JPH06313689A - Transporting method for latent heat storage medium transporting method for cold heat - Google Patents

Transporting method for latent heat storage medium transporting method for cold heat

Info

Publication number
JPH06313689A
JPH06313689A JP5128188A JP12818893A JPH06313689A JP H06313689 A JPH06313689 A JP H06313689A JP 5128188 A JP5128188 A JP 5128188A JP 12818893 A JP12818893 A JP 12818893A JP H06313689 A JPH06313689 A JP H06313689A
Authority
JP
Japan
Prior art keywords
water
liquid
frozen
heat storage
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5128188A
Other languages
Japanese (ja)
Inventor
Chuzo Kato
忠蔵 加藤
Keisuke Kasahara
敬介 笠原
Makoto Sakuma
誠 佐久間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mayekawa Manufacturing Co
Original Assignee
Mayekawa Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mayekawa Manufacturing Co filed Critical Mayekawa Manufacturing Co
Priority to JP5128188A priority Critical patent/JPH06313689A/en
Publication of JPH06313689A publication Critical patent/JPH06313689A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PURPOSE:To efficiently transport latent heat medium by freezing water- containing spherical particles of highly wet water absorption polymer to be used for a disposable diaper, etc., with low temperature non-water soluble liquid, and transporting them in a mixed phase state. CONSTITUTION:Water-containing spherical particles of highly wet water absorption polymer to be used for a disposable diaper, etc., are frozen with non-water soluble liquid of a liquefied state in a lower temperature range than this freezing temperature, and the frozen particles and the liquid are transported in a liquid state. That is, evaporation heat obtained by evaporating to vaporize refrigerant by an evaporator 7 is used to freeze the particles 9B with transported refrigerant liquid 10 in a refrigerating cycle A to form frozen particles 9C. The particles 9C are supplied to load side heat exchangers 13 via a guide tube 11 by a pump 12 together with the liquid 10, and heat exchanger by a heat exchanger 16. Thus, the polymer is effectively used as latent heat medium, fluidity of the medium is obtained even when this mixing ratio is increased to be efficiently transported.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高膨潤型吸水ポリマーを
効果的に用いた潛熱蓄熱媒体の輸送方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for transporting a heat storage medium for heat storage, which effectively uses a highly swelling water-absorbing polymer.

【0002】[0002]

【従来の技術】従来、熱源貯溜部に蓄積されている冷熱
を冷熱負荷部に供給する場合、単一流体を用いてその顕
熱を供給する方法が取られ、この場合の冷熱の供給量の
制御は流体の流量の増減により行なっているが、顕熱利
用の為に供給する流体量及び熱源貯溜部が必然的に大き
くなる。かかる欠点を解消するためにアイスバンク槽に
冷却管の周囲に結氷させて蓄熱し、融解冷水を利用する
方法が採られているが、かかる従来技術においては、蓄
熱は潛熱利用であるが、冷熱輸送は顕熱利用であるため
に、長距離輸送には不向きであるのみならず、かかるア
イスバンク槽蓄熱方式においては氷の厚みに限界があり
結氷時間も長時間かかり、水の熱交換も不均一であり槽
内循環ポンプなど余計な動力も必要とし、更には前記し
たように冷水顕熱輸送となるので配管が大となり輸送動
力も大となる等の欠点を有す。
2. Description of the Related Art Conventionally, when supplying cold heat accumulated in a heat source storage section to a cold heat load section, a sensible heat is supplied using a single fluid. The control is performed by increasing / decreasing the flow rate of the fluid, but the amount of fluid supplied and the heat source reservoir for sensible heat use are necessarily increased. In order to eliminate such drawbacks, a method is used in which ice is stored around the cooling pipes in the ice bank tank to store heat, and the molten cold water is used. Since the transportation uses sensible heat, it is not suitable for long-distance transportation, and in such an ice bank tank heat storage method, there is a limit in the thickness of ice and it takes a long time for freezing and water heat exchange is also unsatisfactory. It is uniform and requires extra power such as an in-tank circulation pump. Further, as described above, the sensible heat of cold water is transported, so that the piping is large and the transport power is also large.

【0003】このため近年において地域冷暖房その他の
冷熱輸送システムにおいて、潜熱を利用して固液二相の
混合流体(例えば氷とブラインの混合液)によつて、冷
熱輸送を行なう方式が多く採用されるようになってき
た。又氷をシャペット状に結氷させ冷媒又はエチレング
リコールと共に蓄熱剤として輸送する手段も現在寒冷地
等に利用されている。
For this reason, in recent years, in district heating / cooling and other cold heat transport systems, a method of transporting cold heat by utilizing a latent heat and a solid-liquid two-phase mixed fluid (for example, a mixed solution of ice and brine) has been widely adopted. It started to come. Further, means for forming ice in the shape of a shappet and transporting it as a heat storage agent together with a refrigerant or ethylene glycol is also currently used in cold regions.

【0004】しかしながらこの種の氷を用いた固液二相
の混合流体からなる冷熱輸送システムにおいても、移送
に対する流動性を確保するために、混合液の氷/水の比
率を略2:8前後に設定しなければならず、結果として
氷の占める比率が少なく潛熱として利用できる蓄熱量が
小さい。即ちIPF(氷混合率)が悪いものであった。
However, even in a cold heat transport system comprising a solid-liquid two-phase mixed fluid using this type of ice, the ice / water ratio of the mixed solution is about 2: 8 in order to secure fluidity for transfer. As a result, the proportion of ice is small and the amount of heat that can be used as heat is small. That is, the IPF (ice mixing ratio) was poor.

【0005】即ち、前記混合液の氷/水の比率を高める
と、言い換えれば流動性を確保する輸送量液体の比率を
小さくすると搬送過程における圧力損失が大となって輸
送効率が落ちこれに比例して搬送流速が非常に小さくな
り輸送効率が低下して目的の熱量が得られないのみなら
ず、輸送管の曲折部や弁部に氷が閉寒し配管閉塞を起こ
し易い。
That is, if the ice / water ratio of the mixed liquid is increased, in other words, if the ratio of the transport amount liquid that secures the fluidity is decreased, the pressure loss in the transport process becomes large and the transport efficiency decreases, which is proportional to this. As a result, the transport flow rate becomes very small, the transport efficiency drops, and the desired amount of heat cannot be obtained. In addition, ice is likely to close in the bent portion and the valve portion of the transport pipe, and the pipe is likely to be blocked.

【0006】一方かかる欠点を防止するため氷の比率を
少なくすると蓄熱効率が低下し、結果として両者のバラ
ンスを取れるのが氷と輸送用液体の比が略2:8程度で
あり、結果として氷の占める比率が少なく潛熱として利
用できる蓄熱量としてが少ないという問題があった。即
ちIPFが悪い欠点が指摘されていた。
On the other hand, if the proportion of ice is reduced in order to prevent such a drawback, the heat storage efficiency is lowered, and as a result, the balance between the two is about 2: 8, and as a result ice However, there is a problem that the heat storage amount that can be used as the heat is small because the ratio of the heat is small. That is, it was pointed out that the IPF was bad.

【0007】本発明はかかる従来技術の欠点を解消する
為に、潛熱媒体の配合比を大きくしても流動性が低下す
る事のない潛熱媒体の輸送方法を提供する事を目的とす
る。本発明の他の目的は、高膨潤型吸水ポリマーの含水
球形粒体を蓄熱剤として効果的に用いる事の出来る冷熱
輸送方法を提供する事にある。
In order to solve the drawbacks of the prior art, it is an object of the present invention to provide a method for transporting a heat transfer medium which does not deteriorate the fluidity even if the mixing ratio of the heat transfer medium is increased. Another object of the present invention is to provide a method for transporting cold heat that allows the water-containing spherical particles of a highly swelling water-absorbing polymer to be effectively used as a heat storage agent.

【0008】[0008]

【課題を解決するための手段】本発明はかかる技術的課
題を達成するために、従来、紙おむつ、生理ナプキン等
の衛生材料、又農業土壌用保水材料として用いられてき
た高膨潤型吸水ポリマーを有効に利用して、該吸水ポリ
マーの含水球形粒体を、該粒体の凍結温度より低い温度
域で液化状態にある非水溶性液体を介して凍結し、該凍
結粒体を前記液体と混相状態で輸送する事を特徴とする
ものである。この場合前記非水溶性液体には、具体的に
はPAG(ポリアルキレングリコール)の他、HCF
C、HFC等のフロン系その他の冷媒、若しくはシリコ
ーン系油その他の油性液体を用いるのがよいが、エチレ
ングリコール等の水溶性液体を用いると、時間の経過で
凍結粒体同士の固着が促進され、好ましくない。
In order to achieve the technical object, the present invention provides a highly swelling water-absorbing polymer which has been used as a sanitary material such as a paper diaper and a sanitary napkin, or a water-retaining material for agricultural soil. The water-containing spherical particles of the water-absorbing polymer are effectively used to freeze through a water-insoluble liquid that is in a liquefied state in a temperature range lower than the freezing temperature of the particles, and the frozen particles are mixed with the liquid. It is characterized by being transported in a state. In this case, the non-water-soluble liquid may be specifically PAG (polyalkylene glycol) or HCF.
It is preferable to use a CFC-based or other refrigerant such as HFC, or a silicone-based oil or other oil-based liquid, but the use of a water-soluble liquid such as ethylene glycol promotes sticking of frozen particles to each other over time. , Not preferable.

【0009】PAG、潤滑油、特にシリコーン油は表面
摩擦抵抗の少ない油であり、これらが凍結粒体表面に疎
水性を付与する事により、流体同士の潤滑性、即ち流動
性が格段に向上し、その分凍結粒体/輸送用液体の比率
を上げ、潛熱媒体の輸送量の増加を図る事が出来る。そ
してこの様な作用は前記非水溶性液体として用いるフロ
ン系その他の冷媒に界面活性剤を混入しても容易に前記
と同様な作用が達成し得る。更に前記凍結含水球形粒体
の比重を前記非水溶性液体の比重と同一か又は大に設定
するか若しくは前記粒体中に砂を混入して見掛け上の比
重を大、具体的には比重差を10%前後に設定する事に
より、液体上に凍結粒体が浮上する事なく輸送液中に均
一分散させる事が出来、その分凍結粒体/輸送用液体の
比率を上げる事が出来る。
PAGs, lubricating oils, especially silicone oils are oils having a low surface friction resistance, and by imparting hydrophobicity to the surface of frozen granules, the lubricity between fluids, that is, the fluidity is remarkably improved. Therefore, the ratio of frozen granules / liquid for transportation can be increased by that amount, and the transport amount of the heat transfer medium can be increased. Such an action can be easily achieved even if a surfactant is mixed in a refrigerant such as a fluorocarbon used as the non-water-soluble liquid. Further, the specific gravity of the frozen hydrous spherical granules is set to be equal to or larger than the specific gravity of the non-water-soluble liquid, or sand is mixed into the granules to increase the apparent specific gravity, specifically, the specific gravity difference. By setting around 10%, the frozen granules can be uniformly dispersed in the transport liquid without floating on the liquid, and the ratio of frozen granules / transport liquid can be increased accordingly.

【0010】[0010]

【作用】本発明に用いる高膨潤型吸水ポリマーには、例
えば、架橋型の特殊アクリル酸塩系ポリマーで直径が略
均一な球状のものを用いるのがよく、そして本ポリマー
粒子径を例えば0.5〜1.0m/mφの場合、100
倍の水を吸水すると、10〜20分で、4〜7m/mφ
の球状粒径に膨潤する。又粒径が1.0〜2.0m/m
の場合100倍の水を吸収すると20〜50分後には、
7〜10m/mの粒径に膨潤する。そしてこれらの含水
ポリマーは、水中では全く透明な水と同じで形は識別で
きず、すくいあげると球状の透明なゲル状の独立した水
球となって水がゲル状に固形化されている事が理解でき
る。そしてこのポリマーは100倍の含水をするために
殆ど水の体積と変りなく水をゲル状の球形含水粒体とし
て保つため、粒体の水は流動しない球体のままで保水さ
れている。ちなみに粒径が20μm〜0.5m/mであ
ると吸水粒が媒体油と混合して流動性がよく、混合のま
ま直接熱交換器に循環することができる。
As the highly swelling water-absorbing polymer used in the present invention, it is preferable to use, for example, a cross-linking special acrylate polymer having a spherical shape with a substantially uniform diameter. In the case of 5 to 1.0 m / mφ, 100
If you absorb double the amount of water, it will take 4 to 7 m / mφ in 10 to 20 minutes.
Swells to a spherical particle size of. Moreover, the particle size is 1.0 to 2.0 m / m.
In the case of absorbing 100 times more water, after 20 to 50 minutes,
Swells to a particle size of 7-10 m / m. And these water-containing polymers have the same shape as water that is completely transparent in water, and their shapes cannot be identified.When scooped up, they become spherical transparent gel-shaped independent water globules, and the water is solidified into a gel. It can be understood. This polymer retains water as a gel-like spherical water-containing granule with almost no change in volume of water in order to retain water 100 times, so that the water in the granule is retained as a non-flowing sphere. By the way, when the particle size is 20 μm to 0.5 m / m, the water absorbing particles are mixed with the medium oil and have good fluidity, and the particles can be directly circulated to the heat exchanger as they are.

【0011】この球形含水粒体はそのほとんどが水であ
る為に、水の凍結温度以下の−5〜−15℃にした潤滑
油、PAG、又はHCFC、HFCの第二世代フロン系
中に浸漬するか若しくはマイナス温度のシリコーン系油
に浸漬して固形水球を凍結すると球状の凍結粒体とな
る。この粒体を凍結させた前記凍結用液は凍結粒体の間
に介在して粒体同士の潤滑剤となり、そしてその凍結用
液の中に比重差が等しいか僅かに大なる凍結粒体が存在
するために、浮き上がって均一分散を阻害する事はな
い。従ってこの場合に凍結粒体と前記凍結用液体の混合
比は従来の2:8から8:2に迄増大する事が可能とな
る。
Since most of the spherical hydrous granules are water, the spherical hydrous granules are immersed in a lubricating oil, PAG, or HCFC or HFC second-generation chlorofluorocarbon system kept at -5 to -15 ° C below the freezing temperature of water. Or, if the solid water polo is frozen by immersing it in silicone oil at a negative temperature, it becomes spherical frozen granules. The freezing liquid obtained by freezing the granules intervenes between the frozen granules and serves as a lubricant between the granules, and the frozen granules having the same or slightly larger specific gravity difference are contained in the freezing liquid. Since it exists, it does not float and hinder the uniform dispersion. Therefore, in this case, the mixing ratio of the frozen granules and the freezing liquid can be increased from the conventional 2: 8 to 8: 2.

【0012】尚、輸送距離が短い場合は、必ずしも凍結
粒体と混相状態で輸送させる必要はなく、例えば高膨潤
型吸水ポリマーの含水球形粒体を、該粒体の凍結温度よ
り低い温度域で液化状態にある非水溶性液体を介して蓄
熱槽内で凍結貯溜させ、該凍結粒体と蓄熱槽内で熱交換
させた冷熱液のみを負荷側に輸送するように構成しても
よい。
When the transportation distance is short, it is not always necessary to transport the particles in a mixed phase with the frozen granules. For example, the water-containing spherical granules of the highly swelling water-absorbing polymer can be used in a temperature range lower than the freezing temperature of the granules. It may be configured such that it is frozen and stored in the heat storage tank via the non-water-soluble liquid in the liquefied state, and only the cold / hot liquid that has exchanged heat with the frozen granules in the heat storage tank is transported to the load side.

【0013】[0013]

【実施例】以下、図面を参照して本発明の好適な実施例
を例示的に詳しく説明する。但しこの実施例に記載され
ている構成部品の寸法、材質、形状、その相対的配置等
は特に特定的な記載がないかぎりは、この発明の範囲を
それに限定する趣旨ではなく、単なる説明例にすぎな
い。先ず本発明の実施例に用いる高膨潤型吸水ポリマー
には、例えば特開昭62ー254842号に示すよう
に、モノマーの重合によって得られたアクリル酸アルカ
リ塩を重合体の高生成分として含有する吸水性ポリマー
を共沸脱水時に無機物質の存在下で2個以上の官能基を
有する架橋剤で架橋せしめ、ついで乾燥させる事により
得られる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A preferred embodiment of the present invention will be exemplarily described in detail below with reference to the drawings. However, unless otherwise specified, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention thereto, but are merely illustrative examples. Only. First, the high swelling type water-absorbing polymer used in the examples of the present invention is, for example, as shown in JP-A-62-254842, a water-absorbing polymer containing an alkali salt of acrylic acid obtained by polymerizing a monomer as a high polymer content. It can be obtained by crosslinking the functional polymer with a crosslinking agent having two or more functional groups in the presence of an inorganic substance during azeotropic dehydration, and then drying.

【0014】そしてこの様なポリマーは直径が略均一な
球状のものを形成し、必要に応じて比重を高めるため
に、不錆性の金属砂等90を核に用いてもよい。例えば
大阪有機化学工業株式会社製PQポリマーBU−100
は平均粒度70〜140μm、100倍吸水後の粒径は
0.3〜0.5m/m、吸水速度は約20秒で吸水して
球状に膨潤する。また本ポリマーの粒子径は例えば0.
5〜1.0m/mφの場合、100倍の水を吸水して、
4〜7m/mφの球状粒径に膨潤する。さらに又粒径が
1.0〜2.0m/mの場合100倍の水を吸収して7
〜10m/mの粒径に膨潤する。粒径、吸水能、吸水速
度等は適宜変更することができる。従ってその粒径を所
望の吸水時間によって適宜決定するのがよい。又粒径が
20μm〜0.5m/mの微粒子は水の混入すると直ち
に氷雪状となりこれを結氷して前記油性冷媒と混合して
流動層を作る。
Such a polymer forms a spherical particle having a substantially uniform diameter, and if necessary, non-rusting metallic sand 90 or the like may be used as a core in order to increase the specific gravity. For example, PQ polymer BU-100 manufactured by Osaka Organic Chemical Industry Co., Ltd.
Has an average particle size of 70 to 140 μm, a particle size of 0.3 to 0.5 m / m after 100 times water absorption, and a water absorption speed of about 20 seconds to absorb water and swell into a spherical shape. The particle size of the polymer is, for example, 0.
In the case of 5 to 1.0 m / mφ, absorb 100 times more water,
Swell to a spherical particle size of 4 to 7 m / mφ. Furthermore, if the particle size is 1.0 to 2.0 m / m, absorb 100 times more water
Swells to a particle size of -10 m / m. The particle size, water absorption capacity, water absorption speed, etc. can be appropriately changed. Therefore, it is preferable to appropriately determine the particle size according to the desired water absorption time. Further, fine particles having a particle size of 20 μm to 0.5 m / m immediately become ice-snow-like when water is mixed, and this is frozen and mixed with the oily refrigerant to form a fluidized bed.

【0015】図1は前記高膨潤型吸水ポリマーの粒体9
Aが、約400倍の吸水をして球状含水粒体9Bとなる
状態を表したもので水が粒体9Bによりゲル状に保水
し、互いに接触しても固体を維持し溶融接着はしない。
この場合前記粒体9B間に含水後シリコーン油等を介在
させる事により、非接着性及び潤滑性が一層向上する。
そして前記のように400倍に含水させたポリマーは図
2に示す方法で凍結及び輸送させる。
FIG. 1 shows granules 9 of the highly swelling water-absorbing polymer.
A represents a state in which it absorbs water about 400 times and becomes spherical hydrous granules 9B, and water is retained in a gel state by the granules 9B, and even if they contact each other, they remain solid and do not melt-bond.
In this case, the non-adhesiveness and the lubricity are further improved by interposing the silicone oil or the like after the water content between the granules 9B.
Then, the polymer hydrated 400 times as described above is frozen and transported by the method shown in FIG.

【0016】図2中のAは冷凍サイクルを示し、該サイ
クルにおいて圧縮機1はHCFC、HFC系のフロン冷
媒を圧縮した後凝縮器2に至り、他の冷却熱交換器3に
より冷却され液化し液管5を経て膨潤弁6を介して蒸発
器7に入る、蒸発器中にあらかじめ含水させた吸水ポリ
マー球状粒体9B9と例えばPAGその他の界面活性剤
が混入された前記冷凍サイクルの冷媒、例えばHcFc
22、HFc123aを混合充填しておく。この結果前記蒸発
器内で冷凍サイクルの冷媒が蒸発器内で−5〜−15℃
に蒸発気化される蒸発熱を利用して前記輸送冷媒液10
を介して球状粒体9B9が凍結され、凍結粒体9Cを作
る。
A in FIG. 2 indicates a refrigeration cycle. In the cycle, the compressor 1 compresses HCFC and HFC refrigerants and then reaches the condenser 2, and is cooled and liquefied by another cooling heat exchanger 3. Refrigerant of the refrigeration cycle, for example, a mixture of water-absorbing polymer spherical particles 9B9 previously hydrated in the evaporator and PAG or other surfactant, for example, entering the evaporator 7 through the liquid pipe 5 and the swelling valve 6, for example, the refrigerant. HcFc
22 and HFc 123a are mixed and filled. As a result, the refrigerant of the refrigeration cycle in the evaporator is -5 to -15 ° C in the evaporator.
Using the heat of vaporization that evaporates into the
The spherical granules 9B9 are frozen through to produce frozen granules 9C.

【0017】そして該凍結粒体9Cは輸送冷媒液10と
共にポンプ12及び導出管11を経て、負荷側支管15
〜15’より流量剤御弁14を介し負荷側熱交換装置1
3へ導通され熱交換16させる事が出来る。このとき輸
送冷媒液10は含水凍結粒体9Bより潛熱を受けつつ熱
交換負荷に十分な熱供給を行う事ができる。又前記の2
0μm〜0.2m/m位は輸送冷媒10と混合して流動
層としてえ熱交換器に直輸送冷媒と一緒に流動すること
ができる。
Then, the frozen granules 9C pass through the pump 12 and the outlet pipe 11 together with the transport refrigerant liquid 10, and then the load side branch pipe 15
From 15 'through the flow agent control valve 14, the load side heat exchange device 1
3 can be conducted to perform heat exchange 16. At this time, the transport refrigerant liquid 10 can supply heat sufficiently to the heat exchange load while receiving heat from the hydrous frozen granules 9B. Also the above 2
About 0 μm to 0.2 m / m can be mixed with the transport refrigerant 10 and flow as a fluidized bed into the heat exchanger together with the direct transport refrigerant.

【0018】この際凍結粒体9Cは金属砂粉等90を利
用して比重を輸送液より10%程度大に設定している為
に、蒸発器7の底部に混合液取り出し部7bを設ける事
により、輸送冷媒液10と共に凍結粒体9Bの配合比を
多く(例えば凍結粒体9B:輸送冷媒液=8:2)取り
出す事が出来、而も導出管11の断面図より明らかな如
く前記凍結粒体9Bが輸送液19に均一に分散されて輸
送する事が出来る。図2は輸送冷媒液10に冷凍サイク
ルの冷媒を輸送液として用いた直接凍結方式の実施例で
あるが、この場合蒸発器7内の熱交換効率は高いが適切
な配合比を精度よく維持する事が困難である。
At this time, since the specific gravity of the frozen granules 9C is set to be about 10% higher than that of the transport liquid by using the metal sand powder 90, the liquid mixture take-out portion 7b is provided at the bottom of the evaporator 7. As a result, it is possible to take out a large blending ratio of the frozen granules 9B together with the transport refrigerant liquid 10 (for example, frozen granules 9B: transport refrigerant liquid = 8: 2). The granules 9B can be uniformly dispersed and transported in the transport liquid 19. FIG. 2 shows an example of a direct freezing system in which a refrigerant of a refrigeration cycle is used as a transport liquid for the transport coolant liquid 10. In this case, the heat exchange efficiency in the evaporator 7 is high, but an appropriate blending ratio is maintained accurately. Things are difficult.

【0019】このような場合は図3に示す間接凍結方式
を採用するのがよい。図3の70は冷凍サイクルを構成
する蒸発冷媒が循環する熱交換管23が挿入された蒸発
器兼貯溜槽で、該貯溜槽70内に、と含水球状粒体9B
と水に不溶性の輸送液が8:2若しくはそれ以下の配合
比で混合され、前記冷凍サイクルAの冷媒が熱交換管2
3内で−3〜−15℃に蒸発される蒸発熱を利用して熱
交換管23内の冷媒と輸送液を19介して球状粒体9B
が凍結され、凍結粒体9Cを作り、前記と同様に該凍結
粒体9Cは輸送液19と共にポンプ12及び導出管11
を経て、負荷側支管15より流量剤御弁14を介し負荷
側熱交換装置13へ導通され熱交換16させる事が出来
る。
In such a case, it is preferable to use the indirect freezing method shown in FIG. Reference numeral 70 in FIG. 3 denotes an evaporator / reservoir tank in which a heat exchange pipe 23, which circulates the evaporative refrigerant that constitutes the refrigeration cycle, is inserted. Inside the reservoir tank 70 and the water-containing spherical particles 9B.
And the water-insoluble transport liquid are mixed in a mixing ratio of 8: 2 or less, and the refrigerant of the refrigeration cycle A is used as the heat exchange tube 2
Spherical particles 9B through the refrigerant and the transport liquid in the heat exchange tube 23 by utilizing the heat of vaporization that is evaporated to −3 to −15 ° C. in 3
Are frozen to form frozen granules 9C, and the frozen granules 9C together with the transport liquid 19 are pump 12 and outlet pipe 11 as described above.
After that, the heat can be exchanged from the load side branch pipe 15 to the load side heat exchange device 13 via the flow rate control valve 14 for heat exchange 16.

【0020】尚、前記輸送液19には、シリコーン油、
PAG等が用いられ、凍結粒体9Bの隙間にこれらの油
が潤滑剤として働き、又輸送液10に冷媒を用いた図2
の実施例の場合でもこれらのシリコーン油、PAG等を
わづかに混入させる事によりこれらの油が粒体9Bの表
面を被覆し、潤滑作用として流動性を良好にし、凍結粒
体9Cと輸送液の比率を8:2前後まで高める事が出来
るものである。又PAGは勿論シリコーン油を用いた場
合でもその組成により比重を水より小さい1.0以下に
設定する事が出来、これにより従来の水と氷の比重差で
氷が浮くと言う欠点を無くすことが出来、輸送液19中
全域に亙って一様の混合比で輸送可能となった。かかる
実施例によれば、シリコーン油やPAGによって凍結粒
体9Bの潤滑剤となって固体流動をよくするため粒体9
Bの混合比を一層増大できる。
The transport liquid 19 includes silicone oil,
PAG or the like is used, these oils act as lubricants in the gaps of the frozen granules 9B, and a refrigerant is used as the transport liquid 10.
Even in the case of the above embodiment, by mixing these silicone oils, PAGs, etc. gently, these oils cover the surface of the granules 9B to improve the fluidity as a lubricating action, and the frozen granules 9C and the transport liquid. The ratio can be increased up to around 8: 2. In addition to PAG, even when silicone oil is used, the specific gravity can be set to 1.0 or less, which is smaller than water, depending on the composition, thereby eliminating the disadvantage that ice floats due to the difference in specific gravity between water and ice. The transport liquid 19 can be transported with a uniform mixing ratio over the entire region. According to such an embodiment, the silicone oil or PAG serves as a lubricant for the frozen granules 9B to improve the solid flow, and thus the granules 9
The mixing ratio of B can be further increased.

【0021】図4は輸送距離が短い場合において凍結粒
体9Cと熱交換させた輸送液19のみを給送する請求項
5記載の発明の実施例で、71は蒸発器兼用の蓄熱槽
で、負荷側の給送ライン17/11に熱交換管20が取
付けられており、該貯溜槽71内にあらかじめ含水させ
た含水球状粒体9Bと界面活性剤が混入された冷凍サイ
クルの冷媒(HcFc22、HFc123a)を混合充填して
おく。この結果夜間電力でバイパス管18を通じて蒸発
器兼蓄熱槽71に夜間ショートサイクル運転をして前記
蒸発器兼貯溜槽71内で冷凍サイクルAの冷媒が蒸発器
兼貯溜槽71内で−3〜−15℃に蒸発されながら、そ
の蒸発熱を利用して球状粒体9Bが凍結され、凍結粒体
9Bを作る。そして昼間運転時に、ポンプ12を駆動さ
せて熱交換管20を内のブライン若しくは水29を蒸発
器兼貯溜槽71内の凍結粒体9Cと熱接触させながら前
記ブライン29を導出管11を経て、負荷側支管15よ
り流量剤御弁14を介し負荷側熱交換装置13へ給送さ
れ熱交換16させる事が出来る。かかる実施例は夜間と
昼間の時間差運転を行なう際に有効である。
FIG. 4 shows an embodiment of the invention according to claim 5 in which only the transport liquid 19 that has been heat exchanged with the frozen granules 9C is fed when the transport distance is short, and 71 is a heat storage tank which also serves as an evaporator. A heat exchange pipe 20 is attached to the load side feed line 17/11, and a refrigerant (HcFc 22) for a refrigeration cycle in which the water-containing spherical particles 9B previously hydrated and a surfactant are mixed in the storage tank 71. , HFc 123a ) are mixed and filled. As a result, the night-time short cycle operation is performed on the evaporator / heat storage tank 71 through the bypass pipe 18 with the night power so that the refrigerant of the refrigeration cycle A in the evaporator / storage tank 71 is -3 to − in the evaporator / storage tank 71. While being evaporated to 15 ° C., the spherical particles 9B are frozen by utilizing the heat of evaporation to make frozen particles 9B. Then, during daytime operation, the pump 12 is driven to bring the heat exchange tube 20 into brine or water 29 therein while making thermal contact with the frozen granules 9C in the evaporator / reservoir 71, and the brine 29 through the outlet tube 11, From the load side branch pipe 15 to the load side heat exchange device 13 via the flow rate control valve 14, heat exchange 16 can be performed. Such an embodiment is effective when performing a time difference operation between night and day.

【0022】[0022]

【発明の効果】以上記載のごとく請求項1〜4記載の本
発明によれば、高膨潤型吸水ポリマーを潛熱媒体として
有効に利用して、均等細粒子としてしかも球形として得
られ、摩擦抵抗を少なくすることができ且つ非水溶性液
体を輸送液として効果的に組合せる事により、潛熱媒体
の配合比を大きくしても流動性が低下する事のない潛熱
媒体の輸送方法を提供する事が出来る。又請求項5記載
の本発明によりば、高膨潤型吸水ポリマーを蓄熱剤とし
て効果的に用いて、昼夜間の時間差運転や短距離に於け
る冷熱輸送を有効に行なう事が出来る。等の種々の著効
を有す。
As described above, according to the present invention as set forth in claims 1 to 4, the highly swelling type water-absorbing polymer is effectively utilized as a heat transfer medium to obtain uniform fine particles and spherical particles, and the frictional resistance is improved. It is possible to provide a method for transporting a heat transfer medium that can be reduced and effectively mixes a non-water-soluble liquid as a transport liquid so that the fluidity does not decrease even if the compounding ratio of the heat transfer medium is increased. I can. Further, according to the invention of claim 5, the highly swelling water-absorbing polymer can be effectively used as a heat storage agent to effectively carry out a time difference operation between day and night and transport cold heat over a short distance. It has various remarkable effects.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例にかかる球状吸水ポリマーの吸
水状態を示す概略図である。
FIG. 1 is a schematic view showing a water absorbing state of a spherical water absorbing polymer according to an example of the present invention.

【図2】本発明の実施例にかかる球状吸水ポリマーの凍
結輸送システムを示す概略図で、輸送液に冷媒を用いた
実施例を示す概略図である。
FIG. 2 is a schematic diagram showing a freeze transport system for spherical water-absorbing polymers according to an example of the present invention, and is a schematic diagram showing an example in which a refrigerant is used as a transport liquid.

【図3】本発明の実施例にかかる球状吸水ポリマーの凍
結輸送システムを示す概略図で、輸送液にシリコーン油
若しくはエチレングリコールを用いた実施例を示す概略
図である。
FIG. 3 is a schematic diagram showing a freeze transport system for spherical water-absorbing polymers according to an example of the present invention, and is a schematic diagram showing an example in which silicone oil or ethylene glycol is used as a transport liquid.

【図4】球状吸水ポリマーを潛熱蓄冷手段に用いた請求
項5記載の発明の実施例を示す概略図である。
FIG. 4 is a schematic view showing an embodiment of the invention according to claim 5 in which a spherical water-absorbing polymer is used in the heat storage cool storage means.

【符号の説明】[Explanation of symbols]

1 圧縮機 7、70、71 蒸発器(兼貯溜槽、蓄熱槽) 2 凝縮器 10 輸送冷媒液 9A、9B、9C 吸水ポリマー球状体 13 負荷側熱交換装置 19 輸送液(シリコーン油、又はエチレングリコー
ル) 29 ブライン
1 Compressor 7, 70, 71 Evaporator (cumulative storage tank, heat storage tank) 2 Condenser 10 Transport refrigerant liquid 9A, 9B, 9C Water absorbing polymer spherical body 13 Load side heat exchange device 19 Transport liquid (silicone oil or ethylene glycol) ) 29 brine

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 高膨潤型吸水ポリマーの含水球形粒体
を、該粒体の凍結温度より低い温度域で液化状態にある
非水溶性液体を介して凍結し、該凍結粒体を前記液体と
混相状態で輸送する事を特徴とする潛熱蓄熱媒体の輸送
方法。
1. A water-containing spherical granule of a highly swelling water-absorbing polymer is frozen through a non-water-soluble liquid that is in a liquefied state in a temperature range lower than the freezing temperature of the granule, and the frozen granule is used as the liquid. A method of transporting a heat storage medium for heat storage, characterized by transporting in a multiphase state.
【請求項2】 前記非水溶性液体がPAG(ポリアルキ
ルグリコール)、フロン系その他の冷媒、若しくはシリ
コーン系油である請求項1記載の潛熱蓄熱媒体の輸送方
2. The method for transporting a heat storage medium according to claim 1, wherein the non-water-soluble liquid is PAG (polyalkyl glycol), a chlorofluorocarbon-based refrigerant, or a silicone-based oil.
【請求項3】 前記非水溶性液体が前記凍結した含水球
形粒体より比重が同一か又は小さい事を特徴とする請求
項1記載の潛熱蓄熱媒体の輸送方法。
3. The method for transporting a heat storage medium for heat storage according to claim 1, wherein the non-water-soluble liquid has the same or smaller specific gravity than the frozen water-containing spherical particles.
【請求項4】 前記非水溶性液体として用いるフロン系
その他の冷媒に界面活性剤を混入する事を特徴とする請
求項1記載の潛熱蓄熱媒体の輸送方法。
4. The method for transporting a heat storage medium according to claim 1, wherein a surfactant is mixed in a refrigerant such as a chlorofluorocarbon used as the water-insoluble liquid.
【請求項5】 高膨潤型吸水ポリマーの含水球形粒体
を、該粒体の凍結温度より低い温度域で液化状態にある
非水溶性液体を介して蓄熱槽内で凍結貯溜させ、該凍結
粒体と蓄熱槽内で熱交換させた冷熱液を負荷側に輸送す
る事を特徴とする冷熱輸送方法。
5. A frozen hydrated spherical particle of a highly swelling water-absorbing polymer is frozen and stored in a heat storage tank through a non-water-soluble liquid that is in a liquefied state at a temperature range lower than the freezing temperature of the particle. A method for transporting cold heat, which comprises transporting cold / hot liquid that has undergone heat exchange between a body and a heat storage tank to a load side.
JP5128188A 1993-04-30 1993-04-30 Transporting method for latent heat storage medium transporting method for cold heat Pending JPH06313689A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5128188A JPH06313689A (en) 1993-04-30 1993-04-30 Transporting method for latent heat storage medium transporting method for cold heat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5128188A JPH06313689A (en) 1993-04-30 1993-04-30 Transporting method for latent heat storage medium transporting method for cold heat

Publications (1)

Publication Number Publication Date
JPH06313689A true JPH06313689A (en) 1994-11-08

Family

ID=14978625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5128188A Pending JPH06313689A (en) 1993-04-30 1993-04-30 Transporting method for latent heat storage medium transporting method for cold heat

Country Status (1)

Country Link
JP (1) JPH06313689A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9138033B2 (en) 2013-03-14 2015-09-22 Ykk Corporation Top stop for slider

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9138033B2 (en) 2013-03-14 2015-09-22 Ykk Corporation Top stop for slider

Similar Documents

Publication Publication Date Title
Saito Recent advances in research on cold thermal energy storage
US3869870A (en) Refrigeration system utilizing ice slurries
US3906742A (en) Air conditioning system utilizing ice slurries
CA2303496C (en) Method and apparatus for thermal transportation using polyvinyl alcohol
JPH0539988A (en) Latent heat storage apparatus and latent heat storage material used for the same apparatus
CN108844253A (en) A kind of superhigh temperature non-azeotropic working medium heat pump unit
CN209371561U (en) A kind of superhigh temperature non-azeotropic working medium heat pump unit
JP3407658B2 (en) Hydrate production method and apparatus
JPH06313689A (en) Transporting method for latent heat storage medium transporting method for cold heat
KR0142138B1 (en) Cooling and heating medium for ice storage system
JPH06271841A (en) Refrigerant for ice heat storage device
JPH09194817A (en) Heat transfer medium and circulating system thereof
JPH06116550A (en) Heat-accumulation agent
Royon et al. Transport of cold thermal energy with a slurry as secondary biphasic refrigerant
JPS5855434B2 (en) Method and device for preventing supercooling of heat storage device
CN2324525Y (en) Thermal storage battery of return loop heat pipe
JPH05215369A (en) Cooling or heating method utilizing latent heat
WO2021249061A1 (en) Cooling storage material, preparation method, cold storage liquid comprising same, and application thereof
JPH037834A (en) Cold heat accumulator system
JPH05203202A (en) Cold storage device
JP2000161724A (en) Heat conveyor
KR930009901B1 (en) Storage heat material
Rawat et al. Thermo-Physical Properties of Aqueous Solution of Ice Slurry
JPH05264074A (en) Air-conditioning system using ice-based heat storage
GB2241776A (en) Heat transfer fluid

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040511