JPH06313306A - Jointless multiple span floor slab bridge - Google Patents

Jointless multiple span floor slab bridge

Info

Publication number
JPH06313306A
JPH06313306A JP12799193A JP12799193A JPH06313306A JP H06313306 A JPH06313306 A JP H06313306A JP 12799193 A JP12799193 A JP 12799193A JP 12799193 A JP12799193 A JP 12799193A JP H06313306 A JPH06313306 A JP H06313306A
Authority
JP
Japan
Prior art keywords
slab
bridge
span
concrete
adjacent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12799193A
Other languages
Japanese (ja)
Inventor
Masakatsu Sato
政勝 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP12799193A priority Critical patent/JPH06313306A/en
Publication of JPH06313306A publication Critical patent/JPH06313306A/en
Pending legal-status Critical Current

Links

Landscapes

  • Bridges Or Land Bridges (AREA)

Abstract

PURPOSE:To dispense with an expansion joint in a multiple span floor slab bridge, and to continuously provide a floor slab concrete and an asphalt pavement over the whole length of the multiple span floor system bridge. CONSTITUTION:In a multiple span floor slab bridge where a floor system bridge composed of an end part concrete 15 and a floor slab concrete 8 which are placed on a steel beam 4 and the upper face of the bottom plate 4c of the steel beam 4 and united with the steel beam 4 is supported on a bridge pier 1 in every span, hard rubber supports 2, 3 are severally used for the fixed and the movable shoe of the adjacent floor slab bridge supported on a common bridge pier 1. The opposite end parts of the adjacent floor slab bridges are mutually joined through a connecting arm 6 with pin bolts 9. the floor slab concrete 13 is placed over the mutual upper faces of the upper flanges 4a of the steel beams 4 at the the adjacent floor slab bridge ends.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ジョイントレス多径間
床版橋に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a jointless multi-span slab bridge.

【0002】[0002]

【従来の技術】都市部の自動車道等には、土地の有効利
用や交通渋滞の緩和のために、多径間にわたる高架橋が
用いられることが多い。
2. Description of the Related Art In many cases, viaducts over multiple spans are often used for highways in urban areas in order to effectively use land and alleviate traffic congestion.

【0003】前記高架橋の形式の一つとして、各径間毎
に支持され、鋼桁の上面にコンクリート床版が設けられ
た合成床版橋を、その長手方向に並べてなる多径間単純
支持合成版橋がある。この単純支持合成床版橋の一つと
して、特公平3-48285 号公報に開示されているような所
謂中空型合成床橋がある。この中空型合成床版橋は、そ
の桁高が低く、適用できる支間も広いという優れた機能
を有しているため、橋梁の架け換え等に多用されてい
る。
As one of the forms of the above-mentioned viaduct, a multi-span simple support composite in which synthetic slab bridges supported by each span and having a concrete floor slab provided on the upper surface of a steel girder are arranged in the longitudinal direction thereof. There is a version bridge. As one of the simply supported composite floor bridges, there is a so-called hollow composite floor bridge as disclosed in Japanese Examined Patent Publication No. 3-48285. This hollow type composite slab bridge has many excellent functions such as low girder height and wide applicable span, so it is widely used for bridge replacement.

【0004】[0004]

【発明が解決しようとする課題】ところで、前記特許公
報に開示されている合成床版橋にあっては、温度変化に
よる合成床版橋の伸縮や、自動車載荷による各端部の回
転に対応させるために、各径間毎の合成床版橋端部には
伸縮継手が必要である。この伸縮継手には直接車輸荷重
が載荷するため、合成床版橋を走行する自動車によって
衝撃や震動が生じ、騒音の発生源となること、および伸
縮継手部からの水漏れが原因で、鋼桁端部の腐食を助長
させ、保守管理を必要とすること等の問題があった。
By the way, in the composite deck slab disclosed in the above-mentioned patent publication, expansion and contraction of the composite deck slab due to temperature change and rotation of each end portion by an automatic vehicle load are made compatible. Therefore, expansion joints are required at the ends of the composite deck slab for each span. Since the vehicle transport load is directly applied to this expansion joint, shocks and vibrations are generated by the car traveling on the composite deck slab, which is a source of noise, and water leakage from the expansion joint causes There was a problem that corrosion of the girder end was promoted and maintenance was required.

【0005】[0005]

【課題を解決するための手段】本発明は、前記従来の多
径間床版橋の問題を解決すべく開発されたものであっ
て、その第1の要旨とするところは、鋼桁と、この鋼桁
底板の上面に打設され、鋼桁と一体化されたコンクリー
トとからなる床版橋を、各径間毎に橋脚上に支持した多
径間床版橋において、共通の橋脚上に支持する隣接床版
橋の固定沓および移動沓に硬質ゴム支承を用い、かつ隣
接床版橋の対向端部相互をピン結合すると共に、隣接床
版橋端部の鋼桁の上部フランジ上面相互にわたって床版
コンクリートを打設したジョイントレス多径間床版橋に
ある。
The present invention was developed in order to solve the problems of the conventional multi-span slab bridge, and the first gist thereof is a steel girder, In a multi-span slab bridge in which each floor span is supported by a slab bridge made of concrete integrated with the steel girder, which is placed on the upper surface of this steel girder bottom plate, Hard rubber bearings are used for the fixed and moving troughs of the adjacent floor slabs to be supported, and the opposite ends of the adjacent floor slabs are pin-coupled to each other, and the upper flange upper surface of the steel girders of the adjacent floor slab bridges are mutually extended Located on a jointless multi-span slab bridge with slab concrete.

【0006】また本発明の第2の要旨とするところは、
鋼桁と、この鋼桁底板の上面に打設され、鋼桁と一体化
されたコンクリートとからなる床版橋を、各径間毎に橋
脚上に支持した多径間床版橋において、共通の橋脚上に
支持する隣接床版橋の固定沓および移動沓に硬質ゴム支
承を用い、かつ隣接床版橋の対向端部相互を凹凸状球面
座を介してPC鋼棒にて結合すると共に、隣接床版橋端
部の鋼桁の上部フランジ上面相互にわたって床版コンク
リートを打設したジョイントレス多径間床版橋にある。
The second gist of the present invention is as follows.
Common for multi-span slab bridges in which a steel girder and a deck slab composed of steel girder bottom plate and concrete integrated with the steel girder are supported on piers for each span. Hard rubber bearings are used for the fixed and moving gears of the adjacent deck slab supported on the bridge pier, and the opposite ends of the adjacent deck slabs are joined together with PC steel rods through the concave and convex spherical seats. It is a jointless multi-span slab bridge in which slab concrete is cast across the upper flanges of the steel girders at the ends of adjacent slab bridges.

【0007】[0007]

【作用】前記本発明のジョイントレス多径間床版橋によ
れば、温度変化による各床版橋の伸縮に対しては、ピン
結合部あるいは凹凸状球面座を介するPC鋼棒結合部が
抵抗し、この抵抗力による各床版橋の変形は、硬質ゴム
支承の剪断変形にて吸収することができるので、伸縮継
手が不用となり、床版コンクリートを多径間床版橋の全
長にわたって連続させることができる。
According to the jointless multi-span slab of the present invention, the expansion of each slab due to temperature changes is resisted by the pin joints or the PC steel rod joints via the uneven spherical seats. However, since the deformation of each slab due to this resistance force can be absorbed by the shear deformation of the hard rubber bearing, expansion joints are not required and the slab concrete is made to continue over the entire length of the multi-span slab bridge. be able to.

【0008】また隣接床版橋端部間にわたる床版コンク
リートを粘弾性床材に置き換えることにより、各床版橋
の伸縮に対する変形能を一層大きくすることができる。
Further, by replacing the slab concrete extending between the ends of the adjacent slab bridges with a viscoelastic floor material, the deformability of each slab bridge with respect to expansion and contraction can be further increased.

【0009】さらに、硬質ゴム支承による各床版橋端部
の支持位置を、各床版橋の重心位置よりも高くすること
により、各床版橋端部の回転時に生じる鋼桁の底板の伸
び量の低減を図ることができる。
Further, by making the supporting position of each deck slab bridge end by the hard rubber bearing higher than the center of gravity of each deck slab bridge, elongation of the bottom plate of the steel girder that occurs during rotation of each deck slab bridge end. The amount can be reduced.

【0010】[0010]

【実施例】図1は、本発明の第1実施例を示す要部の縦
断面図、図2は、図1のA−A線における平面的断面図
であって、共通の橋脚1上に、固定沓としての硬質ゴム
支承2と、移動沓としての硬質ゴム支承3とを設置し、
固定沓としての硬質ゴム支承2上に、前部の床版橋にお
ける鋼桁4の一端部を載設し、移動沓としての硬質ゴム
支承3上に、前部の床版橋に隣接する後続部の床版橋に
おける鋼桁4の他端部を載設する。
FIG. 1 is a longitudinal sectional view of an essential part showing a first embodiment of the present invention, and FIG. 2 is a plan sectional view taken along the line AA of FIG. , A hard rubber bearing 2 as a fixed shoe and a hard rubber bearing 3 as a moving shoe are installed,
One end of the steel girder 4 in the front deck slab is placed on the hard rubber bearing 2 as the fixed shoe, and the succeeding portion adjacent to the front deck slab is placed on the hard rubber bearing 3 as the moving shoe. The other end of the steel girder 4 in the floor slab is placed.

【0011】前記各鋼桁4は、上部フランジ4aと、ウェ
ブ4bと、底板4cと、端板4dとを有し、かつ端板4dの内方
位置には、上部フランジ4aとウェブ4bと底板4cとに溶接
された補剛材5が設けられており、また各鋼桁4のウェ
ブ4bの端部には連結用アーム6がそれぞれ溶接されてい
る。
Each of the steel girders 4 has an upper flange 4a, a web 4b, a bottom plate 4c and an end plate 4d, and the upper flange 4a, the web 4b and the bottom plate are located inside the end plate 4d. A stiffening member 5 welded to 4c is provided, and a connecting arm 6 is welded to each end of the web 4b of each steel girder 4.

【0012】しかして、中空部に発泡樹脂板7を充填し
た後、各鋼桁4の上部フランジ4aの端部を除外した端部
コンクリート15と床版コンクリート8を打設し、次いで
各鋼桁4の前記連結用アーム6相互をピンボルト9とナ
ット10とにより結合し、かつ各鋼桁4の上部フランジ4a
との間隙に、例えばステンレス鋼板製、ゴム製、瀝青シ
ート製、発泡樹脂板製等のコンクリート受け部材11を嵌
合すると共に、このコンクリート受け部材11の上方に、
例えばエキスパンドメタル等の金網状鉄筋12を配設した
後、各鋼桁4の上部フランジ4aの端部上面相互にわたっ
て、前記打設した床版コンクリート8と同じレベルまで
床版コンクリート13を打設し、最後にアスファルト舗装
14を多径間床版橋の全長にわたって連続的に施す。
After the foamed resin plate 7 is filled in the hollow portion, the end concrete 15 excluding the end of the upper flange 4a of each steel girder 4 and the floor slab concrete 8 are placed, and then each steel girder is placed. 4, the connecting arms 6 are connected to each other by a pin bolt 9 and a nut 10, and the upper flange 4a of each steel girder 4 is connected.
A concrete receiving member 11 made of, for example, a stainless steel plate, rubber, a bituminous sheet, or a foamed resin plate is fitted in the gap between the above and above the concrete receiving member 11.
For example, after arranging the wire mesh rebar 12 such as expanded metal, the floor slab concrete 13 is cast to the same level as the floor slab concrete 8 that has been cast, across the upper surfaces of the end portions of the upper flanges 4a of the steel girders 4. Finally, the asphalt pavement 14 is continuously applied over the entire length of the multi-span slab bridge.

【0013】なお、前記コンクリート受け部材11として
は、図3に示すような各種の断面形状のものを使用すれ
ばよいし、また前記後打ちの床版コンクリート13を、例
えばタール系アスファルト、あるいはゴム樹脂を添加し
たアスファルト等の粘弾性床材に置き換えてもよい。
The concrete receiving member 11 may have various cross-sectional shapes as shown in FIG. 3, and the post-cast floor slab concrete 13 may be, for example, tar-based asphalt or rubber. It may be replaced with a viscoelastic floor material such as asphalt to which a resin is added.

【0014】図4は、本発明の第2実施例を示す要部の
縦断面図、図5は、図4のA−A線における平面的断面
図であって、共通の橋脚1上に、固定沓としての硬質ゴ
ム支承2と、移動沓としての硬質ゴム支承3とを設置
し、固定沓としての硬質ゴム支承2上に、前部の床版橋
における並列配置の各鋼桁4の一端部を載設し、移動沓
としての硬質ゴム支承3上に、前部の床版橋に隣接する
後続部の床版橋における並列配置の各鋼桁4の他端部を
載設する。
FIG. 4 is a longitudinal sectional view of a main part showing a second embodiment of the present invention, and FIG. 5 is a plan sectional view taken along the line AA in FIG. 4, showing a common pier 1 A hard rubber bearing 2 as a fixed shoe and a hard rubber bearing 3 as a movable shoe are installed, and one end of each steel girder 4 arranged in parallel in the front deck slab is placed on the hard rubber bearing 2 as a fixed shoe. Then, the other end of each of the steel girders 4 arranged in parallel in the succeeding floor slab adjacent to the front floor slab is placed on the hard rubber support 3 as a moving shoe.

【0015】しかして、中空部に発泡樹脂板7を充填し
た後、前記発泡樹脂板7と、底板4cと、端板4dとでなす
空間部に、発泡樹脂板7と同じレベルまで端部コンクリ
ート15を打設し、この端部コンクリート15が硬化した
後、各床版橋における並列配置の各鋼桁4のウェブ4bと
の中心位置なる端板4d相互の上部対向面にそれぞれ予め
設けられている凹状球面座16と凸状球面座17の中心孔お
よび前記各端部コンクリート15の貫通孔にわたってPC
鋼棒18を貫挿し、このPC鋼棒18の両端部に、それぞれ
支圧鋼板19と硬質ゴムパッド20を介してナット21を緩く
締め付け、各床版橋の対向端部相互を結合し、かつ各床
版橋の対向端部における上部フランジ4aとの間隙にコン
クリート受け部材11を嵌合すると共に、このコンクリー
ト受け部材11の上方に金網状鉄筋12を配設した後、多径
間床版橋の全長にわたって鋼桁4の上フランジ4aの上方
位置まで床版コンクリート8を連続的に打設し、最後に
アスファルト舗装14を多径間床版橋の全長にわたって連
続的に施す。
However, after the foamed resin plate 7 is filled in the hollow portion, in the space formed by the foamed resin plate 7, the bottom plate 4c and the end plate 4d, end concrete up to the same level as the foamed resin plate 7 is formed. After placing 15 and hardening the end concrete 15, the end plates 4d, which are centrally located with the webs 4b of the steel girders 4 arranged side by side in each deck slab, are provided in advance on the respective upper facing surfaces. PC through the central holes of the concave spherical seat 16 and the convex spherical seat 17 and the through holes of the concrete 15 at each end.
A steel rod 18 is inserted, and nuts 21 are loosely tightened at both ends of the PC steel rod 18 via bearing steel plates 19 and hard rubber pads 20, respectively, to connect the opposite ends of each floor slab to each other, and After fitting the concrete receiving member 11 in the gap between the upper flange 4a at the opposite end of the slab bridge and disposing the wire mesh rebar 12 above the concrete receiving member 11, the multi-span slab bridge Floor slab concrete 8 is continuously cast to a position above the upper flange 4a of the steel girder 4 over the entire length, and finally asphalt pavement 14 is continuously applied over the entire length of the multi-span slab bridge.

【0016】なお、前記多径間床版橋の全長にわたる床
版コンクリート8のうち、隣接床版橋端部の鋼桁4の上
部フランジ上面相互間は、粘弾性床材に置き換えてもよ
い。
In the slab concrete 8 extending over the entire length of the multi-span slab bridge, viscoelastic floor materials may be used between the upper flange upper surfaces of the steel girders 4 at the ends of the adjacent slab bridges.

【0017】図6は、本発明の第3実施例を示す要部の
縦断面図であって、共通の橋脚1上の固定沓としての硬
質ゴム支承2と、移動沓としての硬質ゴム支承3とにそ
れぞれ載設する前部の床版橋における鋼桁4の一端部の
ウェブ4bの上部フランジ4aからの高さおよび後続部の床
版橋における鋼桁4の他端部のウェブ4bの上部フランジ
4aからの高さを、各鋼桁4の中央部のウェブ4bの高さの
ほぼ1/2 程度にする。換言すれば、硬質ゴム支承2,3
による各床版橋端部の支持位置を、各床版橋の重心位置
よりも高くして、各床版橋端部の回転時に生じる鋼桁4
の下部フランジ4cの伸び量の低減を図る。なお、この第
3実施例は、第1実施例に適用したものであるが、第2
実施例に適用できることは勿論である。また各実施例に
おける床版コンクリート8、後打ちの床版コンクリート
13、端部コンクリート15として、コンクリートの乾燥収
縮に伴うひび割れ発生を防止する目的から、普通コンク
リートの配合に、膨張性セメント混和材を添加した膨張
コンクリートの使用が好ましい。
FIG. 6 is a vertical cross-sectional view of an essential part showing a third embodiment of the present invention, in which a hard rubber bearing 2 serving as a fixed shoe and a hard rubber bearing 3 serving as a moving shoe on a common pier 1. The height from the upper flange 4a of the web 4b at one end of the steel girder 4 in the front deck slab and the upper part of the web 4b at the other end of the steel girder 4 in the succeeding deck slab Flange
The height from 4a is set to about 1/2 of the height of the web 4b at the center of each steel girder 4. In other words, hard rubber bearings 2, 3
The steel girder 4 generated when the end of each deck slab is rotated by setting the support position of each deck slab end by the higher than the center of gravity of each deck slab.
The amount of extension of the lower flange 4c of is reduced. Although the third embodiment is applied to the first embodiment, the second embodiment
Of course, it can be applied to the embodiment. Further, floor slab concrete 8 in each example, post-cast slab concrete
13. As the end concrete 15, it is preferable to use expansive concrete in which expansive cement admixture is added to the mix of ordinary concrete for the purpose of preventing cracking due to drying shrinkage of concrete.

【0018】[0018]

【発明の効果】以上述べた本発明のジョイントレス多径
間床版橋によれば、温度変化による各床版橋の伸縮に対
しては、ピン結合部あるいは凹凸状球面座を介するPC
鋼棒結合部が抵抗し、この抵抗力による各床版橋の変形
は、硬質ゴム支承の剪断変形にて吸収することができる
ので、伸縮継手が不用となり、床版コンクリートを多径
間床版橋の全長にわたって連続させることができる。
According to the jointless multi-span slab according to the present invention described above, the expansion and contraction of each slab due to temperature change can be achieved through the PC through the pin joint or the concave and convex spherical seat.
The steel rod joint resists, and the deformation of each slab bridge due to this resistance force can be absorbed by the shear deformation of the hard rubber bearings, so expansion joints are not required, and the slab concrete is used for multi-span slabs. It can be continuous over the entire length of the bridge.

【0019】また隣接床版橋端部間にわたる床版コンク
リートを粘弾性床材に置き換えることにより、各床版橋
の伸縮に対する変形能を一層大きくすることができる。
Further, by replacing the slab concrete extending between the ends of the adjacent slab bridges with a viscoelastic floor material, the deformability of each slab bridge against expansion and contraction can be further increased.

【0020】さらに、硬質ゴム支承による各床版橋端部
の支持位置を、各床版橋の重心位置よりも高くすること
により、各床版橋端部の回転時に生じる鋼桁の底板の伸
び量の低減を図ることができる。
Further, by making the supporting position of each deck slab bridge end by the hard rubber bearing higher than the center of gravity of each deck slab bridge, the elongation of the bottom plate of the steel girder that occurs during the rotation of each deck slab bridge end. The amount can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例を示す要部の縦断面図であ
る。
FIG. 1 is a vertical cross-sectional view of a main part showing a first embodiment of the present invention.

【図2】図1のA−A線における平面的断面図である。FIG. 2 is a plan sectional view taken along line AA of FIG.

【図3】コンクリート受け部材の各種形状を示す断面図
である。
FIG. 3 is a cross-sectional view showing various shapes of a concrete receiving member.

【図4】本発明の第2実施例を示す要部の縦断面図であ
る。
FIG. 4 is a vertical cross-sectional view of a main part showing a second embodiment of the present invention.

【図5】図4のA−A線における平面的断面図である。5 is a plan sectional view taken along the line AA of FIG.

【図6】本発明の第3実施例を示す要部の縦断面図であ
る。
FIG. 6 is a vertical cross-sectional view of a main part showing a third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…橋脚 2…固定沓としての硬質ゴム支承 3…移動沓としての硬質ゴム支承 4…鋼桁 4a…上部フランジ 4b…ウェブ 4c…底板 4d…端板 5…補剛材 6…連結用アーム 7…発泡樹脂板 8…床版コンクリート 9…ピンボルト 10…ナット 11…コンクリート受け
部材 12…金網状鉄筋 13…後打ちの床版コンクリート 14…アスファルト舗装 15端部コンクリート 16…凹状球面座 17…凸状球面座 18…PC鋼棒 19…支圧鋼板 20…硬質ゴムパッド 21…ナット
1 ... Bridge pier 2 ... Hard rubber bearing as fixed shoe 3 ... Hard rubber bearing as moving shoe 4 ... Steel girder 4a ... Top flange 4b ... Web 4c ... Bottom plate 4d ... End plate 5 ... Stiffener 6 ... Connecting arm 7 … Foamed resin plate 8… Floor concrete 9… Pin bolt 10… Nut 11… Concrete receiving member 12… Wire mesh rebar 13… Post-cast floor concrete 14… Asphalt pavement 15 End concrete 16… Concave spherical seat 17… Convex Spherical seat 18 ... PC steel rod 19 ... Bearing steel plate 20 ... Hard rubber pad 21 ... Nut

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 鋼桁と、この鋼桁底板の上面に打設さ
れ、鋼桁と一体化されたコンクリートとからなる床版橋
を、各径間毎に橋脚上に支持した多径間床版橋におい
て、共通の橋脚上に支持する隣接床版橋の固定沓および
移動沓に硬質ゴム支承を用い、かつ隣接床版橋の対向端
部相互をピン結合すると共に、隣接床版橋端部の鋼桁の
上部フランジ上面相互にわたって床版コンクリートを打
設したことを特徴とするジョイントレス多径間床版橋。
1. A multi-span floor in which a slab bridge composed of steel girders and concrete integrated with steel girders, which is cast on the upper surface of the steel girder bottom plate, is supported on piers for each span. In the version bridge, hard rubber bearings are used for the fixed and moving gears of the adjacent deck slabs supported on the common pier, and the opposite ends of the adjacent deck slabs are pin-connected to each other and the ends of the adjacent deck slabs are connected. Jointless multi-span slab bridge, characterized in that slab concrete was placed across the upper flanges of the steel girders of.
【請求項2】 鋼桁と、この鋼桁底板の上面に打設さ
れ、鋼桁と一体化されたコンクリートとからなる床版橋
を、各径間毎に橋脚上に支持した多径間床版橋におい
て、共通の橋脚上に支持する隣接床版橋の固定沓および
移動沓に硬質ゴム支承を用い、かつ隣接床版橋の対向端
部相互を凹凸状球面座を介してPC鋼棒にて結合すると
共に、隣接床版橋端部の鋼桁の上部フランジ上面相互に
わたって床版コンクリートを打設したことを特徴とする
ジョイントレス多径間床版橋。
2. A multi-span floor in which a slab bridge composed of steel girders and concrete integrated with steel girders placed on the upper surface of the steel girder bottom plate is supported on piers for each span. In the plate bridge, hard rubber bearings are used for the fixed and moving wheels of the adjacent floor slabs supported on the common pier, and the opposite ends of the adjacent floor slabs are connected to the PC steel bar through the uneven spherical seat. The jointless multi-span slab bridge is characterized in that the slab concrete is placed over the upper flange upper surfaces of the steel girders at the ends of the adjacent slab bridges.
【請求項3】 前記隣接床版橋端部の鋼桁の上部フラン
ジ上面相互にわたる床版コンクリートを粘弾性床材に置
き換えたことを特徴とする請求項1に記載のジョイント
レス多径間床版橋。
3. The jointless multi-span slab according to claim 1, wherein the slab concrete covering the upper flange upper surfaces of the steel girders at the ends of the adjacent slab bridges is replaced with a viscoelastic floor material. bridge.
【請求項4】 前記隣接床版橋端部の鋼桁の上部フラン
ジ上面相互にわたる床版コンクリートは粘弾性床材に置
き換えたことを特徴とする請求項2に記載のジョイント
レス多径間床版橋。
4. The jointless multi-span slab according to claim 2, wherein the slab concrete covering the upper flange upper surfaces of the steel girders at the ends of the adjacent slab bridges is replaced with a viscoelastic floor material. bridge.
【請求項5】 前記硬質ゴム支承による各床版橋端部の
支持位置を、各床版橋の重心位置よりも高くしたことを
特徴とする請求項1,請求項2,請求項3,請求項4に
記載のジョイントレス多径間床版橋。
5. The support position of each deck slab bridge end portion by the hard rubber bearing is set higher than the center of gravity of each deck slab bridge, claim 1, claim 2, claim 3, claim 3. Item 4. The jointless multi-span slab bridge according to Item 4.
JP12799193A 1993-04-28 1993-04-28 Jointless multiple span floor slab bridge Pending JPH06313306A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12799193A JPH06313306A (en) 1993-04-28 1993-04-28 Jointless multiple span floor slab bridge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12799193A JPH06313306A (en) 1993-04-28 1993-04-28 Jointless multiple span floor slab bridge

Publications (1)

Publication Number Publication Date
JPH06313306A true JPH06313306A (en) 1994-11-08

Family

ID=14973755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12799193A Pending JPH06313306A (en) 1993-04-28 1993-04-28 Jointless multiple span floor slab bridge

Country Status (1)

Country Link
JP (1) JPH06313306A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003253621A (en) * 2002-03-06 2003-09-10 Topy Ind Ltd Continuous beam structure for continuing existing simple beam bridge
US7003837B2 (en) 2004-06-29 2006-02-28 Pollard Jeff N Bridge construction system
JP2012001979A (en) * 2010-06-17 2012-01-05 Nakanihon Highway Engineering Nagoya Kk Bridge joint structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003253621A (en) * 2002-03-06 2003-09-10 Topy Ind Ltd Continuous beam structure for continuing existing simple beam bridge
US7003837B2 (en) 2004-06-29 2006-02-28 Pollard Jeff N Bridge construction system
JP2012001979A (en) * 2010-06-17 2012-01-05 Nakanihon Highway Engineering Nagoya Kk Bridge joint structure

Similar Documents

Publication Publication Date Title
CN108755405B (en) Assembly type steel plate bridge deck continuous structure and construction method
US5867854A (en) Modular bridge deck system including hollow extruded aluminum elements securely mounted to support girders
KR100651663B1 (en) Reinforcement apparatus for preventing lateral vibration of truss bridge and falling off in case of lifting truss bridge
US4309125A (en) Integrated bridge construction
JP2523447B2 (en) Floor slab installation structure in bridge
JPH06313306A (en) Jointless multiple span floor slab bridge
JP2676923B2 (en) Repair method for simple girder multi-span bridge.
JPH0814090B2 (en) Jyointres multi-span slab composed of simple supports
JP2734986B2 (en) Existing bridge repair method
KR100794444B1 (en) Construction Method of Composite Slab Bridge Using Composite Truss Girder
KR100622008B1 (en) Composition structure of integral abutment bridge
JPH0413490B2 (en)
KR100214431B1 (en) Execution method and structure of expansion joints
JP4627383B2 (en) Replaced steel deck bridge
JPH06313305A (en) Jointless multiple span floor slab bridge
JP2006118191A (en) Construction method of concrete floor slab of composite floor slab bridge, and form structure
JPS63804Y2 (en)
CN215252267U (en) Pier top bridge deck structure
KR100742187B1 (en) The infrastructure and infrastructure establishment method for the matrix support of the bridge
KR100680596B1 (en) Superstructure double joint structure of bridge
JPH0681320A (en) Continuous synthetic floor board bridge and construction method thereof
KR100214432B1 (en) Expansion joint for bridge
JP3723624B2 (en) Intermittent composite floor slab bridge
JP3031104U (en) Comb type expansion joint structure in bridge
JPS6049723B2 (en) road joint