JPH063142A - Solar cell power source apparatus - Google Patents

Solar cell power source apparatus

Info

Publication number
JPH063142A
JPH063142A JP4157921A JP15792192A JPH063142A JP H063142 A JPH063142 A JP H063142A JP 4157921 A JP4157921 A JP 4157921A JP 15792192 A JP15792192 A JP 15792192A JP H063142 A JPH063142 A JP H063142A
Authority
JP
Japan
Prior art keywords
solar cell
cell panel
sun
solar
azimuth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4157921A
Other languages
Japanese (ja)
Inventor
Kimiharu Kanamaru
公春 金丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP4157921A priority Critical patent/JPH063142A/en
Publication of JPH063142A publication Critical patent/JPH063142A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking

Landscapes

  • Photovoltaic Devices (AREA)
  • Control Of Position Or Direction (AREA)

Abstract

PURPOSE:To improve generating efficiency significantly by realizing an automatically tracking mechanism free of power burden as small apparatus. CONSTITUTION:Condenser lenses 31 and 32 mounted on an azimuth tracking mechanism 3 are so arranged to open by shifting optical axes 311 and 321 so as to generate a difference in collection of heat when the sun does not turn in the direction of facing a solar panel 1 directly. When the solar cell panel 11 does not turn in the direction of facing the sun directly, a difference is generated in the solar heat hitting bimetals 33 and 34 from the condenser lenses 31 and 32, which causes a difference in the deformation of the bimetals and a couple of force is generated in a rotary gear 37 to develop a rotating force in an azimuth direction. Thus, the azimuth of the solar cell panel 1 interlocking the rotary gear 37 is altered to let the panel turn in the direction facing the sun directly. An elevation detection tracking mechanism is made in the same structure and the elevation of the solar cell panel 1 is altered so as to let the panel turn in the direction of facing the sun directly.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電力負担を伴わずに太
陽を自動追尾する機構をもつ太陽電池電源装置に関し、
特に比較的小規模の太陽電池電源装置に好適なものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solar cell power supply device having a mechanism for automatically tracking the sun without the burden of electric power,
It is particularly suitable for a relatively small-scale solar cell power supply device.

【0002】[0002]

【従来の技術】自然の恵みである太陽光エネルギを利用
して発電する方式は各種考えられるが、現在、太陽電池
が広く利用されている。太陽電池利用電源の規模も、広
大なエリアに太陽電池パネルを多数配列して大電力を発
電するものから、送電線監視用電源として鉄塔に取り付
けられるような比較的小規模な電力を発電するもの、さ
らには極めて小さな電力を発電する腕時計用電源に至る
まで非常に幅広い。
2. Description of the Related Art There are various possible methods for generating electricity using sunlight energy, which is a bounty of nature, but at present, solar cells are widely used. As for the scale of the power source using solar cells, a large number of solar cell panels are arranged in a vast area to generate a large amount of power, and a relatively small amount of power that can be attached to a steel tower as a power source for monitoring transmission lines is generated. , And even a wide range of power supplies for wristwatches that generate extremely small amounts of power.

【0003】太陽電池を最も効率よく利用するために
は、太陽電池パネル面を絶えず太陽の方向に直面するよ
うに向けておく必要があるが、太陽が時間とともに動く
ためにこれを追尾する機構が必要になる。前記した大規
模な太陽電池発電においては、既にこの様な自動追尾機
構を備えているが、これらはモータ等を駆動力としてお
り、そのための電力負担が要求される。
In order to use the solar cell most efficiently, it is necessary to keep the surface of the solar cell panel facing the direction of the sun constantly. However, since the sun moves with time, there is a mechanism for tracking it. You will need it. The large-scale solar cell power generation described above is already provided with such an automatic tracking mechanism, but these use a motor or the like as a driving force, and therefore a power burden for that is required.

【0004】一方、比較的小規模の太陽電池電源につい
ては、発電電力自体が少ないために、前記のようなモー
タ等の電源を必要とする駆動系を採用すると電力負担が
大きく、太陽電池による折角の発電を有効利用できな
い。そのため、小規模の太陽電池電源においては、平均
的にみて最も効率が良くなる方向(すなわち、方位角に
ついては南、仰角については設置場所の緯度に相当する
角度)に太陽電池パネルを固定して使用しているのが現
状である。
On the other hand, with respect to a relatively small-scale solar cell power source, since the generated power itself is small, if a drive system requiring a power source such as a motor as described above is adopted, a large power load is imposed, and the solar cell will not bend. Can not effectively utilize the power generation. Therefore, in a small-scale solar cell power supply, fix the solar cell panel in the direction that is most efficient on average (that is, south for azimuth and angle corresponding to the latitude of the installation location for elevation). It is currently being used.

【0005】[0005]

【発明が解決しようとする課題】ところで、特に小規模
な太陽電池電源の場合、太陽電池パネルの大きさに制約
がある場合が多く、太陽電池の発電能力を最大限に引き
出すことが要請される。しかし、上述したように従来の
小規模な太陽電池電源では、駆動系の電力負担のために
自動追尾機構を実現することができなかったので、上記
要請に応えられななかった。
By the way, particularly in the case of a small-scale solar cell power source, the size of the solar cell panel is often restricted, and it is required to maximize the power generation capacity of the solar cell. . However, as described above, the conventional small-scale solar cell power source cannot realize the automatic tracking mechanism because of the power burden of the drive system, and thus cannot meet the above-mentioned request.

【0006】本発明の目的は、電力負担を必要とせずに
自動追尾できるようにすることによって、前記した従来
技術の欠陥を解消し、発電効率を大幅に改善することの
できる新規な太陽電池電源装置を提供することにある。
An object of the present invention is to provide a novel solar cell power source capable of solving the above-mentioned deficiencies of the prior art and greatly improving the power generation efficiency by enabling automatic tracking without requiring a power burden. To provide a device.

【0007】[0007]

【課題を解決するための手段】本発明の太陽電池電源装
置は、太陽の動きを自動追尾する太陽電池パネルを用い
た太陽電池電源装置において、方位角方向の左右にそれ
ぞれ設けられ上記太陽電池パネルの受光面に直交する方
向に対して所定の角度だけずれた向きに光軸をずらした
2個の集光部と、これら2個の集光部で集光される太陽
熱により変形する2個のバイメタルを有し両バイメタル
が受ける太陽熱の差により、太陽電池パネルの方位角を
太陽に向わせる方位角方向の回転力を太陽電池パネルに
発生させるバイメタル駆動機構とを備えた方位角追尾機
構と、仰角方向の上下にそれぞれ設けられ上記太陽電池
パネルの受光面方向と直交する方向に対して所定の角度
だけずれた向きに光軸をずらした2個の集光部と、これ
ら2個の集光部で集光される太陽熱により変形する2個
のバイメタルを有し両バイメタルが受ける太陽熱の差に
より、太陽電池パネルの仰角を太陽に向わせる仰角方向
の回転力を太陽電池パネルに発生させるバイメタル駆動
機構とを備えた仰角追尾機構とを有するものである。
The solar cell power supply device of the present invention is a solar cell power supply device using a solar cell panel for automatically tracking the movement of the sun, and the solar cell panel is provided on each of the left and right sides in the azimuth direction. Of the two light collectors whose optical axes are offset from each other by a predetermined angle with respect to the direction orthogonal to the light receiving surface, and two solar light that is deformed by the solar heat collected by these two light collectors. An azimuth tracking mechanism equipped with a bimetal drive mechanism that has a bimetal and generates a rotational force in the azimuth direction in the solar cell panel that causes the azimuth angle of the solar cell panel to face the sun due to the difference in solar heat received by both bimetals. , Two light concentrators which are respectively provided above and below the elevation angle direction and whose optical axes are displaced in a direction deviated by a predetermined angle with respect to a direction orthogonal to the light receiving surface direction of the solar cell panel, and a collection of these two. In the light section A bimetal drive mechanism that has two bimetals that are deformed by the solar heat that is emitted and that generates a rotational force in the elevation angle direction that causes the elevation angle of the solar cell panel to face the sun due to the difference in the solar heat received by both bimetals. And an elevation angle tracking mechanism.

【0008】また、本発明の太陽電池電源装置は、太陽
の動きを自動追尾する太陽電池パネルを用いた太陽電池
電源装置において、方位角方向の左右にそれぞれ設けら
れ上記太陽電池パネルの受光面に直交する方向に対して
所定の角度だけずれた向きに光軸をずらした2個の集光
部と、これら2個の集光部で集光される太陽熱により変
形する2個のバイメタルを有し両バイメタルが受ける太
陽熱の差により、太陽電池パネルの方位角を太陽に向わ
せる方位角方向の回転力を太陽電池パネルに発生させる
バイメタル駆動機構とを備えた方位角追尾機構を有する
ものである。
Further, the solar cell power supply device of the present invention is a solar cell power supply device using a solar cell panel for automatically tracking the movement of the sun. It has two light concentrators whose optical axes are offset from each other by a predetermined angle with respect to the orthogonal direction, and two bimetals that are deformed by solar heat condensed by these two light concentrators. Due to the difference in solar heat received by both bimetals, a bimetal drive mechanism is provided that has a bimetal drive mechanism that causes the solar cell panel to generate rotational force in the azimuth direction that directs the azimuth angle of the solar cell panel to the sun. .

【0009】また、本発明の太陽電池電源装置は、太陽
の動きを自動追尾する太陽電池パネルを用いた太陽電池
電源装置において、仰角方向の上下にそれぞれ設けられ
上記太陽電池パネルの受光面方向と直交する方向に対し
て所定の角度だけずれた向きに光軸をずらした2個の集
光部と、これら2個の集光部で集光される太陽熱により
変形する2個のバイメタルを有し両バイメタルが受ける
太陽熱の差により、太陽電池パネルの仰角を太陽に向わ
せる仰角方向の回転力を太陽電池パネルに発生させるバ
イメタル駆動機構とを備えた仰角追尾機構を有するもの
である。
Further, the solar cell power supply device of the present invention is a solar cell power supply device using a solar cell panel for automatically tracking the movement of the sun. It has two light concentrators whose optical axes are offset from each other by a predetermined angle with respect to the orthogonal direction, and two bimetals that are deformed by solar heat condensed by these two light concentrators. An elevation angle tracking mechanism including a bimetal drive mechanism that causes the solar cell panel to generate a rotational force in an elevation angle direction that directs the elevation angle of the solar cell panel to the sun due to the difference in solar heat received by both bimetals.

【0010】なお、本発明を適用する太陽電池電源装置
は比較的小規模のものに好適であるが、特にその規模は
問わない。
The solar cell power supply device to which the present invention is applied is suitable for a relatively small scale, but the scale is not particularly limited.

【0011】[0011]

【作用】方位角追尾機構では、2個の集光部は光軸をず
らしてあるので、太陽電池パネルが太陽に直面した方向
を向いていないと、2個の集光部から各バイメタルに当
る太陽の受光熱に差が生じる。すると、バイメタルの変
形量に差が生じて偶力が生成され、その偶力により方位
角方向の回転力を太陽電池パネルに発生し、これによっ
て太陽電池パネルの方位角が太陽に直面した方向を向く
ように変更される。特に、方位角方向の回転力を発生す
るための適切な偶力を生成されるためには、バイメタル
の変形方向が相反する方向に配置されていることが好ま
しい。
In the azimuth tracking mechanism, the two light collecting parts have their optical axes displaced from each other. Therefore, if the solar cell panel does not face the direction facing the sun, the two light collecting parts will hit each bimetal. A difference occurs in the heat received by the sun. Then, a difference occurs in the amount of deformation of the bimetal, and a couple is generated.The couple produces a rotational force in the azimuth direction on the solar cell panel, which causes the azimuth angle of the solar panel to face the sun. Changed to face. In particular, in order to generate an appropriate couple for generating the rotational force in the azimuth direction, the bimetals are preferably arranged in opposite directions.

【0012】同じく仰角検出追尾機構では、2個の集光
部は光軸をずらしてあるので、太陽電池パネルが太陽に
直面した方向を向いていないと、2個の集光部から各バ
イメタルに当る太陽の受光熱に差が生じる。すると、バ
イメタルの変形量に差が生じて偶力が生成され、その偶
力により仰角方向の回転力を太陽電池パネルに発生し、
これによって太陽電池パネルの仰角が太陽に直面した方
向を向くように変更される。
Similarly, in the elevation angle detecting and tracking mechanism, the two light collecting parts have their optical axes displaced from each other. Therefore, if the solar cell panel does not face the direction facing the sun, the two light collecting parts will be separated from each bimetal. Differences occur in the heat received by the sun. Then, a difference occurs in the amount of deformation of the bimetal, a couple is generated, and the couple produces a rotational force in the elevation angle direction on the solar cell panel,
This alters the elevation of the solar panel to face the sun.

【0013】この場合において、2個のバイメタルの変
形力は、これらに受光される太陽熱にアンバランスが生
じると太陽電池パネルに作用するので、環境変化とか外
乱とかいった現象では、等量の熱が2個のバイメタルに
同時に加わるため熱バランスは崩れず、そのときのバイ
メタルの変形は偶力が相殺される方向に働き、従って回
転力は発生しない。
In this case, the deforming force of the two bimetals acts on the solar cell panel when the solar heat received by them is unbalanced, so that in a phenomenon such as environmental change or disturbance, an equal amount of heat is generated. Is applied to two bimetals at the same time, the heat balance is not disturbed, and the deformation of the bimetal at that time works in the direction in which the couples are offset, so that no rotational force is generated.

【0014】このようなバイメタルを有するバイメタル
駆動機構は、外部電源を必要とするモータ等の駆動機構
と異なり、外部電源が不要であり、したがって、太陽電
池パネルから発電された電力を自己消費することもな
い。
The bimetal drive mechanism having such a bimetal does not require an external power source, unlike a drive mechanism such as a motor which requires an external power source, and therefore consumes the power generated from the solar cell panel. Nor.

【0015】方位角追尾機構のみを備える太陽電池電源
装置にあっては、太陽電池パネルの仰角は設置場所の緯
度に相当する角度などに固定しておくが、太陽電池パネ
ルの方位角の向きは太陽の動きに追随して自動的に変更
される。一方、仰角追尾機構のみを備えている太陽電池
電源装置にあっては、太陽電池パネルの方位角は南など
に固定しておくが、太陽電池パネルの仰角の向きは太陽
の動きに追随して自動的に変更される。特に、方位角追
尾機構と仰角追尾機構の両機構を備えている太陽電池電
源装置にあっては、太陽の動きに追随して太陽電池パネ
ルの向きが方位角及び仰角とも自動的に変更される日向
性機能を有することになり、もっとも効率良く発電する
ことができる。
In a solar battery power supply device having only an azimuth tracking mechanism, the elevation angle of the solar battery panel is fixed at an angle corresponding to the latitude of the installation location, but the azimuth direction of the solar battery panel is It changes automatically following the movement of the sun. On the other hand, in a solar battery power supply device that has only an elevation tracking mechanism, the azimuth angle of the solar battery panel is fixed to the south, but the elevation angle direction of the solar battery panel follows the movement of the sun. It is changed automatically. In particular, in a solar battery power supply device equipped with both an azimuth tracking mechanism and an elevation tracking mechanism, the orientation of the solar cell panel is automatically changed in accordance with the movement of the sun. Since it has a diurnal function, it can generate power most efficiently.

【0016】[0016]

【実施例】以下、本発明の向日性を有する太陽電池電源
装置の一実施例を具体的に説明する。図3は、本発明の
向日性を有する太陽電池電源装置の一実施例を示す概略
構成図である。太陽電池パネル1は方位角追尾機構3及
び仰角追尾機構4を備え、これらにより絶えず太陽に直
面するごとく向きが自動的に変えられるように構成され
ている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the solar cell power supply device having tropism of the present invention will be specifically described below. FIG. 3 is a schematic configuration diagram showing an embodiment of a solar cell power supply device having tropism of the present invention. The solar cell panel 1 includes an azimuth angle tracking mechanism 3 and an elevation angle tracking mechanism 4, which are configured to automatically change their orientations as they constantly face the sun.

【0017】方位角追尾機構3は、太陽電池パネル1を
支持する固定部材2に対して太陽電池パネル1を方位角
方向に回転させる。その概略構成は、太陽電池パネル1
の受光面の方向に対して、方位角方向の左右の各々に、
所定の角度だけずれた向きに光軸をずらした2個の集光
部31、32と、これら2個の集光部31、32で集光
される太陽光を受光して、太陽熱の差により方位角方向
の回転力を回転支持部材21に発生させ、これによって
支持されている太陽電池パネル1の方位角を太陽に向か
うように変更するバイメタル駆動機構とからなる。
The azimuth tracking mechanism 3 rotates the solar cell panel 1 in the azimuth direction with respect to the fixing member 2 supporting the solar cell panel 1. The schematic structure is the solar cell panel 1.
To the left and right of the azimuth direction with respect to the direction of the light receiving surface of
Due to the difference in solar heat, the two light collecting parts 31 and 32 whose optical axes are displaced in a direction shifted by a predetermined angle and the sunlight collected by these two light collecting parts 31 and 32 are received. The bimetal drive mechanism is configured to generate a rotational force in the azimuth direction on the rotation support member 21 and change the azimuth angle of the solar cell panel 1 supported by the rotation support member 21 toward the sun.

【0018】仰角追尾機構4は、太陽電池パネル1を方
位角方向に回転自在に支持する回転支持部材21に対し
て太陽電池パネル1を仰角方向に回転させる。その概略
機構は、太陽電池パネル1の受光面の方向に対して、仰
角方向の上下に各々所定の角度だけずれた向きに2個の
集光部41、42と、これら2個の集光部で集光される
太陽光を受光して、太陽熱の差により仰角方向の回転力
を回転支持部材22に発生させ(裏面に隠れて見えない
が、図4の符合22参照)、これによって支持されてい
る太陽電池パネル1の仰角を太陽に向かうように変更す
るバイメタル駆動機構からなる。
The elevation angle tracking mechanism 4 rotates the solar cell panel 1 in the elevation direction with respect to the rotation support member 21 that supports the solar cell panel 1 rotatably in the azimuth direction. The general mechanism is that two light collecting portions 41 and 42 are arranged in a direction shifted upward and downward in the elevation direction with respect to the direction of the light receiving surface of the solar cell panel 1, and these two light collecting portions. By receiving the sunlight collected by, the rotating force in the elevation direction is generated on the rotation support member 22 due to the difference in the solar heat (hidden on the back surface and invisible, see reference numeral 22 in FIG. 4) and supported by this. It is composed of a bimetal drive mechanism that changes the elevation angle of the solar cell panel 1 facing the sun.

【0019】なお、図4は上記方位角追尾機構3及び仰
角追尾機構4を備えた太陽電池電源装置の概略背面図で
ある。方位角追尾機構3及び仰角追尾機構4について
は、誇張して描いてあるが、実際はもっと小さい。これ
ら方位角追尾機構3及び仰角追尾機構4は構成が共通し
ているので、方位角追尾機構3を例に挙げて、次に具体
的に説明する。
FIG. 4 is a schematic rear view of a solar cell power supply device having the azimuth tracking mechanism 3 and the elevation tracking mechanism 4. Although the azimuth tracking mechanism 3 and the elevation tracking mechanism 4 are exaggeratedly drawn, they are actually smaller. Since the azimuth tracking mechanism 3 and the elevation tracking mechanism 4 have the same configuration, the azimuth tracking mechanism 3 will be taken as an example and specifically described below.

【0020】図1は、本実施例の向日性を有する太陽電
池電源装置の方位角追尾機構を示す構造図である。方位
角追尾機構3は、固定部材2に一体的に取り付けられ、
バイメタル駆動機構41を内蔵した収容ケース42と、
収容ケース42内に光を導く2個の集光部31、32と
から主に構成される。
FIG. 1 is a structural diagram showing an azimuth angle tracking mechanism of a solar cell power supply device having a tropism of the present embodiment. The azimuth tracking mechanism 3 is integrally attached to the fixed member 2,
A housing case 42 containing a bimetal drive mechanism 41,
It is mainly composed of two condensing sections 31 and 32 for guiding light into the housing case 42.

【0021】バイメタル駆動機構41は収容ケース42
内に組み込まれ、その収容ケース42は、太陽電池電源
装置の架台となる柱状の固定部材21の上部に一体的に
取り付けられる。また、固定部材2には太陽電池パネル
1を支持する柱状の回転支持部材21が上方から収容ケ
ース4を貫通するように遊着され、固定部材2に対して
回転自在になっている。この回転支持部材21の収容ケ
ース41内の部分には回転歯車37が固着され、この回
転歯車37に駆動歯車となる2個の扇形歯車35、36
が左右両側から齒合されている。扇形歯車35、36が
その軸38、39を中心に同一方向に回転すると、齒合
部では矢印に示すように互に反対方向に移動する偶力が
発生し、その偶力により回転歯車37が一方向に回転す
るようになっている。したがって、もし扇形歯車35、
36が逆方向に同一回転力で回転しようとすると回転力
が釣り合って回転歯車37は回転しない。
The bimetal drive mechanism 41 includes a housing case 42.
The housing case 42, which is incorporated into the inside, is integrally attached to an upper portion of the columnar fixing member 21 which serves as a mount of the solar cell power supply device. A columnar rotation support member 21 that supports the solar cell panel 1 is loosely attached to the fixing member 2 from above so as to penetrate the housing case 4, and is rotatable with respect to the fixing member 2. A rotary gear 37 is fixed to a portion of the rotation support member 21 inside the housing case 41, and two fan-shaped gears 35 and 36 serving as drive gears are attached to the rotary gear 37.
Are mated from the left and right sides. When the sector gears 35, 36 rotate in the same direction about their shafts 38, 39, a couple of forces that move in mutually opposite directions are generated at the meshing portion, as indicated by the arrow, and the couple causes the rotary gear 37 to move. It is designed to rotate in one direction. Therefore, if the fan gear 35,
When 36 tries to rotate in the opposite direction with the same rotational force, the rotational forces are balanced and the rotary gear 37 does not rotate.

【0022】各扇形歯車35、36上には、それぞれ係
合孔43、44が明けられており、これらの係合孔に一
端を係合し他端を軸33、39にそれぞれ固定した2個
のバイメタル33、34が取り付けられている。このバ
イメタル33、34は、図2にも二点鎖線(33a、3
4a)で示すように、弓なりに熱変形する方向が扇歯車
35、36の回転方向と一致するように取り付けられ
る。しかも、このバイメタル33、34を使って太陽電
池パネル1を有効に回転させるために、相対向する扇形
歯車35、36上に、バイメタル33、34は同一方向
ではなく、互に逆方向に変形する方向に取り付ける。
Engagement holes 43 and 44 are formed on the respective fan gears 35 and 36, and one end is engaged with these engagement holes and the other end is fixed to the shafts 33 and 39, respectively. Bimetals 33 and 34 are attached. The bimetals 33 and 34 are also shown in FIG.
As shown in FIG. 4a), it is attached so that the direction of thermal deformation in a bow shape coincides with the rotation direction of the fan gears 35, 36. Moreover, in order to effectively rotate the solar cell panel 1 by using the bimetals 33 and 34, the bimetals 33 and 34 are not deformed in the same direction but in the opposite directions on the fan gears 35 and 36 facing each other. Install in the direction.

【0023】収納ケース42の表面に取り付けた2個の
集光部31、32は、太陽熱エネルギを取り込む集光レ
ンズからなり、各集光レンズは太陽電池パネル1の受光
面1aに直交する軸11と平行な線に対して、それぞれ
+θ、−θの角度だけ傾けた光軸311、321になる
ように、方位角方向の左右(図では上下)位置の収容ケ
ース42表面に設置されている。θに±の符合を付した
ことから分かるように、両光軸311、321間は太陽
に向って開くように設定する。この角度θの値は、方位
角追尾機構に合せて任意に定めることができる。
The two condensers 31 and 32 mounted on the surface of the storage case 42 are condenser lenses for taking in solar heat energy, and each condenser lens has an axis 11 orthogonal to the light receiving surface 1a of the solar cell panel 1. Are installed on the surface of the housing case 42 at the left and right (upper and lower in the figure) positions in the azimuth direction so that the optical axes 311 and 321 are inclined by angles of + θ and −θ, respectively, with respect to the line parallel to. As can be seen from the sign of ± attached to θ, the two optical axes 311 and 321 are set to open toward the sun. The value of the angle θ can be arbitrarily determined according to the azimuth tracking mechanism.

【0024】さて上記したような構成の作用について説
明する。図1において、集光部31、32によって集光
された太陽熱エネルギは扇形歯車35、36上に取り付
けた各バイメタル33、34に導かれる。もし、太陽が
太陽電池パネル1に直面していないと、バイメタル3
3、34の受ける太陽熱エネルギがアンバランスにな
り、バイメタル33、34の変形力に差が生じる。この
変形力の差は扇形歯車35、36により回転歯車37に
偶力を付与して、その偶力にもとづく回転力として伝達
される。回転歯車37は回転支持部材21に固着されて
いるので、相対的に太陽電池パネル1が太陽の方向に向
きを変える。この機構により太陽電池パネル1は絶えず
太陽に直面するように方位角の向きが変えられる。
Now, the operation of the above configuration will be described. In FIG. 1, the solar heat energy collected by the light collectors 31, 32 is guided to the bimetals 33, 34 mounted on the sector gears 35, 36. If the sun is not facing the solar panel 1, the bimetal 3
The solar thermal energy received by 3, 34 becomes unbalanced, and a difference occurs in the deformation force of the bimetals 33, 34. The difference between the deformation forces is applied to the rotary gear 37 by the sector gears 35 and 36, and is transmitted as a rotary force based on the couple. Since the rotating gear 37 is fixed to the rotation supporting member 21, the solar cell panel 1 relatively turns to the sun. With this mechanism, the solar cell panel 1 is reoriented in azimuth so as to constantly face the sun.

【0025】ここで、環境の変化や外乱による太陽の運
行以外の要素により、左右のバイメタルに加えられる熱
量にシフトが生じた場合でも、同時に同じ大きさの熱が
加えられることになって回転力が規制されるため、追尾
の障害にはならない。
Here, even if the amount of heat applied to the left and right bimetals shifts due to factors other than the operation of the sun due to environmental changes and disturbances, the same amount of heat is applied at the same time, and the rotational force is increased. Is regulated, so it does not hinder tracking.

【0026】なお、図示していないが、仰角追尾機構4
についても同様の機構を実現している。すなわち、平面
視した図1を側面視して方位角追尾機構3の各部品を仰
角追尾機構4の各部品に置き換えると仰角追尾機構4が
実現できる。この機構により太陽電池パネル1は絶えず
太陽に直面するように仰角の向きが変えられる。したが
って、両機構3、4を同時に備えた本実施例の太陽電池
電源装置によれば、太陽電池パネルが太陽の運行に追尾
して角変位する向日性機能を有するので、発電効率を最
大限に上げることが可能となる。
Although not shown, the elevation angle tracking mechanism 4
The same mechanism is realized for. That is, the elevation angle tracking mechanism 4 can be realized by replacing each component of the azimuth angle tracking mechanism 3 with each component of the elevation angle tracking mechanism 4 in a side view of FIG. By this mechanism, the solar cell panel 1 is reoriented in the elevation angle so as to constantly face the sun. Therefore, according to the solar battery power supply device of this embodiment equipped with both the mechanisms 3 and 4, the solar battery panel has the sun activating function of angular displacement following the operation of the sun, so that the power generation efficiency is maximized. It becomes possible to raise it to.

【0027】特に、本実施例による太陽電池電源装置
を、配電線からの電源確保が困難な鉄塔部に設置して、
送電線保守監視システムのための比較的小規模な電源と
して利用する太陽電池パネルに適用すれば、小規模であ
りながら常に最大電力を発揮できるのでメリットが大き
い。なお、鉄塔設置環境として強風の問題があるが、こ
の問題は強風に対抗できる変形力を発揮するバイメタル
を特に選定することにより解決できる。また、扇形歯車
と回転歯車機構の小型化により、図4では誇張して描い
た方位角追尾機構及び仰角追尾機構を小型化し、太陽電
池パネルの架台となるパネル支持系全体を小さくするこ
とが望ましい。このとき必要ならば光ファイバを用いて
バイメタルに太陽光を導くようにしてもよい。また、歯
車機構は図示のものに限定されないこと、装置も比較的
小規模のものに限定されないことは勿論である。
In particular, the solar cell power supply device according to this embodiment is installed in a steel tower section where it is difficult to secure power from the distribution line,
If applied to a solar cell panel used as a relatively small-scale power source for a transmission line maintenance monitoring system, it has a large merit because it can always exhibit maximum power even though it is small. It should be noted that there is a problem of strong wind as the installation environment of the steel tower, but this problem can be solved by particularly selecting a bimetal that exhibits a deforming force that can resist the strong wind. Further, it is desirable to downsize the azimuth angle tracking mechanism and the elevation angle tracking mechanism, which are exaggerated in FIG. 4, by downsizing the fan-shaped gear and the rotary gear mechanism, and to reduce the size of the entire panel support system that is the mount of the solar cell panel. . At this time, if necessary, an optical fiber may be used to guide the sunlight to the bimetal. Further, it goes without saying that the gear mechanism is not limited to that shown in the drawings and the device is not limited to a relatively small one.

【0028】なお、方位角追尾機構あるいは仰角追尾機
構のいずれか一方のみを適用することはもちろん可能で
ある。また、上記実施例では仰角追尾機構を上方に、方
位角追尾機構を下方に配置したが、上下を逆にしてもよ
い。
Of course, it is possible to apply only one of the azimuth tracking mechanism and the elevation tracking mechanism. Further, in the above embodiment, the elevation angle tracking mechanism is arranged above and the azimuth angle tracking mechanism is arranged below, but the top and bottom may be reversed.

【0029】[0029]

【発明の効果】請求項1ないし3に記載の太陽電池電源
装置によれば、太陽光追尾のための駆動機構をバイメタ
ルで実現することにより、電力負担を伴わず簡単な構造
でありながら、方位角方向または仰角方向、さらにはそ
れらの両方の追尾ができ、極めて効率の高い太陽電池発
電が可能になる。
According to the solar cell power supply device according to the first to third aspects of the present invention, since the drive mechanism for tracking the sunlight is realized by the bimetal, the azimuth can be achieved even though the structure is simple without power load. Tracking can be performed in the angular direction, the elevation direction, or both of them, which enables extremely efficient solar cell power generation.

【図面の簡単な説明】[Brief description of drawings]

【図1】本実施例による方位角追尾機構を示す平面図。FIG. 1 is a plan view showing an azimuth tracking mechanism according to the present embodiment.

【図2】本実施例によるバイメタルの取り付け状態を示
す説明図。
FIG. 2 is an explanatory diagram showing a mounting state of a bimetal according to the present embodiment.

【図3】本発明の向日性を有する太陽電池電源装置の一
実施例を示す斜め正面から見た全体構成図。
FIG. 3 is an overall configuration diagram showing an embodiment of a solar cell power supply device having sunshine in accordance with the present invention as seen from an oblique front surface.

【図4】本発明の向日性を有する太陽電池電源装置の一
実施例を示す斜め背後から見た全体構成図。
FIG. 4 is an overall configuration diagram of an embodiment of a solar cell power supply device having sun propulsion according to the present invention as seen from diagonally behind.

【符号の説明】[Explanation of symbols]

1 太陽電池パネル 2 固定部材 3 方位角追尾機構 4 仰角追尾機構 21 回転支持部材 31、32 集光部(集光レンズ) 33、34 バイメタル 35、36 扇形歯車(駆動ギア) 37 回転歯車 311、321 太陽光集光部の光軸 1 Solar Cell Panel 2 Fixed Member 3 Azimuth Tracking Mechanism 4 Elevation Tracking Mechanism 21 Rotation Support Member 31, 32 Condenser Part (Condenser Lens) 33, 34 Bimetal 35, 36 Fan Gear (Drive Gear) 37 Rotation Gear 311, 321 Optical axis of sunlight concentrator

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】太陽の動きを自動追尾する太陽電池パネル
を用いた太陽電池電源装置において、方位角方向の左右
にそれぞれ設けられ上記太陽電池パネルの受光面に直交
する方向に対して所定の角度だけずれた向きに光軸をず
らした2個の集光部と、これら2個の集光部で集光され
る太陽熱により変形する2個のバイメタルを有し両バイ
メタルが受ける太陽熱の差により、太陽電池パネルの方
位角を太陽に向わせる方位角方向の回転力を太陽電池パ
ネルに発生させるバイメタル駆動機構とを備えた方位角
追尾機構と、仰角方向の上下にそれぞれ設けられ上記太
陽電池パネルの受光面方向と直交する方向に対して所定
の角度だけずれた向きに光軸をずらした2個の集光部
と、これら2個の集光部で集光される太陽熱により変形
する2個のバイメタルを有し両バイメタルが受ける太陽
熱の差により、太陽電池パネルの仰角を太陽に向わせる
仰角方向の回転力を太陽電池パネルに発生させるバイメ
タル駆動機構とを備えた仰角追尾機構とを有することを
特徴とする太陽電池電源装置。
1. A solar cell power supply device using a solar cell panel for automatically tracking the movement of the sun, wherein the solar cell power supply apparatus is provided on each of the left and right sides of the azimuth direction and has a predetermined angle with respect to a direction orthogonal to the light receiving surface of the solar cell panel. Due to the difference in the solar heat received by both bimetals, which has two light concentrators whose optical axes are displaced in the direction that is shifted by two and two bimetals that are deformed by the solar heat collected by these two light concentrators, An azimuth angle tracking mechanism having a bimetal drive mechanism for generating a rotational force in the azimuth direction that directs the azimuth angle of the solar cell panel to the sun, and a solar cell panel provided above and below the elevation angle direction, respectively. 2 light-collecting parts whose optical axes are offset from each other by a predetermined angle with respect to the direction orthogonal to the light-receiving surface direction, and 2 which are deformed by the solar heat collected by these 2 light-collecting parts The bimeta Due to the difference in solar heat received by both bimetals, a bimetal drive mechanism that causes the solar panel to generate a rotational force in the elevation direction that directs the elevation angle of the solar cell panel to the sun, and an elevation angle tracking mechanism that has a Characteristic solar cell power supply device.
【請求項2】太陽の動きを自動追尾する太陽電池パネル
を用いた太陽電池電源装置において、方位角方向の左右
にそれぞれ設けられ上記太陽電池パネルの受光面に直交
する方向に対して所定の角度だけずれた向きに光軸をず
らした2個の集光部と、これら2個の集光部で集光され
る太陽熱により変形する2個のバイメタルを有し両バイ
メタルが受ける太陽熱の差により、太陽電池パネルの方
位角を太陽に向わせる方位角方向の回転力を太陽電池パ
ネルに発生させるバイメタル駆動機構とを備えた方位角
追尾機構を有することを特徴とする太陽電池電源装置。
2. A solar cell power supply device using a solar cell panel for automatically tracking the movement of the sun, wherein the solar cell power supply apparatus is provided on the left and right sides of the azimuth angle direction and has a predetermined angle with respect to a direction orthogonal to the light receiving surface of the solar cell panel. Due to the difference in the solar heat received by both bimetals, which has two light concentrators whose optical axes are displaced in the direction that is shifted by two and two bimetals that are deformed by the solar heat collected by these two light concentrators, A solar cell power supply device comprising an azimuth angle tracking mechanism including a bimetal drive mechanism for generating, in the solar cell panel, a rotational force in an azimuth direction for directing the azimuth angle of the solar cell panel to the sun.
【請求項3】太陽の動きを自動追尾する太陽電池パネル
を用いた太陽電池電源装置において、仰角方向の上下に
それぞれ設けられ上記太陽電池パネルの受光面方向と直
交する方向に対して所定の角度だけずれた向きに光軸を
ずらした2個の集光部と、これら2個の集光部で集光さ
れる太陽熱により変形する2個のバイメタルを有し両バ
イメタルが受ける太陽熱の差により、太陽電池パネルの
仰角を太陽に向わせる仰角方向の回転力を太陽電池パネ
ルに発生させるバイメタル駆動機構とを備えた仰角追尾
機構を有することを特徴とする太陽電池電源装置。
3. A solar cell power supply device using a solar cell panel for automatically tracking the movement of the sun, wherein the solar cell power supply apparatus is provided above and below the elevation angle direction and has a predetermined angle with respect to a direction orthogonal to the light receiving surface direction of the solar cell panel. Due to the difference in the solar heat received by both bimetals, which has two light concentrators whose optical axes are displaced in the direction that is shifted by two and two bimetals that are deformed by the solar heat collected by these two light concentrators, A solar cell power supply device comprising an elevation angle tracking mechanism including a bimetal drive mechanism that generates a rotational force in an elevation angle direction that causes the elevation angle of the solar cell panel to face the sun.
JP4157921A 1992-06-17 1992-06-17 Solar cell power source apparatus Pending JPH063142A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4157921A JPH063142A (en) 1992-06-17 1992-06-17 Solar cell power source apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4157921A JPH063142A (en) 1992-06-17 1992-06-17 Solar cell power source apparatus

Publications (1)

Publication Number Publication Date
JPH063142A true JPH063142A (en) 1994-01-11

Family

ID=15660376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4157921A Pending JPH063142A (en) 1992-06-17 1992-06-17 Solar cell power source apparatus

Country Status (1)

Country Link
JP (1) JPH063142A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6024056A (en) * 1996-08-05 2000-02-15 Honda Giken Kogyo Kabushiki Kaisha Cooling water passage structure in water cooled type V-shaped internal combustion engine
US6341482B1 (en) 1999-04-26 2002-01-29 Kawasaki Jukogyo Kubushiki Kaisha Cutting blade for reaper
KR101646622B1 (en) * 2015-01-29 2016-08-08 인하대학교 산학협력단 Sun tracking automatic sunshade

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6024056A (en) * 1996-08-05 2000-02-15 Honda Giken Kogyo Kabushiki Kaisha Cooling water passage structure in water cooled type V-shaped internal combustion engine
US6341482B1 (en) 1999-04-26 2002-01-29 Kawasaki Jukogyo Kubushiki Kaisha Cutting blade for reaper
KR101646622B1 (en) * 2015-01-29 2016-08-08 인하대학교 산학협력단 Sun tracking automatic sunshade

Similar Documents

Publication Publication Date Title
US4832002A (en) Unified heliostat array
Yao et al. A multipurpose dual-axis solar tracker with two tracking strategies
US4227513A (en) Solar system having improved heliostat and sensor mountings
JP4541395B2 (en) Direction setting method of solar light tracking sensor
CN202166896U (en) Line drive type linkage light ray tracing method and reflective concentration system thereof
KR100818197B1 (en) Solar focus type generation apparatus
WO2011019739A2 (en) Solar and wind energy converter
CN101813387A (en) Sun tracker of solar collector
CN102721195B (en) Solar condensation and tracking array horizontal directional collection system
CN1982752A (en) Mechanical transmission with light-selector omnibearing motion driven and solar system thereof
JPH10117007A (en) Converging-type solar cell device
CN103208947B (en) A kind of roof solar concentrating generating system
KR20110019575A (en) Solar light utilizing system
CN201408367Y (en) Sun-following tracking probe
CN115956338A (en) Single-axis tracking system for enhancing light intensity of component
US20100224181A1 (en) High-efficiency array type focusing solar tracking system
KR101068283B1 (en) Tracker of photovoltaic power generator
CN201467026U (en) Fixed-sun automatic tracking photovoltaic generating system
JPH063142A (en) Solar cell power source apparatus
Davies Sun-tracking mechanism using equatorial and ecliptic axes
CN104317309A (en) Two-degree-of-freedom solar condenser parallel connection tracking mechanism
CN2518261Y (en) Photovoltaic generating system able to automatically tracking sun
CN201081444Y (en) Gyro type gimbal frame for solar heat collector and solar cell panel
CN202872691U (en) Roof solar energy light-focused power generation system
KR100959952B1 (en) Solar tracking device a large area of single-axis