移動させ、前記一定
の溶接電流を前記溶接ワイヤに供給して、前記溶接ワイ
ヤと前記開先との間にアークを発生させ、かくして、ア
ーク熱によって前記被溶接物を前記開先に沿って、前記
一定の溶接速度で互いに溶接することからなる片面自動
裏波溶接方法において、前記溶接ワイヤの供給速度、お
よび、前記チップと前記被溶接物との間のトーチ電圧を
制御し、かくして、前記開先の形状変化によらず、前記
開先に形成されるビード高さを一定に維持し且つ前記開
先の裏面に形成される裏ビードの予盛り形状を最適に維
持することに特徴を有するものである。
According to the present invention, a backing plate is applied to the back surface of a groove formed between two objects to be welded,
A welding wire as a consumable electrode is continuously supplied to the groove through a welding torch, a shield gas is blown toward the groove through the welding torch, and a constant welding current is applied to the welding wire through a tip. The height of the welding torch is controlled so as to be supplied, the welding torch is moved along the groove at a constant welding speed, the constant welding current is supplied to the welding wire, and the welding wire is supplied. An arc is generated between the groove and the groove, and thus the object to be welded by arc heat along the groove, in a single-sided automatic backside welding method consisting of welding each other at the constant welding speed, The welding wire supply speed and the torch voltage between the tip and the object to be welded are controlled, thus forming the groove regardless of the shape change of the groove. Those having features to maintain optimal 予盛 Ri shape of the back bead formed the over de height on the back of and the groove is kept constant.

【0007】この発明の片面自動裏波溶接方法の一実施
態様を、図面を参照しながら説明する。
An embodiment of the one-sided automatic backside welding method of the present invention will be described with reference to the drawings.

【0008】図1は、この発明の片面自動裏波溶接方法
の一実施態様を示すブロック図である。図1において、
1は、被溶接物としての鋼板、1Aは、2つの被溶接物1
間に形成された開先、2は、開先1Aの裏面に当てがわれ
た裏当板、3は、開先1Aに向けてシールドガスを供給す
るための溶接トーチである。溶接トーチ3は、その先端
内部に後述する溶接ワイヤに溶接電流を供給するための
通電チップ(図示せず)を有している。溶接トーチ3
は、回転手段(図示せず)によってその中心軸線を中心
として、一方向に連続的に高速度で回転する。4は、溶
接トーチ3を通して開先1Aに向けて連続的に供給され
る、消耗電極としての溶接ワイヤである。溶接ワイヤ4
は、溶接トーチ3の中心軸線から偏位して溶接トーチ3
の先端から開先1Aに向かって垂直に溶接ワイヤ供給装置
5によって連続的に供給される。6は、溶接トーチ3を
開先1Aの幅方向(X) および開先1Aの高さ方向(Y) に移動
させるためのX-Y 移動装置である。
FIG. 1 is a block diagram showing an embodiment of the single-sided automatic backside welding method of the present invention. In FIG.
1 is a steel plate as an object to be welded, 1A is two objects to be welded 1
The groove 2 formed between them is a backing plate applied to the back surface of the groove 1A, and 3 is a welding torch for supplying a shield gas toward the groove 1A. The welding torch 3 has an energizing tip (not shown) for supplying a welding current to a welding wire, which will be described later, inside the tip thereof. Welding torch 3
Is continuously rotated at a high speed in one direction about its central axis by a rotating means (not shown). 4 is a welding wire as a consumable electrode that is continuously supplied toward the groove 1A through the welding torch 3. Welding wire 4
Is deviated from the central axis of the welding torch 3 and the welding torch 3
It is continuously supplied vertically from the tip of the to the groove 1A by the welding wire supply device 5. Reference numeral 6 is an XY moving device for moving the welding torch 3 in the width direction (X) of the groove 1A and in the height direction (Y) of the groove 1A.

【0009】7は、溶接トーチ3の進行方向下流側の開
先1A部分を撮影するためのTVカメラおよび画像処理装置
からなるギャップセンサであり、開先1Aのルートギャッ
プ(G) の距離を測定する。8は、X-Y 移動装置6を溶接
トーチ3と共に開先1Aの長手方向に沿って移動させるた
めの溶接台車、9は、鋼板1と溶接トーチ3内の通電チ
ップとの間に溶接電流を供給するための溶接電源であ
る。
Numeral 7 is a gap sensor consisting of a TV camera and an image processing device for photographing the groove 1A on the downstream side in the traveling direction of the welding torch 3, and measures the distance of the root gap (G) of the groove 1A. To do. 8 is a welding carriage for moving the XY moving device 6 along with the welding torch 3 along the longitudinal direction of the groove 1A, and 9 is for supplying a welding current between the steel plate 1 and the current-carrying tip in the welding torch 3. It is a welding power source for.

【0010】10は、制御器である。制御器10は、後述す
る演算式(A) および(B) に従ってギャップセンサ7から
の開先1Aのギャップ距離データに基づいて、溶接ワイヤ
供給装置8を制御して、溶接ワイヤ4の供給速度を所定
値に維持し、且つ、溶接電源9を制御して、被溶接物1
と通電チップとの間のトーチ電圧を所定値に維持し、か
くして、ルートギャップ距離が変化しても初層ビードの
高さを一定に維持し、且つ、裏ビードの形状を一定に維
持する。この他、制御器10は、溶接トーチ3の回転数を
制御すると共に、センサ(図示せず)によって検出され
たアーク電流に基づいて、従来公知の方法に従ってX-Y
移動装置6を制御して、溶接トーチ3の回転中心軸線を
開先1Aの幅方向中央部に位置させ、且つ、溶接電流が一
定になるようにトーチ3の高さを制御する。なお、この
発明は、上述した、所謂、回転アーク溶接法にのみ適応
されるものではないことはいうまでもない。
Reference numeral 10 is a controller. The controller 10 controls the welding wire supply device 8 based on the gap distance data of the groove 1A from the gap sensor 7 in accordance with the arithmetic expressions (A) and (B) described later to control the supply speed of the welding wire 4. Maintaining a predetermined value and controlling the welding power source 9 to weld the work piece 1
The torch voltage between the conductive tip and the energizing tip is maintained at a predetermined value, thus maintaining the height of the first layer bead constant and the shape of the back bead constant even if the root gap distance changes. In addition to this, the controller 10 controls the rotation speed of the welding torch 3 and, based on the arc current detected by a sensor (not shown), according to a conventionally known method, XY
The moving device 6 is controlled to position the center axis of rotation of the welding torch 3 at the center of the groove 1A in the width direction, and to control the height of the torch 3 so that the welding current is constant. Needless to say, the present invention is not applied only to the above-mentioned so-called rotary arc welding method.

【0011】次に、制御器10に予め設定されている上記
演算式(A) および(B) について説明する。ルートギャッ
プ距離にかかわらず、一定のビード高さを維持するに
は、溶接ワイヤの溶着量を制御する必要がある。そのた
めに、溶接ワイヤ供給速度を制御する。演算式(A) は、
溶接ワイヤ供給速度を演算するものであり、下式からな
っている。
Next, the arithmetic expressions (A) and (B) previously set in the controller 10 will be described. In order to maintain a constant bead height regardless of the root gap distance, it is necessary to control the welding wire deposition amount. To that end, the welding wire feed rate is controlled. Formula (A) is
It calculates the welding wire supply speed and is calculated by the following formula.

【0012】 Vf =VW (SDO+H・G)/Sφ --- (A) 但し、(A)式において、 Vf :溶接ワイヤ供給速度(mm/sec)、 VW :溶接速度(mm/sec) (一定)、 G :ルートギャップ距離(mm)(可変)、 SDO:G=0のときのビード断面積(mm2) (一定)、 H :ビード高さ(mm)(一定)、 Sφ:溶接ワイヤ断面積(mm2) (一定)。V f = V W (S DO + H · G) / S φ --- (A) However, in the formula (A), V f : welding wire supply speed (mm / sec), V W : welding speed ( mm / sec) (constant), G: root gap distance (mm) (variable), S DO : bead cross-sectional area when G = 0 (mm 2 ) (constant), H: bead height (mm) (constant) ), Sφ: welding wire cross-sectional area (mm 2 ) (constant).

【0013】一方、溶接ワイヤ供給速度(Vf )は、溶
接電流(Ia )および溶接ワイヤ突出長(L)によって
下記(1) 式のように表される。
On the other hand, the welding wire supply speed (V f ) is expressed by the following equation (1) by the welding current (I a ) and the welding wire protrusion length (L).

【0014】 Vf =AIa +BLIa 2 ---(1) 但し、(1) 式において、 A、B:溶接ワイヤおよびシールドガスによって決まる
定数。
V f = AI a + BLI a 2 --- (1) However, in the equation (1), A and B: constants determined by the welding wire and the shielding gas.

【0015】この発明においては、溶接電流(Ia
は、一定である。従って、溶接ワイヤ供給速度(Vf
の変化に対して、溶接ワイヤ突出長(L)を変化させれ
ば良いが、溶接ワイヤ突出長(L)は実測することがで
きない。それで、上記(1) 式を溶接ワイヤ突出長(L)
の表現式に書き直すと、下記(2) 式のようになる。
In the present invention, the welding current (I a )
Is constant. Therefore, the welding wire supply rate (V f )
It is sufficient to change the welding wire protrusion length (L) in response to the above change, but the welding wire protrusion length (L) cannot be measured. Then, the above formula (1) is applied to the welding wire protrusion length (L).
When rewritten as the expression of, it becomes the following expression (2).

【0016】 L=(Vf −AIa )/BIa 2 ---(2)L = (V f −AI a ) / BI a 2 --- (2)

【0017】一方、溶接ワイヤ突出長(L)が変化する
と、突出長部分の電圧降下(VL )も変化する。電圧降
下(VL )は、下記(3) 式のように表すことができる。
On the other hand, when the welding wire protrusion length (L) changes, the voltage drop ( VL ) in the protrusion length portion also changes. The voltage drop ( VL ) can be expressed by the following equation (3).

【0018】 VL =aLIa −bVf /Ia ---(3) 但し、(3) 式において、 a、b:溶接ワイヤによって決まる定数。V L = aLI a −bV f / I a --- (3) However, in the equation (3), a and b are constants determined by the welding wire.

【0019】このように溶接ワイヤ突出長(L)が変化
すると、トーチ電圧(Vt )も変化する。トーチ電圧
(Vt )は、下記(4) 式のように表すことができる。
When the projection length (L) of the welding wire changes in this way, the torch voltage (V t ) also changes. The torch voltage (V t ) can be expressed by the following equation (4).

【0020】 Vt =VL +VA ---(4) 但し、(4) 式において、 VL :溶接ワイヤ突出部分の電圧降下、 VA :真のアーク電圧。V t = V L + V A --- (4) However, in the formula (4), V L : voltage drop of the protruding portion of the welding wire, V A : true arc voltage.

【0021】上記(4) 式において、真のアーク電圧(V
A )は、下記(5) 式のように表すことができる。
In the above equation (4), the true arc voltage (V
A ) can be expressed by the following equation (5).

【0022】 VA =V0 +Xla ---(5) 但し、(5) 式において、 V0 :アーク長(la )が0mmのときのアーク電圧、 X :アーク柱の電圧傾斜、 la :アーク長(一定)。V A = V 0 + Xl a --- (5) However, in the equation (5), V 0 : arc voltage when the arc length (l a ) is 0 mm, X: voltage gradient of the arc column, l a : arc length (constant).

【0023】V0 、Xは、それぞれ、下記(6) 、(7) 式
のように表すことができる。 V0 =k(1) Ia +k(2) ---(6) X =k(3) Ia +k(4) ---(7) 但し、(6) 、(7) 式において、 k(1) 、k(2) 、k(3) 、k(4) :ワイヤおよびシール
ドガスによって決まる定数。
V 0 and X can be expressed by the following equations (6) and (7), respectively. V 0 = k (1) I a + k (2) --- (6) X = k (3) I a + k (4) --- (7) However, in the formulas (6) and (7), k (1), k (2), k (3), k (4): constants determined by the wire and the shielding gas.

【0024】上記(6) 、(7) 式を上記(5) 式に代入する
と、下記(8) 式のようになる。
By substituting the above equations (6) and (7) into the above equation (5), the following equation (8) is obtained.

【0025】 VA =k(1) Ia +k(2) +[k(3) la +k(4) ]la ---(8)[0025] V A = k (1) I a + k (2) + [k (3) l a + k (4)] l a --- (8)

【0026】上記(3) 式および(8) 式を上記(4) 式に代
入すると、下記(9) 式のようになる。
By substituting the above equations (3) and (8) into the above equation (4), the following equation (9) is obtained.

【0027】 Vt =aLIa −bVf /Ia +[k(1) +k(3) la ]Ia +k(2) +k(4) la ---(9)[0027] V t = aLI a -bV f / I a + [k (1) + k (3) l a] I a + k (2) + k (4) l a --- (9)

【0028】上記(9) 式に(1) 式を代入すると、下記(1
0)式のようになる。
Substituting the equation (1) into the above equation (9), the following (1
It becomes like the expression (0).

【0029】 Vt ={(a−Bb)L+k(1) +k(3) la }Ia +k(4) la +k(2) −Ab ---(10) [0029] V t = {(a-Bb ) L + k (1) + k (3) l a} I a + k (4) l a + k (2) -Ab --- (10)

【0030】そして、上記(10)式に(2) 式を代入する
と、下記(B)式が得られる。
By substituting the equation (2) into the equation (10), the following equation (B) is obtained.

【0031】 Vt =[(a−B・b){(Vf −AIa )/BIa 2 }+k(1) +k(3) la ]Ia +k(4) la +k(2) −A・b --- (B)[0031] V t = [(a-B · b) {(V f -AI a) / BI a 2} + k (1) + k (3) l a] I a + k (4) l a + k (2) −A ・ b --- (B)

【0032】図2に(L)、(la )、(VL )、(V
A )および(Vt )を図示する。
[0032] FIG. 2 (L), (l a ), (V L), (V
A ) and (V t ) are illustrated.

【0033】上記(A)および(B)式によって、予め
求め実験式を求めることなく、ルートギャップが変化し
ても一定のビード高さを維持でき且つ裏ビードの予盛り
形状を最適に維持できる。
According to the above equations (A) and (B), it is possible to maintain a constant bead height even if the root gap is changed and to optimally maintain the pre-bead shape of the back bead, without obtaining an experimental formula in advance. .

【0034】図3に、この発明の方法によって鋼板を溶
接したときの初層ビード形状を示す。表1に、このとき
の溶接条件を示す。
FIG. 3 shows the bead shape of the first layer when a steel sheet is welded by the method of the present invention. Table 1 shows the welding conditions at this time.

【0035】[0035]

【表1】 [Table 1]

【0036】図3から明らかなように、この発明の方法
により溶接ワイヤ供給速度(Vf )およびトーチ電圧
(Vt )を制御して、ルートギャップ距離の増大に応じ
て、単位ビード長さ当たりの入熱量を増加させれば、ル
ートギャップが変化しても一定のビード高さを維持でき
且つ裏ビードの予盛り形状を最適に維持できることがわ
かった。
As is apparent from FIG. 3, the welding wire feed rate (V f ) and the torch voltage (V t ) were controlled by the method of the present invention, and per unit bead length was increased according to the increase of the root gap distance. It was found that increasing the amount of heat input in (1) can maintain a constant bead height even when the root gap changes, and can maintain the pre-filled shape of the back bead optimally.

【0037】これに対して、表2に示すように、溶接条
件をルートギャップが変化しても変えないと、図4に示
すように、一定のビード高さを維持できず且つ裏ビード
の予盛り形状を最適に維持できない。
On the other hand, as shown in Table 2, if the welding conditions are not changed even if the root gap is changed, a constant bead height cannot be maintained as shown in FIG. The heap shape cannot be optimally maintained.

【0038】[0038]

【表2】 [Table 2]

【0039】ルートギャップが変化しても一定のビード
高さを維持でき且つ裏ビードの予盛り形状を最適に維持
するには、ルートギャップの距離に対応して、適性な溶
着量を確保する必要がある。その方法として、溶接速度
(VW )制御と、溶接電流(Ia )および溶接速度(V
W )の同時制御とがあげられる。図5に、表3に示す条
件で溶接速度制御を行った場合の初層ビード形状を示
し、図6に、表4に示す条件で溶接電流制御および溶接
速度制御を同時に行った場合の初層ビード形状を示す。
図5および図6から明らかなように、何れの方法も単位
ビード長さ当たりの入熱量の変動が激しいので、裏ビー
ドの最適な予盛り形状が得られないことがわかる。
In order to maintain a constant bead height even when the root gap changes and to maintain the optimum pre-bead shape of the back bead, it is necessary to secure an appropriate amount of welding corresponding to the distance of the root gap. There is. As the method, welding speed (V W ) control, welding current (I a ) and welding speed (V
W ) simultaneous control. FIG. 5 shows the bead shape of the first layer when the welding speed control is carried out under the conditions shown in Table 3, and FIG. 6 shows the first layer bead when the welding current control and the welding speed control are carried out simultaneously under the conditions shown in Table 4. The bead shape is shown.
As is clear from FIGS. 5 and 6, it can be seen that the optimum pre-filled shape of the back bead cannot be obtained because the heat input amount per unit bead length fluctuates significantly in either method.

【0040】[0040]

【表3】 [Table 3]

【0041】[0041]

【表4】 [Table 4]

【0042】溶接電流(Ia )、溶接ワイヤ供給速度
(Vf )、トーチ電圧(Vt )および溶接速(VW )制
御によって、単位ビード長さ当たりの入熱量を一定に維
持すると共に、ビード高さを一定に維持するために所定
の溶着量を与えて溶接した場合の初層ビード形状を図7
に示す。図7から明らかなように、ビード高さはほぼ一
定に維持されているが、裏ビードの予盛り形状はルート
ギャップの距離が広がるにつれて逆に下方に突出してい
る。この結果、ほぼ一定のビード高さを維持でき且つ裏
ビードの予盛り形状を最適に維持できるのは、せいぜい
ルートギャップの距離が1.5mm 程度までである。
By controlling the welding current (I a ), the welding wire supply speed (V f ), the torch voltage (V t ) and the welding speed (V W ), the heat input amount per unit bead length is kept constant, and FIG. 7 shows the shape of the first layer bead when welding is performed by applying a predetermined amount of welding in order to keep the bead height constant.
Shown in. As is apparent from FIG. 7, the bead height is maintained substantially constant, but the pre-filled shape of the back bead projects downward downward as the distance of the root gap increases. As a result, it is possible to maintain a bead height that is almost constant and optimally maintain the pre-filling shape of the back bead at a root gap distance of up to about 1.5 mm.

【0043】[0043]

【表5】 [Table 5]

【0044】[0044]

【発明の効果】以上説明したように、この発明によれ
ば、異なる溶接条件毎に予め実験式を求めることなく、
ルートギャップ距離等の開先形状変化によらず、一定の
ビード高さを維持でき且つ裏ビードの予盛り形状を最適
に維持できる等、種々の有用な効果がもたらされる。
As described above, according to the present invention, it is possible to obtain an empirical formula in advance for each different welding condition.
Regardless of changes in the groove shape such as the root gap distance, it is possible to maintain a constant bead height and optimally maintain the pre-filled shape of the back bead, thereby providing various useful effects.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の片面自動裏波溶接方法の一実施態様
のブロック図である。
FIG. 1 is a block diagram of an embodiment of a single-sided automatic backside welding method of the present invention.

【図2】(L)、(la )、(VL )、(VA )および
(Vt )の説明図である。
[2] (L), is an explanatory view of (l a), (V L ), (V A) and (V t).

【図3】この発明の方法によって溶接した場合の初層ビ
ード形状を示す断面図である。
FIG. 3 is a cross-sectional view showing the shape of an initial layer bead when welding is performed by the method of the present invention.

【図4】ルートギャップが変化しても溶接条件を変えな
い場合の初層ビード形状を示す断面図である。
FIG. 4 is a cross-sectional view showing a shape of a first-layer bead when welding conditions are not changed even if a root gap is changed.

【図5】溶接速度制御を行った場合の初層ビード形状を
示す断面図である。
FIG. 5 is a cross-sectional view showing the shape of the first layer bead when the welding speed is controlled.

【図6】溶接電流制御および溶接速度制御を行った場合
の初層ビード形状を示す断面図である。
FIG. 6 is a cross-sectional view showing the shape of the first layer bead when the welding current control and the welding speed control are performed.

【図7】溶接電流、溶接ワイヤ供給速度、トーチ電圧お
よび溶接速制御を行った場合の初層ビード形状を示す断
面図である。
FIG. 7 is a cross-sectional view showing the shape of the first layer bead when the welding current, the welding wire supply speed, the torch voltage and the welding speed are controlled.

【符号の説明】[Explanation of symbols]

1:鋼板、 2:裏当板、 3:溶接トーチ、 4:溶接ワイヤ、 5:溶接ワイヤ供給装置、 6:X-Y 移動装置、 7:ギャップセンサ、 8:溶接台車、 9:溶接電源、 10:制御器。 1: steel plate, 2: backing plate, 3: welding torch, 4: welding wire, 5: welding wire supply device, 6: XY moving device, 7: gap sensor, 8: welding carriage, 9: welding power source, 10: Controller.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 2つの被溶接物の間に形成された開先の
裏面に裏当板をあてがい、前記開先に向けて消耗電極と
しての溶接ワイヤを溶接トーチを通して連続的に供給
し、前記溶接トーチを通して前記開先に向けてシールド
ガスを吹き付け、前記溶接ワイヤにチップを介して一定
の溶接電流が供給されるように前記溶接トーチの高さ制
御を行い、前記溶接トーチを一定の溶接速度で前記開先
に沿って移動させ、前記一定の溶接電流を前記溶接ワイ
ヤに供給して、前記溶接ワイヤと前記開先との間にアー
クを発生させ、かくして、アーク熱によって前記被溶接
物を前記開先に沿って前記一定の溶接速度で互いに溶接
することからなる片面自動裏波溶接方法において、 前記溶接ワイヤの供給速度、および、前記チップと前記
被溶接物との間のトーチ電圧を制御し、かくして、前記
開先の形状変化によらず、前記開先に形成されるビード
高さを一定に維持し且つ前記開先の裏面に形成される裏
ビードの予盛り形状を最適に維持することを特徴とする
片面自動裏波溶接方法。
1. A backing plate is applied to the back surface of a groove formed between two objects to be welded, and a welding wire as a consumable electrode is continuously supplied toward the groove through a welding torch, A shield gas is blown toward the groove through a welding torch, the height of the welding torch is controlled so that a constant welding current is supplied to the welding wire through a tip, and the welding torch has a constant welding speed. By moving along the groove, to supply the constant welding current to the welding wire, to generate an arc between the welding wire and the groove, thus, the arc to heat the work piece. A single-sided automatic backside welding method comprising welding one another along the groove at the constant welding speed, the feed rate of the welding wire, and a torch between the tip and the workpiece. The pressure is controlled, thus maintaining the bead height formed on the groove constant regardless of the shape change of the groove and optimizing the pre-filled shape of the back bead formed on the back surface of the groove. A single-sided automatic Uranami welding method characterized by maintaining
【請求項2】 前記溶接ワイヤの供給速度(Vf )の制
御は、下記(A)式、 Vf =VW (SDO+H・G)/Sφ --- (A) 但し、(A)式において、 Vf :溶接ワイヤ供給速度(mm/sec)、 VW :溶接速度(mm/sec) 、 G :ルートギャップ距離(mm)、 SDO:G=0のときのビード断面積(mm2) 、 H :ビード高さ(mm)、 Sφ:溶接ワイヤ断面積(mm2) 。 によって行い、前記トーチ電圧(Vt )の制御は、下記
(B)式、 Vt =[(a−B・b){(Vf −AIa )/BIa 2 }+k(1) +k(3) la ]Ia +k(4) la +k(2) −A・b --- (B) 但し、(B)式において、 Ia :溶接電流(A) 、 la :アーク長(mm)、 A、B.a、b、k(1) 、k(2) 、k(3) 、k(4) :定
数。 によって行うことを特徴とする、請求項1記載の片面自
動裏波溶接方法。
2. The control of the supply speed (V f ) of the welding wire is performed by the following formula (A), V f = V W (S DO + H · G) / Sφ --- (A) where (A) In the formula, V f : welding wire supply speed (mm / sec), V W : welding speed (mm / sec), G: root gap distance (mm), S DO : bead cross-sectional area when G = 0 (mm 2 ), H: bead height (mm), Sφ: welding wire cross-sectional area (mm 2 ). Done by the control of the torch voltage (V t) is represented by the following formula (B), V t = [(a- B · b) {(V f -AI a) / BI a 2} + k (1) + k ( 3) l a] I a + k (4) l a + k (2) -A · b --- (B) except that in (B) formula, I a: welding current (A), l a: arc length ( mm), A, B. a, b, k (1), k (2), k (3), k (4): constants. The single-sided automatic backside welding method according to claim 1, wherein
JP4210877A 1992-07-15 1992-07-15 One-side automatic Uranami welding method Expired - Fee Related JP2734306B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4210877A JP2734306B2 (en) 1992-07-15 1992-07-15 One-side automatic Uranami welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4210877A JP2734306B2 (en) 1992-07-15 1992-07-15 One-side automatic Uranami welding method

Publications (2)

Publication Number Publication Date
JPH0631444A true JPH0631444A (en) 1994-02-08
JP2734306B2 JP2734306B2 (en) 1998-03-30

Family

ID=16596577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4210877A Expired - Fee Related JP2734306B2 (en) 1992-07-15 1992-07-15 One-side automatic Uranami welding method

Country Status (1)

Country Link
JP (1) JP2734306B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011011248A (en) * 2009-07-03 2011-01-20 Jfe Engineering Corp Method and device for circumferential weld of fixed tube
JP2011011247A (en) * 2009-07-03 2011-01-20 Jfe Engineering Corp Circumferential welding method for fixed pipe
WO2018021090A1 (en) * 2016-07-27 2018-02-01 株式会社神戸製鋼所 Welding device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61180677A (en) * 1985-02-05 1986-08-13 Nippon Kokan Kk <Nkk> Back bead control method in one side welding

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61180677A (en) * 1985-02-05 1986-08-13 Nippon Kokan Kk <Nkk> Back bead control method in one side welding

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011011248A (en) * 2009-07-03 2011-01-20 Jfe Engineering Corp Method and device for circumferential weld of fixed tube
JP2011011247A (en) * 2009-07-03 2011-01-20 Jfe Engineering Corp Circumferential welding method for fixed pipe
WO2018021090A1 (en) * 2016-07-27 2018-02-01 株式会社神戸製鋼所 Welding device
KR20190015579A (en) * 2016-07-27 2019-02-13 가부시키가이샤 고베 세이코쇼 Welding device
CN109475959A (en) * 2016-07-27 2019-03-15 株式会社神户制钢所 Welder
US10843286B2 (en) 2016-07-27 2020-11-24 Kobe Steel, Ltd. Welding device
CN109475959B (en) * 2016-07-27 2021-11-23 株式会社神户制钢所 Welding device

Also Published As

Publication number Publication date
JP2734306B2 (en) 1998-03-30

Similar Documents

Publication Publication Date Title
CN105829003A (en) System and method for true electrode speed
EP0300367B1 (en) Automatic arc-welding method
JPH0450102B2 (en)
JPH0475115B2 (en)
JPH10118771A (en) Vertical electro-gas welding device
JP7303383B2 (en) Method and apparatus for welding weld seams
JPH0631444A (en) One-side automatic penetration welding method
JP2857309B2 (en) Non-consumable electrode type automatic arc welding method
JP4640908B2 (en) Welding apparatus and welding method
JP2543524B2 (en) Automatic arc welding equipment
JP2002079373A (en) Method and device for controlling position of welding for high-frequency pulse arc welding
JP2991854B2 (en) Single side welding method
KR20210009663A (en) A method for automatically adjust wire feed speed and welding current
JPS6246273B2 (en)
JPH064194B2 (en) Welding method by arc welding robot
JPH04238680A (en) Butt welding method for strips
KR102661338B1 (en) Electrogas ARC welding apparatus and and welding method using threrof
JPS6317553B2 (en)
JPH05143B2 (en)
JPH07185809A (en) Automatic control device in submerged arc welding
JP2782626B2 (en) Welding start and end treatment method
JPH01180782A (en) Tig fusion treating method
JPH0335875A (en) Brazing device
JPH11104830A (en) Welding arc length control method and arc welding equipment
JP3253747B2 (en) Welding method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees