JPH06116550A - Heat-accumulation agent - Google Patents

Heat-accumulation agent

Info

Publication number
JPH06116550A
JPH06116550A JP4304343A JP30434392A JPH06116550A JP H06116550 A JPH06116550 A JP H06116550A JP 4304343 A JP4304343 A JP 4304343A JP 30434392 A JP30434392 A JP 30434392A JP H06116550 A JPH06116550 A JP H06116550A
Authority
JP
Japan
Prior art keywords
heat
heat storage
organic compound
transition
storage agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4304343A
Other languages
Japanese (ja)
Inventor
Yukihiko Akamatsu
幸彦 赤松
Mamoru Ishiguro
守 石黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Electric Industries Co Ltd
Mitsubishi Paper Mills Ltd
Sinko Industries Ltd
Original Assignee
Shinko Electric Industries Co Ltd
Mitsubishi Paper Mills Ltd
Sinko Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Electric Industries Co Ltd, Mitsubishi Paper Mills Ltd, Sinko Industries Ltd filed Critical Shinko Electric Industries Co Ltd
Priority to JP4304343A priority Critical patent/JPH06116550A/en
Publication of JPH06116550A publication Critical patent/JPH06116550A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lubricants (AREA)

Abstract

PURPOSE:To provide a heat-accumulation agent composed of a specific composition, having remarkably improved heat-exchange capacity because of the use of the latent heat generated by phase-transition in addition to its retaining sensible heat, exhibiting high fluidity and free from problem of the line clogging. CONSTITUTION:The heat-accumulation agent is produced by making (i) an oleophilic organic compound exhibiting phase-transition in the objective heat- exchange temperature range absorbed in (ii) an oil-absorbing resin capable of highly absorbing the oleophilic organic compound and dispersing the absorption product in a hydrophilic liquid such as water, brine and ethylene glycol. The component (ii) is e.g. an acrylic resin obtained by the suspension polymerization of 60 pts.wt. of hexadecyl methacrylate, 39 pts.wt. of butyl methacrylate and 1 pt.wt. of divinylbenzene. The component (i) is preferably ntetradecane, n-pentadecane, n-decyl alcohol, myristyl alcohol, etc., from the viewpoint of the utilization of the latent heat because these compounds have definite melting point or definite temperature to cause the phase-transition from solid to liquid.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、新規な蓄熱剤とその使
用方法に関する。本発明における蓄熱剤とは、一種の水
系又は親水性の液体を主剤とする熱媒乃至担熱体であ
り、該蓄熱剤は加熱(又は冷却)された状態で蓄積さ
れ、次いで熱交換により蓄積した熱量(又は冷熱量)を
放出し、加熱(又は冷却)効果を与えるものである。従
って、冷却効果を目的とする場合には、蓄冷熱剤という
のが、より正確であるが、以下では容易に理解し得る範
囲で、蓄冷熱剤も単に蓄熱剤という。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel heat storage agent and a method of using the same. The heat storage agent in the present invention is a heat medium or heat-bearing body containing a kind of water-based or hydrophilic liquid as a main component, and the heat storage agent is accumulated in a heated (or cooled) state and then accumulated by heat exchange. It releases the amount of heat (or the amount of cold energy) that has been generated and gives a heating (or cooling) effect. Therefore, in the case of aiming at the cooling effect, the cold storage heat agent is more accurate, but in the range that can be easily understood below, the cold storage heat agent is also simply referred to as the heat storage agent.

【0002】[0002]

【関連技術の説明】蓄熱剤の利用形態を説明すると、蓄
熱剤を流通させる回路を蓄熱槽と熱交換器を含んで閉回
路に構成し、蓄熱槽で予め蓄熱剤を加熱(又は冷却)
し、即ち、加熱源(又は冷却源)をつくり、これを必要
に応じて熱交換器へ送って、目的物の加熱(又は冷却)
に使用するものである。この「蓄熱(又は蓄冷熱)→加
熱源(又は冷却源)として利用」の価値は、主として、
我が国の電力供給事情に基いて言われることが多い。即
ち、空調冷房の普及により夏期の昼間の電刀需要が増大
し、電力供給が逼迫することから、電力供給に余裕の生
ずる夜間電力を用いて蓄熱(蓄冷熱)し、これを昼間に
利用することが国家的見地から推奨されている。
[Description of Related Art] To explain the usage form of the heat storage agent, a circuit for circulating the heat storage agent is configured as a closed circuit including a heat storage tank and a heat exchanger, and the heat storage agent is heated (or cooled) in advance in the heat storage tank.
That is, a heating source (or cooling source) is created, and this is sent to a heat exchanger as needed to heat (or cool) the target object.
Is used for. The value of this "heat storage (or cold storage) → use as heating source (or cooling source)" is mainly
It is often said based on the power supply situation in Japan. That is, since the demand for electric swords in the daytime in summer increases due to the spread of air-conditioning and cooling, and the power supply becomes tight, heat is stored (cold heat) using nighttime power that has a margin for power supply, and this is used in the daytime. Is recommended from a national point of view.

【0003】この施策に応じて、水、ブライン(塩化カ
ルシュウム水溶液、等)、エチレングリコールを主成分
とする蓄熱剤が幾つか提案されているが、これら従来の
蓄熱剤は、その有する顕熱のみの利用するものであっ
た。即ち、空調を目的とする場合、冷房用には蓄熱剤は
約5℃に冷却保持し熱交換すればよく、暖房用には約4
0℃に加熱保持し熱交換すればよいが、従来の蓄熱剤は
これらの温度領域では、その有する顕熱のみの利用する
ものであった。しかし、上記の温度領域で、その保有す
る顕熱に、更に潜熱も加えて利用出来れば、蓄熱剤の効
用乃至熱交換能力は更に向上するものである。
In response to this measure, some heat storage agents containing water, brine (calcium chloride aqueous solution, etc.) and ethylene glycol as main components have been proposed, but these conventional heat storage agents have only sensible heat. Was used. That is, for the purpose of air conditioning, the heat storage agent may be cooled and held at about 5 ° C. for cooling and heat exchanged, and about 4 ° C. for heating.
It is only necessary to heat and hold at 0 ° C. for heat exchange, but the conventional heat storage agent uses only the sensible heat that it has in these temperature regions. However, in the above temperature range, if the sensible heat stored therein can be used in addition to the latent heat, the effect or heat exchange capacity of the heat storage agent will be further improved.

【0004】[0004]

【発明の概要】本発明の蓄熱剤は、水、ブライン、エチ
レングリコールのような水、又は親水性液体である主剤
に、疎水性乃至親油性有機化合物を高度に吸収する吸油
性樹脂(ゴム類を含むポリマー)を分散し、且つ該吸油
性ポリマーに目的とする熱交換温度領域(例えば、5乃
至10℃)で相変化を起し潜熱を供与或は取得する(冷
媒としては潜熱を取得する)親油性有機化合物を予め吸
収させておくことを特徴とするものである。
SUMMARY OF THE INVENTION The heat storage agent of the present invention is an oil-absorbing resin (rubbers) which highly absorbs a hydrophobic or lipophilic organic compound in a main agent which is water, brine, water such as ethylene glycol, or a hydrophilic liquid. (Containing a polymer) is dispersed, and a phase change is caused in the oil-absorbing polymer in a desired heat exchange temperature range (for example, 5 to 10 ° C.) to provide or acquire latent heat (obtains latent heat as a refrigerant). ) It is characterized in that a lipophilic organic compound is absorbed in advance.

【0005】先ず、疎水性乃至親油性有機化合物を高度
に吸収する吸油性樹脂(ゴム類を含むポリマー)につい
て説明する。此処で言う”高度に吸収する”とは、樹脂
重量に対して少なくとも5倍以上の吸収能力を言う。即
ち、PHRで言えば、500PHR以上を意味する。上
記の概念の樹脂は市販されているが、これを若干の例で
説明すると、溶解度パラメータ(SP値)が約9以下の
ビニルモノマーを約90重量%以上含むモノマー配合で
重合したポリマーが上記の概念に該当する。
First, an oil absorbing resin (polymer containing rubbers) which highly absorbs a hydrophobic or lipophilic organic compound will be described. The term "highly absorbable" as used herein means an absorbency of at least 5 times or more the weight of resin. That is, in terms of PHR, it means 500 PHR or more. The resin of the above concept is commercially available. To explain this with some examples, a polymer obtained by polymerizing a vinyl monomer having a solubility parameter (SP value) of about 9 or less by about 90% by weight or more is described above. It corresponds to the concept.

【0006】溶解度パラメータ(SP値)が約9以下の
ビニルモノマーの具体例をあげると、炭素数が10個以
上の1価脂肪族アルコールの(メタ)アクリル酸エステ
ル(以下ではAモノマーとする):例えば、デシル(メ
タ)アクリレート、ドデシル(メタ)アクリレート、テ
トラデシル(メタ)アクレリレート、ヘキサデシル(メ
タ)アクリレート、ステアリル(メタ)アクリレート。
Specific examples of vinyl monomers having a solubility parameter (SP value) of about 9 or less include (meth) acrylic acid esters of monohydric aliphatic alcohols having 10 or more carbon atoms (hereinafter referred to as A monomers). : For example, decyl (meth) acrylate, dodecyl (meth) acrylate, tetradecyl (meth) acrylate, hexadecyl (meth) acrylate, stearyl (meth) acrylate.

【0007】このAモノマーを主成分として、Aモノマ
ーと共重合し得るモノマー(以下ではBモノマーとす
る)としては:メチル(メタ)アクリレート、エチル
(メタ)アクリレート、ブチル(メタ)アクリレート、
2−エチルヘキシル(メタ)アクリレート、n−オクチ
ル(メタ)アクリレート等、炭素数が9個以下の脂肪族
アルコールと(メタ)アクリル酸とのエステルがある。
Monomers which can be copolymerized with the A monomer as the main component and the A monomer (hereinafter referred to as the B monomer) include: methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate,
There are esters of (meth) acrylic acid with aliphatic alcohols having 9 or less carbon atoms such as 2-ethylhexyl (meth) acrylate and n-octyl (meth) acrylate.

【0008】重合して得られるポリマー(樹脂)のSP
値を約10以下にする範囲で、親水基有するモノマー
(以下ではCモノマーとする)を若干共重合成分として
選択してもよい:例えば、メタアクリル酸、アクリルニ
トリル、フマル酸、ヒドロキシエチルメタアクリレート
がある。更に、ポリマーを架橋乃至分岐型にするため、
多官能ビニルモノマー(以下ではDモノマーとする)を
少量加えてもよい:例えば、ジビニルベンゼン、エチレ
ングリコールジ(メタ)アクリレート、ジエチレングリ
コールジ(メタ)アクリレートがある。
SP of polymer (resin) obtained by polymerization
A monomer having a hydrophilic group (hereinafter referred to as a C monomer) may be selected as a copolymerization component in a range of about 10 or less: for example, methacrylic acid, acrylonitrile, fumaric acid, hydroxyethyl methacrylate. There is. Furthermore, in order to make the polymer crosslinked or branched,
A small amount of polyfunctional vinyl monomer (hereinafter referred to as D monomer) may be added: for example, divinylbenzene, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate.

【0009】代表的なモノマー配合の例をあげると、 ヘキサデシルメタアクリレート(Aモノマー)60重量部 ブチルメタアクリレート(Bモノマー) 39重量部 ジビニルベンゼン (Dモノマー) 1重量部 で、ポリビニルアルコールを乳化剤として用いる公知の
懸濁重合により所定のポリマーを重合し得る。重合によ
り、粒子径が約10−300ミクロンの球状の粉末が通
常得られるが、それを、そのままの球形粉末状で用いて
もよいし、粒子形状を加工により、例えば、金米糖形の
角張った形状等に変形してもよい。また多孔質の他物
質、或いは他の吸油性機能物質と適宜に混合して成型加
工し、所望の粒子径を整えてもよい。本発明では、粒子
径を約100ミクロン以下にすることが望ましい。
As an example of a typical monomer mixture, hexadecyl methacrylate (A monomer) 60 parts by weight butyl methacrylate (B monomer) 39 parts by weight divinylbenzene (D monomer) 1 part by weight, polyvinyl alcohol is used as an emulsifier. A predetermined polymer can be polymerized by a known suspension polymerization used as. Although a spherical powder having a particle size of about 10-300 microns is usually obtained by the polymerization, it may be used in the form of a spherical powder as it is, or the particle shape may be processed to obtain, for example, a sugar-and-rice-shaped angular shape. It may be transformed into In addition, a desired particle diameter may be adjusted by appropriately mixing with a porous other substance or another oil absorbing functional substance and molding. In the present invention, it is desirable that the particle size be about 100 microns or less.

【0010】前記の使用目的に関連してモノマー配合を
見るとき、熱交換温度を約40℃とするような暖房用の
場合には、Aモノマーの配合が多いもの、Aモノマーが
80重量%以上を占めるものが適当であり、熱交換温度
を約5℃とするような冷房用の場合には、Aモノマーが
50乃至80重量部を占めるものが適当である。
Looking at the monomer composition in relation to the above purpose of use, in the case of heating such that the heat exchange temperature is about 40 ° C., the composition of the A monomer is large, and the A monomer is 80% by weight or more. Is suitable, and for cooling such that the heat exchange temperature is about 5 ° C., it is suitable that the A monomer accounts for 50 to 80 parts by weight.

【0011】上記の他に、”ノルボルネンゴム”(商品
名。フランスCdF社製造。これはエチレンとシクロペ
ンタジエンをディールスアルダー反応で環化してノルボ
ルネンを得、次いでその開環重合でポリマー化したもの
と言われる)として知られる吸油性のゴム(本願では、
樹脂として扱う)を利用することも出来る。市販で得ら
れるものには、粉末状のもの、或は石油系オイルを含浸
させたものがあるが、何れも利用可能である。
In addition to the above, "norbornene rubber" (trade name, manufactured by CdF, France. This is obtained by cyclizing ethylene and cyclopentadiene by a Diels-Alder reaction to obtain norbornene, which is then polymerized by ring-opening polymerization. Oil-absorbent rubber known as
It can also be used as a resin). The commercially available products include those in powder form and those impregnated with petroleum oil, and any of them can be used.

【0012】次ぎに吸油性ポリマーに予め吸収させてお
く親油性有機化合物(以下では、油剤という場合があ
る)について説明する。要点を言えば、水に溶解しない
ものであれば、本願の親油性有機化合物、即ち、油剤と
して採用し得る。具体的には、石油系のパラフィンワッ
クス類、高級脂肪アルコール等を挙げることが出来る。
採用に当っては、使用する吸油性樹脂に高度に吸収され
るものであり、その吸収される油剤(親油性有機化合
物)の融点乃至固体から液体へ相変化する温度が明瞭な
ものが、その潜熱を利用する立場から、適当である。具
体例を挙げると次の通り。
Next, the lipophilic organic compound (hereinafter sometimes referred to as an oil agent) to be absorbed in the oil absorbing polymer will be described. In short, if it is insoluble in water, it can be used as the lipophilic organic compound of the present application, that is, an oil agent. Specific examples thereof include petroleum-based paraffin waxes and higher fatty alcohols.
In the adoption, it is one that is highly absorbed by the oil-absorbent resin to be used, and the one that has a clear melting point of the absorbed oil agent (lipophilic organic compound) or the temperature at which the phase changes from solid to liquid is clear. It is appropriate from the standpoint of utilizing latent heat. Specific examples are as follows.

【0013】石油系パラフィン、即ち、ノルマル・パラ
フィンの場合には、n−テトラデカン(炭素数:14。
融点:5.5℃)、n−ペンタデカン(炭素数:15。
融点:10.0℃)、n−エイコサン(炭素数:20。
融点:36.4℃)その他、市販の石油系パラフィンワ
ックス類(これは、潤滑油の脱ロウ処理により製造さ
れ、ワックス製品は融点を5°F毎に区切って販売され
ている)については、その融点、針入り温度等のデータ
から相変化温度乃至その温度範囲を知ることが出来る。
高級脂肪アルコールでは、n−デシルアルコール(融
点:6℃)、ミリスチルアルコール(融点:38℃)、
セチルアルコール(融点:49℃)を挙げることが出来
る。これらのものは、混合して相変化温度を調節するこ
とが出来る。
In the case of petroleum-based paraffin, that is, normal paraffin, n-tetradecane (carbon number: 14).
Melting point: 5.5 ° C, n-pentadecane (carbon number: 15).
Melting point: 10.0 ° C, n-eicosane (carbon number: 20).
For other commercially available petroleum-based paraffin waxes (which are produced by dewaxing lubricating oils, wax products are sold by dividing the melting point by 5 ° F). The phase change temperature or the temperature range can be known from the data such as the melting point and the needle penetration temperature.
Among the higher fatty alcohols, n-decyl alcohol (melting point: 6 ° C), myristyl alcohol (melting point: 38 ° C),
Cetyl alcohol (melting point: 49 ° C.) can be mentioned. These can be mixed to adjust the phase change temperature.

【0014】[0014]

【具体例】【Concrete example】

1。蓄熱剤の調製 前述のアクリル吸油性樹脂に、その重量の15倍の石油
ワックス(テトラデカンを主成分としたもので、相変化
温度:5−10℃に調節したもの)を吸収させる(PH
R=1500)。即ち、アクリル樹脂の15倍量の前記
石油ワックスを30−40℃の液状に保ち、この中にア
クリル樹脂を入れてワックスを全量吸収させた。次い
で、吸油した樹脂を水(冷媒主剤)中に、重量比で4:
6となるように分散させた。吸油した樹脂の総量と水
(又はブライン、エチレングリコール)の重量比は、概
ね2:8乃至5:5の範囲、例えば、約4:6が好まし
い。 2。上記の蓄熱剤を冷媒として用いる実施例 図1において、1は、圧縮機11、凝縮器12、及び冷
却部13から成る冷却装置で、蓄熱槽2内の蓄熱剤(冷
媒)Aをポンプ3によって前記冷却装置1の冷却部13
との間で循環させることによって、蓄熱剤を冷却する。
前記のように、この冷却には、夜間電力を利用すること
が望ましい。
1. Preparation of heat storage agent The above-mentioned acrylic oil-absorbing resin is allowed to absorb 15 times its weight of petroleum wax (having tetradecane as a main component and having a phase change temperature adjusted to 5-10 ° C.) (PH
R = 1500). That is, the petroleum wax in an amount 15 times that of the acrylic resin was kept in a liquid state at 30 to 40 ° C., and the acrylic resin was put in this to absorb the entire amount of the wax. Next, the oil-absorbed resin is added to water (refrigerant main agent) in a weight ratio of 4:
It was dispersed to be 6. The weight ratio of the total amount of oil-absorbed resin to water (or brine or ethylene glycol) is preferably in the range of 2: 8 to 5: 5, for example, about 4: 6. 2. Example in which the above heat storage agent is used as a refrigerant In FIG. 1, reference numeral 1 is a cooling device including a compressor 11, a condenser 12, and a cooling unit 13, and a heat storage agent (refrigerant) A in a heat storage tank 2 is pumped by a pump 3. Cooling unit 13 of the cooling device 1
The heat storage agent is cooled by circulating the heat storage agent.
As mentioned above, it is desirable to utilize night power for this cooling.

【0015】蓄(冷)熱が終り、蓄熱剤の有する冷熱
で、冷却を実施する時は、バルブを切替え、蓄熱槽2の
上部のバルブを開き、ポンプ4により蓄熱剤を搬送管5
を介して熱交換器6に送り、熱交換器通過後、戻り管7
を介して再び蓄熱槽2に戻す閉回路での循環を行う。上
記の熱交換器6が空調冷房装置のものであれば、熱交換
により、冷風が空調領域に送られる。尚、蓄熱設備を用
いない時は、前記冷却装置1の冷却部13で冷却した冷
媒を搬送管aを介して直接熱交換器6へ送る。
When the storage (cold) heat ends and the cooling is carried out by the cold heat of the heat storage agent, the valve is switched, the valve at the upper part of the heat storage tank 2 is opened, and the pump 4 transfers the heat storage agent to the pipe 5.
Sent to the heat exchanger 6 through the heat exchanger 6 and, after passing through the heat exchanger, the return pipe 7
Circulation is performed in a closed circuit that returns to the heat storage tank 2 again via. If the heat exchanger 6 is an air conditioner cooling device, cold air is sent to the air conditioning area by heat exchange. When the heat storage facility is not used, the refrigerant cooled by the cooling unit 13 of the cooling device 1 is directly sent to the heat exchanger 6 via the carrier pipe a.

【0016】また、本蓄熱剤を加熱熱媒として用いる場
合には、図1の冷却装置1に代えて加熱装置を使用し、
空調暖房目的であれば、吸油性樹脂に吸収させる油剤と
しては、40℃付近の温度で相変化を起すものを選択す
ればよい。
When the present heat storage agent is used as a heating medium, a heating device is used instead of the cooling device 1 of FIG.
For the purpose of air conditioning and heating, as the oil agent to be absorbed by the oil absorbing resin, one that causes a phase change at a temperature near 40 ° C. may be selected.

【0017】[0017]

【発明の効果】上記の具体例の実施において、実験とし
て、相当に細いチューブを備えた熱交換器を使用するこ
とも行ったが、配管中の詰まりというトラブルが無く、
流れは良好であった。これは、本発明の蓄熱剤は、固形
樹脂が液体中に懸濁分散(サスペンジョン)した状態の
ものであるが、分散粒子が細かく、分散性が良いことに
起因するものである。本発明の蓄熱剤は、熱交換温度に
おいて、顕熱だけでなく、相変化の際に発生(或は吸
収)する潜熱も加わるので、熱交換能力が向上するのみ
でなく、蓄熱剤に含まれる吸油性樹脂が、流れる間に、
熱交換壁の表面を摺擦する効果を付与するので、熱交換
において壁面を通す熱伝達にとっては障害となる壁面近
傍の層流膜を破壊し、熱交換能力を更に向上させる。前
記吸油性樹脂を金米糖形のような角張った形状にする場
合に、所謂スカウリング効果が大きい。このような熱交
換効率の向上により、発明者等の実験の結果では、水又
はブラインのみを用いる場合に比べて、約5倍の効率向
上の結果を得た。この結果は、従来に比べて熱交換の配
管の断面積,或は熱交換の所要面積を1/5に減少し得
ることを示唆している。これにより、熱交換用の配管の
設計において、熱媒(冷媒)の送りと戻りの温度差が小
さくなるので、送り管と戻り管を二重構造管として、配
管のスペースを節約し得る。更に、これにより、空調設
備の全体の大きさも小さく設計し得る等の効果がある。
As an experiment in the practice of the above embodiment, a heat exchanger having a considerably thin tube was used, but there was no trouble such as clogging in the pipe,
The flow was good. This is because the heat storage agent of the present invention is in a state where the solid resin is suspended and dispersed (suspended) in the liquid, but the dispersed particles are fine and the dispersibility is good. The heat storage agent of the present invention not only has sensible heat at the heat exchange temperature, but also latent heat generated (or absorbed) at the time of phase change is added. While the oil-absorbent resin flows,
Since the effect of rubbing the surface of the heat exchange wall is imparted, the laminar flow film near the wall surface, which is an obstacle to heat transfer through the wall surface in heat exchange, is destroyed, and the heat exchange capacity is further improved. The so-called scouring effect is great when the oil-absorbent resin is made into an angular shape such as a gold-rice sugar type. Due to such an improvement in heat exchange efficiency, the results of the experiments conducted by the inventors of the present invention have resulted in an efficiency improvement of about 5 times as compared with the case where only water or brine is used. This result suggests that the cross-sectional area of the heat exchange pipe or the required area for heat exchange can be reduced to 1/5 of that of the conventional case. As a result, in the design of the pipe for heat exchange, the temperature difference between the sending and returning of the heat medium (refrigerant) becomes small, so that the sending pipe and the returning pipe can be double-structured pipes to save the space of the piping. Further, this has an effect that the overall size of the air conditioning equipment can be designed small.

【0018】[0018]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の蓄熱剤を使用する冷却方法を実施する
為の、装置の概略図である。
FIG. 1 is a schematic view of an apparatus for carrying out a cooling method using a heat storage agent of the present invention.

【符号の説明】[Explanation of symbols]

1:冷却装置 2:蓄熱槽 3、4:ポンプ 5:搬送(送り)管 6:熱交換器 7:戻り管 A:蓄熱剤粒子 1: Cooling device 2: Heat storage tank 3, 4: Pump 5: Conveying (sending) pipe 6: Heat exchanger 7: Return pipe A: Heat storage agent particles

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 親油性有機化合物を高度に吸収する吸油
性樹脂に、目的とする熱交換温度領域で相変化を起す親
油性有機化合物を予め吸収させものを、水、ブライン、
エチレングリコール等の親水性液体に分散させたことを
特徴とする蓄熱剤。
1. An oil-absorbing resin that highly absorbs a lipophilic organic compound, which has been made to absorb a lipophilic organic compound that undergoes a phase change in a target heat exchange temperature region in advance, using water, brine,
A heat storage agent characterized by being dispersed in a hydrophilic liquid such as ethylene glycol.
【請求項2】 請求項1に記載の蓄熱剤を加熱又は冷却
状態に保ち、熱交換器を通して加熱又は冷却を行う方
法。
2. A method of keeping the heat storage agent according to claim 1 in a heated or cooled state and heating or cooling it through a heat exchanger.
【請求項3】 請求項1に記載の蓄熱剤を加熱又は冷却
状態に保ち、熱交換器を通して加熱又は冷却を行う装
置。
3. An apparatus for holding the heat storage agent according to claim 1 in a heated or cooled state and heating or cooling it through a heat exchanger.
JP4304343A 1992-10-02 1992-10-02 Heat-accumulation agent Pending JPH06116550A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4304343A JPH06116550A (en) 1992-10-02 1992-10-02 Heat-accumulation agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4304343A JPH06116550A (en) 1992-10-02 1992-10-02 Heat-accumulation agent

Publications (1)

Publication Number Publication Date
JPH06116550A true JPH06116550A (en) 1994-04-26

Family

ID=17931873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4304343A Pending JPH06116550A (en) 1992-10-02 1992-10-02 Heat-accumulation agent

Country Status (1)

Country Link
JP (1) JPH06116550A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0827997A4 (en) * 1996-03-21 1999-02-24 Nippon Catalytic Chem Ind Heat accumulating agent and its production method, heat accumulating material and its production method, and heat accumulator
JPH11293235A (en) * 1998-04-13 1999-10-26 Ntc Kogyo Kk Wax for expansion material and heat storage material
WO2012063828A1 (en) * 2010-11-09 2012-05-18 株式会社資生堂 Thermal mask
JP2016014088A (en) * 2014-07-01 2016-01-28 株式会社カネカ Heat storage material composition

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0827997A4 (en) * 1996-03-21 1999-02-24 Nippon Catalytic Chem Ind Heat accumulating agent and its production method, heat accumulating material and its production method, and heat accumulator
US6083417A (en) * 1996-03-21 2000-07-04 Nippon Shokubai Co., Ltd. Thermal storage agent, manufacturing method thereof, thermal storage material, manufacturing method thereof, thermal storage device and accumulating method
JPH11293235A (en) * 1998-04-13 1999-10-26 Ntc Kogyo Kk Wax for expansion material and heat storage material
WO2012063828A1 (en) * 2010-11-09 2012-05-18 株式会社資生堂 Thermal mask
JP2012100836A (en) * 2010-11-09 2012-05-31 Shiseido Co Ltd Thermal mask
JP2016014088A (en) * 2014-07-01 2016-01-28 株式会社カネカ Heat storage material composition

Similar Documents

Publication Publication Date Title
US20090194257A1 (en) Apparatus for cooling or heating thermal storage using microencapsulated phase change material slurries
Ismail et al. New potential applications of phase change materials: A review
US4470917A (en) Thermal energy storage compositions
JP2006523744A (en) Use of microcapsule aqueous dispersion as heat transfer liquid
CN107076523B (en) Heat transfer system with phase change composition
Chen et al. Experimental investigation on PCM cold storage integrated with ejector cooling system
US20220082337A1 (en) Heat storage using phase change material coated with nanoparticles
JPH06116550A (en) Heat-accumulation agent
CN109943290A (en) A kind of phase change fluid of low conductivity and preparation method thereof
JP4668541B2 (en) Thermal storage material, method for producing the same, heating or cooling system, thermal storage article, and copolymer
Paroutoglou et al. A PCM based cooling system for office buildings: a state of the art review
JP6704553B1 (en) Heat storage device
JP4242631B2 (en) Heat transfer medium, manufacturing method thereof, and air conditioning system using the same
EP3450227A1 (en) Temperature regulation system
JPH0931452A (en) Thermal storage medium composition and air-conditioning system
JPH05215369A (en) Cooling or heating method utilizing latent heat
US3644208A (en) Leak-stopping composition
Lin et al. Preparation, characterisation and property modification of a calcium chloride hexahydrate phase change material slurry with additives for thermal energy transportation
JPH06313689A (en) Transporting method for latent heat storage medium transporting method for cold heat
JPH05203202A (en) Cold storage device
JP6247565B2 (en) Microcapsule heat storage material and heat storage device using the same
JPH0414272B2 (en)
JPH1036824A (en) Heat storage material composition
CN111763499A (en) Micro-nano emulsion phase change material, phase change heat exchange tube and preparation method of phase change material
Singh Enhancement in thermal management of electronic devices using thermosyphon assist phase change material: An experimental study