JPH06311433A - Method for driving solid-state image pickup device - Google Patents

Method for driving solid-state image pickup device

Info

Publication number
JPH06311433A
JPH06311433A JP5114183A JP11418393A JPH06311433A JP H06311433 A JPH06311433 A JP H06311433A JP 5114183 A JP5114183 A JP 5114183A JP 11418393 A JP11418393 A JP 11418393A JP H06311433 A JPH06311433 A JP H06311433A
Authority
JP
Japan
Prior art keywords
ccd
light receiving
period
charge
vertical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5114183A
Other languages
Japanese (ja)
Inventor
Tetsuya Iizuka
哲也 飯塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP5114183A priority Critical patent/JPH06311433A/en
Publication of JPH06311433A publication Critical patent/JPH06311433A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve picture quality in large light quantity especially by eliminating the transfer remaining of smear electric charge for the electric charge discharging period of the vertical CCD of an FIT type image pickup element. CONSTITUTION:In the method for driving a solid-state image pickup device where a light receiving part having vertical CCD arranged in plural arrays, a storage part composed of vertical CCD continuous to each vertical CCD and a horizontal CCD connected to the vertical CCD of the storage part are provided and the vertical CCD of each array in the light receiving part is connected to plural light receiving elements, a signal reading period (3), a frame shift period (4), a light shift period (1) and a discharging period (2) are provided, and the transfer speed in the light receiving part is made to be faster than the transfer speed of the storage part for the line shift period.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はCCDを用いた固体撮像
装置に関し、特に電荷転送を行うための駆動方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid-state image pickup device using a CCD, and more particularly to a driving method for performing charge transfer.

【0002】[0002]

【従来の技術】CCDを用いた固体撮像装置としてフレ
ームトランスファ(FT:FrameTransfer
またはFIT:Frame Interline Tr
ansfer)方式の撮像素子(以下FIT型撮像素子
という)が用いられている。このFIT型撮像素子にお
いては、受光部で受光した光をその光量に応じて光電変
換して信号電荷を発生し、この信号電荷を蓄積部に転送
し、さらにこれを読取り部に転送出力する。この場合、
受光部または蓄積部のCCDレジスターに対しそのCC
Dレジスターの取扱い電荷量を越える過剰な電荷量が注
入されると、正常な転送が行われず転送残しが発生す
る。このためFIT型撮像素子で高輝度な被写体を撮像
した場合、転送残しのためにCCDレジスター内に信号
電荷が残留しこれが雑音信号となって後続する本来の信
号電荷に重畳され画像を著しく劣化させる。この点につ
いて、以下にさらに詳しく説明する。
2. Description of the Related Art As a solid-state image pickup device using a CCD, a frame transfer (FT) is available.
Or FIT: Frame Interline Tr
An image sensor of the transfer type (hereinafter referred to as FIT type image sensor) is used. In this FIT type image pickup device, the light received by the light receiving section is photoelectrically converted according to the amount of the light to generate a signal charge, which is transferred to the storage section and further transferred to the reading section for output. in this case,
CC for the CCD register of the light receiving unit or the storage unit
If an excessive amount of charge that exceeds the amount of charge handled by the D register is injected, normal transfer is not performed and transfer remains. For this reason, when a high-luminance object is imaged by the FIT type image pickup device, signal charges remain in the CCD register due to residual transfer, and this becomes a noise signal and is superimposed on the subsequent original signal charges, and the image is significantly deteriorated. . This point will be described in more detail below.

【0003】図9はFIT型撮像素子1の平面構造を示
す。このFIT型撮像素子1は、受光部2および蓄積部
3とを有し、受光部2は複数の列にアレイ状配置した受
光素子4(この例では各列4個)と各受光素子4に対し
読み出しゲート(ROG)5を介して各列ごとに設けた
垂直CCD(V−CCD)6とにより構成される。蓄積
部3は受光部2のV−CCD6に接続された垂直CCD
(V−CCD)7により構成される。蓄積部3のV−C
CD7の受光部側端部とは反対側に水平CCD(H−C
CD)8が設けられる。従って、H−CCD8は、蓄積
部3のV−CCD7を介して受光部2のV−CCD6と
接続される。
FIG. 9 shows a planar structure of the FIT type image pickup device 1. The FIT type image pickup device 1 has a light receiving portion 2 and a storage portion 3, and the light receiving portion 2 includes light receiving elements 4 (four in each row in this example) arranged in an array in a plurality of rows and each light receiving element 4. On the other hand, it is composed of a vertical CCD (V-CCD) 6 provided for each column via a read gate (ROG) 5. The storage unit 3 is a vertical CCD connected to the V-CCD 6 of the light receiving unit 2.
(V-CCD) 7. V-C of storage unit 3
The horizontal CCD (HC
CD) 8 is provided. Therefore, the H-CCD 8 is connected to the V-CCD 6 of the light receiving section 2 via the V-CCD 7 of the storage section 3.

【0004】また、H−CCD8に接して、V−CCD
側とは反対側にスミア掃き出し用のスミアゲート(SM
G)9とスミアドレイン10を配置し、H−CCDの出
力側端部には、電荷信号を電圧信号に変換するためのフ
ローティングディフュージョンアンプ11と、リセット
トランジスタ12と、出力バッファ13とが設けられ
る。
Further, in contact with the H-CCD 8, the V-CCD
Smear gate for smear sweeping (SM
G) 9 and smear drain 10 are arranged, and a floating diffusion amplifier 11 for converting a charge signal into a voltage signal, a reset transistor 12, and an output buffer 13 are provided at the output side end of the H-CCD. .

【0005】なお、以下の説明においては、説明の簡略
化のため、各V−CCD6,7は後述のパルスIM1〜
4およびST1〜4により動作する4相駆動とし、また
画素数は垂直4画素で読み出し方法はノンインターレー
ス動作としている。
In the following description, for simplification of description, each of the V-CCDs 6 and 7 has a pulse IM1 to pulse 1 to be described later.
4 and ST1 to 4, four-phase driving is performed, the number of pixels is four vertical pixels, and the reading method is non-interlaced operation.

【0006】図10は、図9のX−X’線に沿ったV−
CCD部分の縦断面の構成を示す。また、図11はFI
T型撮像素子の従来の駆動波形を示す。図10および図
11において、IM1〜4は受光部2のV−CCD6を
駆動する4相電極を示し、ST1〜4は蓄積部3のV−
CCD7を駆動する4相電極を示している。図10に示
すように、IM1〜4およびST1〜4の夫々に対応す
る4つのゲート電極が受光部2および蓄積部3の各V−
CCD6,7の構成単位となり、それぞれ図中U1およ
びU2で示される。
FIG. 10 shows V- along the line XX 'in FIG.
The structure of the vertical section of the CCD portion is shown. In addition, FIG.
The conventional drive waveform of a T type image sensor is shown. In FIG. 10 and FIG. 11, IM1 to 4 represent four-phase electrodes for driving the V-CCD 6 of the light receiving unit 2, and ST1 to 4 are V- of the storage unit 3.
A four-phase electrode for driving the CCD 7 is shown. As shown in FIG. 10, four gate electrodes corresponding to IM1 to ST4 and ST1 to ST4 are V- of the light receiving section 2 and the storage section 3, respectively.
It becomes a structural unit of CCDs 6 and 7, and is shown by U1 and U2 in the figure, respectively.

【0007】図示したように、共通のシリコン基板15
上にSiO2からなる酸化膜16が形成され、その上に
ポリシリコンからなる電極17が形成される。各電極1
7は前述の駆動パルスを導入する4相電極IM1〜4お
よびST1〜4の各々に順番に接続される。この例にお
いては、シリコン基板15にnチャンネルのCCDが形
成されているものとする。従って、ゲート電位が高レベ
ルのところにポテンシャル井戸が形成される。破線18
はこのポテンシャル井戸を示す。図10の例では、IM
1,2およびST1,2に接続する部分に高レベル電位
が印加され、IM3,4およびST3,4に接続する部
分には低レベルの電位が印加された状態を示している。
As shown, a common silicon substrate 15
An oxide film 16 made of SiO 2 is formed thereon, and an electrode 17 made of polysilicon is formed thereon. Each electrode 1
7 is sequentially connected to each of the four-phase electrodes IM1 to 4 and ST1 to 4 for introducing the drive pulse described above. In this example, it is assumed that an n-channel CCD is formed on the silicon substrate 15. Therefore, a potential well is formed at a high gate potential level. Dashed line 18
Indicates this potential well. In the example of FIG. 10, IM
A high-level potential is applied to the portions connected to 1, 2, and ST1, 2, and a low-level potential is applied to the portions connected to IM3, 4 and ST3, 4.

【0008】次に、図11を参照してV−CCDを駆動
制御する駆動パルス波形について説明する。V−CCD
の駆動パルスは4つの期間、、、からなり、
はH−CCDの駆動期間を示す。はラインシフト期
間、は掃き出し期間、は読み出し期間、はフレー
ムシフト期間である。読み出し期間を除いて、受光部
2と蓄積部3のV−CCD6,7の駆動波形は同一波形
となっている。ラインシフト期間においては、1水平
走査期間ごとに1周期のV−CCDを駆動する。これは
TVの垂直走査に対応する動作である。このラインシフ
ト期間のH−CCD駆動期間中に受光部2のV−CC
D6に漏れ込んだ光子がV−CCD内で光電変換されて
雑音信号として蓄積されていく。
Next, the drive pulse waveform for controlling the drive of the V-CCD will be described with reference to FIG. V-CCD
Drive pulse consists of four periods ,,,
Indicates the driving period of the H-CCD. Is a line shift period, is a sweep period, is a read period, and is a frame shift period. The driving waveforms of the V-CCDs 6 and 7 of the light receiving unit 2 and the storage unit 3 have the same waveform except the reading period. In the line shift period, one cycle of the V-CCD is driven for each horizontal scanning period. This is an operation corresponding to the vertical scanning of TV. During the H-CCD driving period of this line shift period, the V-CC of the light receiving unit 2 is
The photons leaking into D6 are photoelectrically converted in the V-CCD and accumulated as a noise signal.

【0009】この雑音がスミアー信号であり、この雑音
電荷をV−CCDから排除するために、掃き出し期間
において、V−CCDを高速駆動して受光部2のV−C
CD6内のスミアー電荷を蓄積部3に転送する。従って
掃き出し期間が終了した時点では受光部2のV−CCD
6内にスミア電荷がほとんどない状態となる。なおこの
とき、蓄積部3にもともとあつたスミアー電荷は、H−
CCD8とスミアーゲート9を介してスミアードレイン
10に掃き出される。
This noise is a smear signal, and in order to remove this noise charge from the V-CCD, the V-CCD is driven at a high speed during the sweeping period, and the V-C of the light receiving section 2 is driven.
The smear charges in the CD 6 are transferred to the storage section 3. Therefore, at the end of the sweep-out period, the V-CCD of the light receiving unit 2
There is almost no smear charge in 6. At this time, the smear charge originally stored in the storage unit 3 is H-
It is swept out to the smear drain 10 via the CCD 8 and the smear gate 9.

【0010】このようにしてスミアー雑音成分がー掃さ
れたきれいなV−CCD6に対し読み出しの期間にお
いて受光素子4より信号電荷を読み出して格納する。
In this way, the signal charges are read out from the light receiving element 4 and stored in the clean V-CCD 6 from which the smear noise component has been swept.

【0011】つぎにフレームシフト期間においてV−
CCD6および7を高速駆動して受光部2のV−CCD
6内の信号電荷を蓄積部3へ送ると共に、蓄積部3のV
−CCD7内のスミアー電荷をH−CCD8とスミアー
ゲート9を介してスミアードレイン10に掃き出す。信
号電荷が転送されてきた蓄積部3は遮光されており、光
子の入射がないため、次のラインシフト期間のH−C
CD駆動中において信号電荷への新たなるスミアーの付
加はほとんど起こらない。なお、図11の下側(B)図
はラインシフト期間における駆動パルスの波形を示す
ものであり、受光部2の駆動パルスIM1〜4とこれに
対応する蓄積部3の駆動パルスST1〜4は同じであ
る。
Next, during the frame shift period, V-
V-CCD of the light receiving part 2 by driving CCDs 6 and 7 at high speed
The signal charge in 6 is sent to the storage unit 3 and V of the storage unit 3
-Smear charges in the CCD 7 are swept out to the smear drain 10 via the H-CCD 8 and the smear gate 9. The storage unit 3 to which the signal charges have been transferred is shielded from light and no photons are incident, so that the H-C in the next line shift period is used.
Almost no new smear is added to the signal charge during CD driving. Note that the lower part (B) of FIG. 11 shows the waveforms of the drive pulses in the line shift period, and the drive pulses IM1 to IM4 of the light receiving unit 2 and the corresponding drive pulses ST1 to ST4 of the storage unit 3 are shown. Is the same.

【0012】以上の電荷転送動作を模式的に図12〜図
18に示す。これらの図は1周期の転送動作を形成する
時刻t1〜t7(図11)でのポテンシャル井戸18
(図10)に蓄積された電荷の状態を示している。各図
において、D1は受光部のV−CCDを示し、D2は蓄
積部のV−CCDを示し、D3はH−CCD、D4はス
ミアゲート、D5はスミアドレインを示す。まず図12
に示すように、時刻t1ではフレームシフトが終了し、
受光部2(図9)の各列の4つの受光素子4より読み出
された電荷a〜dは蓄積部3のV−CCD7へと送られ
ている。そしてt1〜t1’の間(H−CCD駆動期間
)はV−CCDは止っており、図13に示すようにこ
の間に受光部のV−CCD(D1)へ光子の漏れ込み
(矢印E)によってスミアー電荷19が蓄積される。
The above charge transfer operation is schematically shown in FIGS. These figures show the potential well 18 at times t1 to t7 (FIG. 11) that forms a transfer operation of one cycle.
(FIG. 10) shows the state of the accumulated charges. In each figure, D1 indicates a V-CCD of the light receiving portion, D2 indicates a V-CCD of the accumulating portion, D3 indicates an H-CCD, D4 indicates a smear gate, and D5 indicates a smear drain. First, FIG.
As shown in, the frame shift ends at time t1,
The charges a to d read from the four light receiving elements 4 in each column of the light receiving section 2 (FIG. 9) are sent to the V-CCD 7 of the storage section 3. During the period from t1 to t1 '(H-CCD driving period), the V-CCD is stopped, and during this period, photons leak into the V-CCD (D1) of the light receiving section (arrow E) as shown in FIG. The smear charge 19 is accumulated.

【0013】次にt2になるとV−CCDが1周期の転
送(t1’からt2のラインシフト期間)を行うため
信号およびスミアー電荷がX方向(図9の上方向、図1
0の右方向)に、V−CCDの構成単位U1、U2(図
10)分だけ移動する(矢印F)。このとき1番X方向
よりの蓄積部3のV−CCD7の電荷(a)はH−CC
D(D3)に送られ、この電荷はt2〜t2’の期間
(H−CCD駆動期間)にH−CCDで水平転送され
る。またt1〜t1’間と同様に、t2〜t2’の水平
転送期間のスミアー電荷が重畳されて、スミアー電荷量
が増加する。
Next, at t2, since the V-CCD performs one cycle of transfer (line shift period from t1 'to t2), the signal and smear charges are in the X direction (upward in FIG. 9, FIG. 1).
To the right of 0) by the amount corresponding to the constituent units U1 and U2 (FIG. 10) of the V-CCD (arrow F). At this time, the electric charge (a) of the V-CCD 7 of the storage unit 3 from the 1st X direction is H-CC.
The electric charge is sent to D (D3) and is horizontally transferred by the H-CCD during the period of t2 to t2 '(H-CCD drive period). Further, as in the period between t1 and t1 ′, the smear charges in the horizontal transfer period from t2 to t2 ′ are superimposed, and the smear charge amount increases.

【0014】次に、t2’からt3のラインシフト期間
にV−CCDの1構成単位だけ転送され(矢印F)、
図示したt3の状態になる(図14)。
Next, during the line shift period from t2 'to t3, only one structural unit of the V-CCD is transferred (arrow F),
The state becomes the illustrated time t3 (FIG. 14).

【0015】同様に、図15に示すように、t3からt
3’でもスミア電荷が加わり(矢印E)、これがt3’
からt4までのラインシフト期間に1構成単位だけ転送
される(矢印F)。同様の動作を繰返してt5に至る
(図16)。さらにt5からt5’の水平転送期間で
も同様にスミア電荷が蓄積され(矢印E)図17のt
5’の状態になる。この状態では信号電荷a〜dはすべ
て水平に送られており、受光部および蓄積部のV−CC
Dはスミア電荷だけとなる。
Similarly, as shown in FIG. 15, from t3 to t
Even at 3 ', smear charge is added (arrow E), and this is t3'
Only one structural unit is transferred during the line shift period from time t4 to time t4 (arrow F). The same operation is repeated until t5 (FIG. 16). Further, smear charges are similarly accumulated in the horizontal transfer period from t5 to t5 '(arrow E), and t in FIG.
It becomes the state of 5 '. In this state, the signal charges a to d are all sent horizontally, and V-CC of the light receiving unit and the storage unit is
D is only smear charge.

【0016】次に、t5’からt6にかけての掃き出し
期間においてV−CCDを高速で転送させ、矢印Gで
示すように、受光部(D1)のスミア電荷を蓄積部に移
動させるとともに、蓄積部(D2)のV−CCDにあっ
た電荷をH−CCD(D3)へ高速転送しスミアゲート
(D4)を介してスミアドレイン(D5)に掃き出す
(矢印H)。このためt6では受光部のV−CCDにス
ミア電荷がほとんど存在しない状態となる。
Next, in the sweep period from t5 'to t6, the V-CCD is transferred at a high speed to move the smear charge of the light receiving portion (D1) to the accumulating portion and the accumulating portion ( The charges in the V-CCD of D2) are transferred at high speed to the H-CCD (D3) and are swept out to the smear drain (D5) via the smear gate (D4) (arrow H). Therefore, at t6, there is almost no smear charge in the V-CCD of the light receiving portion.

【0017】次に、t6〜t7の読み出し期間におい
て、受光素子より信号電荷をV−CCD(D1)に読み
出し、図18のt7の状態とする。さらにt7〜t1の
フレームシフト期間において、V−CCDを高速で転
送させ、受光部の信号電荷を蓄積部へ移動させる(矢印
J)。このとき蓄積部のV−CCD(D2)にあったス
ミアー電荷も同時にH−CCDへ高速転送されスミアー
ゲートを介してスミアードレインに掃き出される。以上
がFIT型撮像素子の電荷転送状況を説明したものであ
る。
Next, in the read period from t6 to t7, the signal charges are read from the light receiving element to the V-CCD (D1), and the state of t7 in FIG. 18 is set. Further, in the frame shift period from t7 to t1, the V-CCD is transferred at high speed to move the signal charge of the light receiving portion to the storage portion (arrow J). At this time, the smear charges in the V-CCD (D2) of the storage section are simultaneously transferred to the H-CCD at high speed and swept out to the smear drain via the smear gate. The above is the description of the charge transfer state of the FIT type image pickup device.

【0018】[0018]

【発明が解決しようとする課題】しかしながら、前記従
来のFIT型撮像素子においては、スミアー電荷の転送
不良による雑音画像が発生する場合があった。このよう
なFIT型撮像素子の動作で転送残しが発生しやすいの
は図11の掃き出し期間、即ち図17のt5’〜t6
の掃き出し期間の受光部のV−CCDにおいてである。
なぜならば、高速転送するほどV−CCDの取扱い電荷
量が減少しやすく、高輝度被写体を撮像した場合にスミ
アー電荷発生量がV−CCDの取扱い電荷量を上回る場
合があるからである。なお受光部のV−CCDよりも蓄
積部のV−CCDのほうがチャンネル幅を広くとれるた
め(図9)、蓄積部のほうが取扱い電荷量が大きくで
き、蓄積部では転送残しが発生しにくい。
However, in the above-mentioned conventional FIT type image pickup device, a noise image may occur due to defective transfer of smear charges. In such an operation of the FIT type image pickup device, transfer residual is likely to occur, that is, the sweep period of FIG. 11, that is, t5 ′ to t6 of FIG.
In the V-CCD of the light receiving portion during the sweeping period.
This is because the amount of charge handled by the V-CCD tends to decrease as the transfer speed increases, and the amount of smear charge generated may exceed the amount of charge handled by the V-CCD when a high-luminance object is imaged. Since the V-CCD of the accumulating section can have a wider channel width than the V-CCD of the light receiving section (FIG. 9), the accumulating section can handle a larger amount of charge, and the transfer residual is less likely to occur in the accumulating section.

【0019】図19に転送残しが発生した場合のモニタ
ー画面20を示す。この例は高輝度の円形の被写体を撮
像した場合で、円形被写体により発生したスミアーが掃
出し転送期間に受光部から蓄積部に転送しきれずに画面
上部に取り残されている。21が高輝度被写体の画像で
あり、22がスミア電荷の転送残しによる雑音画像であ
る。
FIG. 19 shows the monitor screen 20 in the case where the transfer residue occurs. In this example, a high-luminance circular subject is imaged, and smear generated by the circular subject cannot be completely transferred from the light receiving unit to the storage unit during the sweep transfer period and is left on the upper portion of the screen. Reference numeral 21 is an image of a high-brightness subject, and reference numeral 22 is a noise image due to the residual transfer of smear charges.

【0020】図20および図21に示したのは、先に説
明した図17および図18のt5’〜t1の間でスミア
ー量が過剰に増加した場合の状況図である。t5’で受
光部に蓄積されたスミアー電荷(矢印E)が過剰にな
り、受光部のV−CCD(D1)の取扱い電荷量を越え
ると、t5’〜t6の間で行われる掃き出し転送期間
(矢印G)に電荷が受光部から蓄積部に転送しきれなく
なる。このため時刻t6で受光部のV−CCD(D1)
にスミアー電荷が残ってしまう。この結果、読み出し期
間が終了した時点(t7)で信号電荷とスミアー電荷の
混合がおこり、ノイズとなる。この残し量は当然蓄積部
に近いV−CCD程多くなるため、画面上部に転送残し
によるノイズが発生する。
20 and 21 are situation diagrams when the smear amount excessively increases between t5 'and t1 in FIGS. 17 and 18 described above. When the smear charge (arrow E) accumulated in the light receiving portion becomes excessive at t5 ′ and exceeds the charge amount handled by the V-CCD (D1) of the light receiving portion, the sweep transfer period (t5 ′ to t6) ( In the arrow G), the electric charge cannot be completely transferred from the light receiving unit to the storage unit. Therefore, at time t6, the V-CCD (D1) of the light receiving section
The smear charge remains on. As a result, the signal charges and the smear charges are mixed at the time point (t7) when the reading period is completed, which causes noise. Since the amount of this remaining amount naturally increases as the V-CCD is closer to the storage unit, noise is generated at the upper part of the screen due to the untransferred portion.

【0021】本発明は上記従来技術の欠点に鑑みなされ
たものであって、FIT型撮像素子のV−CCDの電荷
掃き出し期間におけるスミア電荷の転送残しをなくして
特に大光量での画質の改善を目的とする。
The present invention has been made in view of the above-mentioned drawbacks of the prior art, and it is possible to improve the image quality particularly at a large light amount by eliminating the transfer residual of smear charges during the charge sweeping period of the V-CCD of the FIT type image pickup device. To aim.

【0022】[0022]

【課題を解決するための手段】前記目的を達成するた
め、本発明に係る固体撮像素子の駆動方法においては、
複数列に配置した垂直CCDを有する受光部と、前記各
垂直CCDに連続する垂直CCDからなる蓄積部と、該
蓄積部の垂直CCDに接続された水平CCDとを備え、
前記受光部の各列の垂直CCDに複数の受光素子が接続
され、各受光素子に対応して前記受光部および蓄積部の
垂直CCDに電荷蓄積用ポテンシャル井戸が形成される
固体撮像装置の駆動方法において、前記受光素子で光電
変換された信号電荷を受光部の垂直CCDの各ポテンシ
ャル井戸に取入れる信号読み出し期間と、この読み出し
た受光部の垂直CCDの信号電荷を蓄積部の垂直CCD
の各ポテンシャル井戸に一度に転送するとともに該蓄積
部の垂直CCDに蓄積されたスミア電荷を前記水平CC
Dを介して排出するフレームシフト期間と、受光部およ
び蓄積部の垂直CCDの各ポテンシャル井戸の電荷を隣
接するポテンシャル井戸に順番に転送するとともに最外
側の蓄積部の垂直CCDのポテンシャル井戸の電荷を前
記水平CCDに転送するラインシフト期間と、このライ
ンシフト期間を繰り返して前記受光部から蓄積部に転送
された信号電荷を全て水平CCDに転送した後に受光部
の垂直CCD内に蓄積されたスミア電荷を一度に蓄積部
に転送する掃き出し期間とを有し、前記各ラインシフト
期間において、受光部の垂直CCDの転送速度を蓄積部
の転送速度より速くしている。
In order to achieve the above object, in the method for driving a solid-state image pickup device according to the present invention,
A light receiving section having vertical CCDs arranged in a plurality of rows, a storage section made up of vertical CCDs continuous to each vertical CCD, and a horizontal CCD connected to the vertical CCDs of the storage section,
A method of driving a solid-state image pickup device, wherein a plurality of light receiving elements are connected to the vertical CCDs in each column of the light receiving section, and a charge storage potential well is formed in the vertical CCDs of the light receiving section and the storage section corresponding to each light receiving element. , A signal reading period in which the signal charge photoelectrically converted by the light receiving element is taken into each potential well of the vertical CCD of the light receiving section, and the signal charge of the read vertical CCD of the light receiving section is stored in the vertical CCD of the accumulating section.
Of the smear charges accumulated in the vertical CCD of the accumulating section at the same time while being transferred to each potential well of the horizontal CC.
The frame shift period of discharging via D, the charges of the potential wells of the vertical CCDs of the light receiving portion and the storage portion are sequentially transferred to the adjacent potential wells, and the charges of the potential wells of the vertical CCDs of the outermost storage portions are transferred. A line shift period for transferring to the horizontal CCD, and a smear charge accumulated in the vertical CCD of the light receiving unit after all the signal charges transferred from the light receiving unit to the storage unit by repeating this line shift period are transferred to the horizontal CCD. And a sweep-out period for transferring the data to the storage unit at a time, and the transfer speed of the vertical CCD of the light receiving unit is made faster than the transfer speed of the storage unit in each line shift period.

【0023】好ましい実施例においては、前記ラインシ
フト期間内において、受光部の各ポテンシャル井戸間の
電荷転送回数を蓄積部の各ポテンシャル井戸間の電荷転
送回数より多くすることにより受光部の転送速度を蓄積
部の転送速度より速くしている。
In a preferred embodiment, the transfer speed of the light receiving section is increased by increasing the number of times of charge transfer between the potential wells of the light receiving section during the line shift period more than the number of charge transfer between the potential wells of the accumulating section. It is faster than the transfer rate of the storage unit.

【0024】別の好ましい実施例においては、前記蓄積
部の垂直CCDの取扱い電荷量は受光部の垂直CCDの
取扱い電荷量より大きい固体撮像素子を用いている。
In another preferred embodiment, a solid-state image pickup device is used in which the amount of charge handled by the vertical CCD of the storage section is larger than the amount of charge handled by the vertical CCD of the light receiving section.

【0025】さらに別の好ましい実施例においては、前
記蓄積部は遮光され、前記各ラインシフト期間後の水平
CCD駆動期間に前記受光部にのみ光子が漏れ込みスミ
アー電荷を蓄積する固体撮像素子に適用されている。
In still another preferred embodiment, the storage section is shielded from light, and is applied to a solid-state image pickup device in which photons leak only to the light receiving section and accumulate smear charge during a horizontal CCD driving period after each line shift period. Has been done.

【0026】[0026]

【作用】掃き出し転送期間直前の受光部V−CCD(垂
直CCD)に蓄積されたスミアー電荷が減少し、掃き出
し時のスミアー電荷の転送残し発生が防止される。
The smear charge accumulated in the light receiving portion V-CCD (vertical CCD) immediately before the sweep transfer period is reduced, and the transfer residual of the smear charge at the sweep time is prevented.

【0027】[0027]

【実施例】図1〜図8に各々本発明の実施例に係るFI
T型撮像素子のV−CCD駆動波形例とそのときの駆動
状況を図示した。図1の駆動波形は従来例(図11)と
同じく、ラインシフト期間、掃き出し期間、読み出
し期間、フレームシフト期間により構成され、は
H−CCD(水平CCD)駆動期間を示す。従来例との
差異はt1’〜t2、t2’〜t3、t3’〜t4、t
4’〜t5の期間のV−CCDの駆動波形、即ちライン
シフト期間の駆動波形にある。この駆動波形の拡大図
を従来例では図11(B)に、本発明例では図1(B)
に示した。本発明例では、ST1〜ST4で示す蓄積部
のV−CCD駆動波形の変化が従来例と相似であり、従
来例と同じく1周期だけ垂直転送する。一方、IM1〜
IM4で示す受光部のV−CCD転送波形については、
従来例が1周期であるのに対して、本発明例では2周期
の転送波形となっている。従って、本発明例では、ライ
ンシフト期間中に受光部のV−CCDの転送回数が従来
例の2倍となる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIGS. 1 to 8 show FIs according to embodiments of the present invention.
An example of the V-CCD drive waveform of the T-type image pickup device and the drive situation at that time are illustrated. Like the conventional example (FIG. 11), the drive waveform of FIG. 1 is composed of a line shift period, a sweep period, a read period, and a frame shift period, and indicates an H-CCD (horizontal CCD) drive period. Differences from the conventional example are t1 'to t2, t2' to t3, t3 'to t4, t.
It is the drive waveform of the V-CCD during the period 4 ′ to t5, that is, the drive waveform during the line shift period. An enlarged view of this drive waveform is shown in FIG. 11 (B) for the conventional example and FIG. 1 (B) for the present invention example.
It was shown to. In the example of the present invention, the change in the V-CCD drive waveform of the storage section indicated by ST1 to ST4 is similar to that in the conventional example, and vertical transfer is performed for one cycle as in the conventional example. On the other hand, IM1-
Regarding the V-CCD transfer waveform of the light receiving part indicated by IM4,
The conventional example has one cycle, whereas the example of the present invention has a transfer waveform of two cycles. Therefore, in the example of the present invention, the number of times of transfer of the V-CCD of the light receiving section during the line shift period is twice as large as that in the conventional example.

【0028】次に、図1の駆動波形によるV−CCDの
転送状況を図2〜図8を用いて説明する。図2の時刻t
1ではフレームシフトが終了して、受光部a〜d(図
9)より読み出された信号電荷a〜dは蓄積部のV−C
CD(D2)へと送られている。そしてt1〜t1’の
期間はH−CCDの駆動期間でありこの期間はV−C
CDは止っており、この間に受光部のV−CCDへ光子
の漏れ込み(矢印E)によってスミアー電荷が蓄積され
る(図3)。次にt1”になると、受光部および蓄積部
のV−CCDが1周期の転送を行うため信号電荷および
スミアー電荷がX方向(図9)に、V−CCDの構成単
位(U1,U2)、即ち1つのポテンシャル井戸分だけ
移動する(矢印F)。このとき一番X方向寄り(図3の
右側)の蓄積部のV−CCD(D2)の電荷(a)はH
−CCD(D3)に送られる。さらにt2になると、受
光部のV−CCD(D1)だけがさらに1周期の転送を
行うためスミアー電荷がX方向にV−CCDの構成単位
分だけ移動する。このとき蓄積部は停止しているため、
蓄積部の1番受光部寄りのV−CCDのポテンシャル井
戸20では、そのポテンシャル井戸にもともとあったス
ミアー電荷に対し新たに受光部側より送られてきたスミ
アー電荷が加算される。またt1〜t1’と同様にt2
〜t2’の期間に受光部のV−CCDへの光子の漏れ込
みによって、スミアー電荷がt1〜t1’の期間に発生
していたスミアー電荷に加算され、時刻t2’の状態に
なる(図4)。
Next, the transfer situation of the V-CCD according to the drive waveform of FIG. 1 will be described with reference to FIGS. Time t in FIG.
1, the frame shift is completed, and the signal charges a to d read from the light receiving units a to d (FIG. 9) are V-C in the storage unit.
It has been sent to CD (D2). The period from t1 to t1 'is the driving period of the H-CCD, and this period is V-C.
The CD is stopped, and smear charges are accumulated in the V-CCD of the light receiving section during this time due to leakage of photons (arrow E) (FIG. 3). Next, at t1 ″, since the V-CCDs of the light receiving section and the storage section transfer for one cycle, the signal charge and smear charge are transferred in the X direction (FIG. 9) to the V-CCD structural units (U1, U2), That is, it moves by one potential well (arrow F), at which time the electric charge (a) of the V-CCD (D2) in the storage portion closest to the X direction (right side in FIG. 3) is H.
-Sent to CCD (D3). At time t2, only the V-CCD (D1) in the light receiving section further transfers for one cycle, so that the smear charges move in the X direction by the unit of the V-CCD. At this time, the storage unit is stopped,
In the potential well 20 of the V-CCD near the first light receiving section of the storage section, the smear charge newly sent from the light receiving section side is added to the smear charge originally present in the potential well. Also, as with t1 to t1 ', t2
During the period from t2 ′ to t2 ′, smear charges are added to the smear charges generated during the period from t1 to t1 ′ due to the leakage of photons into the V-CCD of the light receiving unit, resulting in the state at time t2 ′ (FIG. 4). ).

【0029】次にt2’からt2”の期間にt1’から
t1”の期間と同様にラインシフト動作(矢印F)が行
われ、受光部および蓄積部のV−CCDの電荷が1構成
単位分づつ転送される。この実施例では、このt2’か
らt2”までの期間は、図1(B)に示すように、ライ
ンシフト全体の期間(t2’からt3までの期間)の半
分である。
Next, in the period from t2 'to t2 ", the line shift operation (arrow F) is performed in the same manner as in the period from t1' to t1", and the electric charges of the V-CCD of the light receiving portion and the accumulating portion correspond to one constituent unit. Are transferred one by one. In this embodiment, the period from t2 ′ to t2 ″ is half the period of the entire line shift (period from t2 ′ to t3) as shown in FIG. 1 (B).

【0030】続いて、t2”からt3までの期間におい
て、受光部のV−CCD(D1)のみが1構成単位(1
ポテンシャル井戸分)の転送動作(矢印F)を行う。即
ち、この期間は、図1(B)に示すように、受光部の駆
動パルスIM1〜4のみが駆動され、蓄積部の駆動パル
スST1〜4は駆動されない。これにより受光部のV−
CCDに蓄積されたスミアー電荷が1構成単位づつ図の
右方向にずれ、受光部の1番右側のポテンシャル井戸に
蓄積されていたスミアー電荷は蓄積部の一番左側のポテ
ンシャル井戸に転送されてそこに加算される(図4のt
3の状態)。
Subsequently, in the period from t2 "to t3, only the V-CCD (D1) of the light receiving portion has one structural unit (1
The transfer operation (arrow F) of the potential well) is performed. That is, during this period, as shown in FIG. 1B, only the drive pulses IM1 to IM4 of the light receiving unit are driven, and the drive pulses ST1 to ST4 of the accumulating unit are not driven. As a result, the V-
The smear charge accumulated in the CCD is shifted to the right in the figure by one unit, and the smear charge accumulated in the rightmost potential well of the light receiving part is transferred to the leftmost potential well of the accumulating part. Is added to (t in FIG. 4)
State 3).

【0031】次に、t3からt3’の期間(H−CCD
駆動期間)において、前述のt1からt1’およびt
2からt2’の期間と同様に、受光部のV−CCDに光
子が漏れ込みスミアー電荷が付加される(矢印E)。
Next, the period from t3 to t3 '(H-CCD
Driving period), from t1 to t1 ′ and t described above.
Similarly to the period from 2 to t2 ′, photons leak into the V-CCD of the light receiving portion and smear charge is added (arrow E).

【0032】次にt3’からt3”の期間において、受
光部および蓄積部のV−CCDの転送動作(矢印F)が
行われ、続いてt3”からt4の期間に受光部のV−C
CDのみが転送動作を行う。これにより図5のt4で示
す状態になる。
Next, during the period from t3 'to t3 ", the transfer operation (arrow F) of the V-CCD of the light receiving portion and the accumulating portion is performed, and subsequently, from the time t3" to t4, the V-C of the light receiving portion is transferred.
Only the CD performs the transfer operation. As a result, the state becomes t4 in FIG.

【0033】同様に、t4からt4’のH−CCD駆動
期間および図6に示すt4’からt4”およびt4”
からt5のラインシフト期間を経てt5の状態とな
り、さらにt5からt5’のH−CCD駆動期間を経
て図7のt5’の状態となる。このt5’の状態からt
6までの期間(図1の掃き出し期間)において、スミ
アー電荷の高速掃き出しが行われる(図7)。即ち、受
光部のV−CCDに蓄積されたスミアー電荷を一度に蓄
積部のV−CCDに転送する(矢印G)とともに、蓄積
部のV−CCDにもともとあったスミアー電荷をH−C
CDを介してスミアーゲートを通しスミアードレインに
排出する(矢印H)。
Similarly, the H-CCD drive period from t4 to t4 'and t4' to t4 "and t4" shown in FIG.
After the line shift period from t5 to t5, the state becomes t5, and after the H-CCD driving period from t5 to t5 ', the state becomes t5' in FIG. From this t5 'state, t
During the period up to 6 (sweeping period in FIG. 1), high-speed sweeping of smear charges is performed (FIG. 7). That is, the smear charge accumulated in the V-CCD of the light receiving portion is transferred to the V-CCD of the accumulating portion at a time (arrow G), and the smear charge originally present in the V-CCD of the accumulating portion is changed to H-C.
It discharges to a smear drain through a smear gate via CD (arrow H).

【0034】上記掃き出し期間の直前の状態、即ちt
5’の状態において、従来例のt5’の状態(図17)
に比べ明らかに本発明の方が、受光部のV−CCD(D
1)に蓄積されているスミアー電荷の量が少ない。これ
は本発明ではラインシフト期間にV−CCDのみを従来
例の2倍のスピードで転送動作させているため、残留す
るスミアー電荷量が従来例のほぼ1/2となるためであ
る。また、同様に受光部のV−CCDの転送スピードを
例えばn倍にすれば、受光部のV−CCDに蓄積される
スミアー電荷量が従来例の1/nとなることは明らかで
ある。
The state immediately before the sweep period, that is, t
5'state, t5 'state of the conventional example (FIG. 17)
Clearly, the present invention is better than the V-CCD (D
The amount of smear charge accumulated in 1) is small. This is because, in the present invention, since only the V-CCD is transferred at a speed twice as fast as that of the conventional example during the line shift period, the amount of residual smear charge is almost half that of the conventional example. Similarly, if the transfer speed of the V-CCD of the light receiving section is increased by n times, the amount of smear charge accumulated in the V-CCD of the light receiving section becomes 1 / n of the conventional example.

【0035】一方、本発明例において、受光部から減少
したスミアー電荷は蓄積部へ移されているため、従来例
に比べて時刻t5’での蓄積部のスミアー電荷が増加す
る。しかしながら、受光部のV−CCDよりも蓄積部の
V−CCDの方がチャンネル幅を広くとれ(図9)、蓄
積部のチャンネル長の長さ制限がないため、蓄積部の方
がV−CCDの面積を大きく設定でき、取扱い電荷量を
大きくできるので、蓄積部でも転送残しが発生しにくい
設計が可能である。
On the other hand, in the example of the present invention, since the smear charge reduced from the light receiving part is transferred to the accumulating part, the smear charge of the accumulating part at time t5 'is increased as compared with the conventional example. However, the V-CCD of the accumulating section has a wider channel width than the V-CCD of the light receiving section (FIG. 9), and the channel length of the accumulating section is not limited, so that the V-CCD of the accumulating section is larger. Since the area can be set large and the amount of charge handled can be increased, it is possible to design the storage unit so that transfer residual is unlikely to occur.

【0036】この後、前述のように、t5’からt6に
かけてV−CCDを高速で転送させ(掃き出し期間
)、受光部のスミアー電荷を蓄積部に移動させ(図7
矢印G)、これとともに蓄積部のV−CCDにもともと
あったスミアー電荷をH−CCDへ高速転送しスミアー
ゲートを介してスミアードレインに掃き出す(矢印
H)。このため、t6では受光部のV−CCDにスミア
ー電荷がほとんど存在しない状態となる。
Thereafter, as described above, the V-CCD is transferred at high speed from t5 'to t6 (sweeping period), and the smear charge of the light receiving portion is moved to the accumulating portion (FIG. 7).
(Arrow G), along with this, the smear charge originally present in the V-CCD of the storage section is transferred to the H-CCD at high speed and is swept out to the smear drain via the smear gate (arrow H). Therefore, at t6, there is almost no smear charge in the V-CCD of the light receiving portion.

【0037】次に、t6からt7の読み出し期間で受
光部より信号電荷a,b,c,dをV−CCDに取込
み、さらにt7からt1のフレームシフト期間でV−
CCDを高速で一度に転送させて受光部の信号電荷を蓄
積部へ移動させる(矢印J)。このとき蓄積部のV−C
CDにあったスミアー電荷も同時にH−CCDへ一度に
高速転送されスミアーゲートを介してスミアードレイン
に掃き出される(矢印K)。これによりV−CCDは時
刻t1の状態に戻る。以上が本発明の実施例の動作説明
である。
Next, the signal charges a, b, c and d are taken into the V-CCD from the light receiving portion during the read period from t6 to t7, and V- during the frame shift period from t7 to t1.
The CCD is transferred at a high speed at one time to move the signal charges of the light receiving section to the storage section (arrow J). At this time, V-C of the storage unit
The smear charges on the CD are simultaneously transferred to the H-CCD at a high speed at the same time and swept out to the smear drain via the smear gate (arrow K). As a result, the V-CCD returns to the state at time t1. The above is the description of the operation of the embodiment of the present invention.

【0038】[0038]

【発明の効果】以上説明したように、本発明に係るFI
T型撮像素子駆動方法においては、受光部および蓄積部
のV−CCDに蓄積された電荷を順番に構成単位づつ転
送するラインシフト期間に、受光部のV−CCDの転送
速度を蓄積部のV−CCDの転送速度より速くしている
ため、構成単位数だけラインシフト動作を繰返して蓄積
部の信号電荷をすべてH−CCDに転送した状態(掃き
出し期間直前の状態)において、受光部に蓄積するスミ
アー電荷量が取扱い電荷量以下に減少し、このため掃き
出し期間において受光部の電荷は転送残しを起こすこと
なくすべて蓄積部に送られる。従って、高輝度被写体の
撮像時においても、光子漏れ込みによるスミアー電荷を
受光部から確実に排出し転送残しによる雑音画像の発生
を防止して高品質の画像を得ることができる。
As described above, the FI according to the present invention
In the T-type image pickup device driving method, the transfer speed of the V-CCD of the light receiving unit is set to the V of the storage unit during the line shift period in which the charges accumulated in the V-CCD of the light receiving unit and the storage unit are sequentially transferred in units of constituent units. -Because it is faster than the transfer rate of the CCD, the line shift operation is repeated by the number of structural units and all the signal charges in the storage section are transferred to the H-CCD and stored in the light receiving section in the state immediately before the sweep period. The smear charge amount is reduced to less than the handled charge amount. Therefore, all the charges in the light receiving portion are sent to the accumulating portion without causing transfer residual during the sweep period. Therefore, even when an image of a high-luminance object is picked up, smear charges due to photon leakage can be reliably discharged from the light receiving unit, and a noise image due to transfer remaining can be prevented from occurring, and a high-quality image can be obtained.

【0039】即ち、本発明により、スミアー電荷の高速
掃き出しをする直前(t5’)の状態で受光部のV−C
CDに蓄積されるスミアー電荷量が従来例の1/nとで
きるため、過剰なスミアー電荷量による転送残しが発生
しやすい掃き出し期間(t5’〜t6)に受光部のV−
CCDのスミアー電荷量を低減でき、過剰電荷量による
転送残しを抑制できる。また従来例のn倍の光量で、従
来例と同じスミアー電荷量が受光部のV−CCDに蓄積
されることとなるため、本発明によれば従来例のn倍の
光量まで耐えるよう耐光量特性を大幅に改善できる。
That is, according to the present invention, V-C of the light receiving portion is obtained immediately before the high-speed sweeping of smear charges (t5 ').
Since the smear charge amount accumulated in the CD can be 1 / n of that of the conventional example, the V- of the light receiving portion during the sweeping period (t5 'to t6) in which the transfer residual is likely to occur due to the excessive smear charge amount.
The smear charge amount of the CCD can be reduced, and the transfer residual due to the excess charge amount can be suppressed. In addition, since the same amount of smear charge as that in the conventional example is accumulated in the V-CCD of the light receiving portion with the amount of light n times that of the conventional example, the light resistance amount according to the present invention is to withstand up to n times the amount of light as the conventional example. The characteristics can be greatly improved.

【0040】なお、上記説明中のnは整数とは限らな
い。なぜならば、受光部の転送速度を本例では2倍とし
たが、例えば1周期半の転送を行い、n=1.5とする
こともできるからである。また、上記説明では簡略化の
ため、本発明の実施例について、V−CCDは4相駆動
とし、画素数は垂直4画素で、また読み出し方法はノン
インターレース動作としたが、V−CCDを他の方式で
駆動してもよく、画素数は他の任意の数でもよく、また
他の読み出し方式(フィールド読み出しインターレー
ス、フレーム読み出しインターレース等)でも適用でき
ることは明らかである。
Note that n in the above description is not limited to an integer. This is because the transfer speed of the light receiving unit is doubled in this example, but it is also possible to perform transfer for one and a half cycles and set n = 1.5. Further, for simplification in the above description, in the embodiment of the present invention, the V-CCD is driven by four phases, the number of pixels is four vertical pixels, and the reading method is non-interlaced operation. It is obvious that the above method may be used, the number of pixels may be any other number, and other read methods (field read interlace, frame read interlace, etc.) can be applied.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施例に係るFIT型撮像素子の駆
動方法の説明図である。
FIG. 1 is an explanatory diagram of a driving method of an FIT type image pickup device according to an embodiment of the present invention.

【図2】 本発明の実施例におけるフレームシフト期間
終了時のV−CCDの電荷蓄積状態の説明図である。
FIG. 2 is an explanatory diagram of a charge storage state of the V-CCD at the end of the frame shift period according to the embodiment of the present invention.

【図3】 本発明の実施例における第1のラインシフト
期間のV−CCDの電荷蓄積および転送状態の説明図で
ある。
FIG. 3 is an explanatory diagram of charge storage and transfer states of the V-CCD during the first line shift period in the embodiment of the present invention.

【図4】 本発明の実施例における第2のラインシフト
期間のV−CCDの電荷蓄積および転送状態の説明図で
ある。
FIG. 4 is an explanatory diagram of charge storage and transfer states of the V-CCD during the second line shift period according to the embodiment of the present invention.

【図5】 本発明の実施例における第3のラインシフト
期間のV−CCDの電荷蓄積および転送状態の説明図で
ある。
FIG. 5 is an explanatory diagram of charge storage and transfer states of the V-CCD during the third line shift period according to the embodiment of the present invention.

【図6】 本発明の実施例における第4のラインシフト
期間のV−CCDの電荷蓄積および転送状態の説明図で
ある。
FIG. 6 is an explanatory diagram of charge storage and transfer states of the V-CCD during the fourth line shift period according to the embodiment of the present invention.

【図7】 本発明の実施例における掃き出し期間のV−
CCDの電荷蓄積および転送状態の説明図である。
FIG. 7 is a diagram showing V- during a sweep period according to an embodiment of the present invention.
It is an explanatory view of charge storage and transfer state of CCD.

【図8】 本発明の実施例におけるフレームシフト期間
のV−CCDの電荷蓄積および転送状態の説明図であ
る。
FIG. 8 is an explanatory diagram of charge storage and transfer states of the V-CCD during a frame shift period according to the embodiment of the present invention.

【図9】 本発明が適用されるFIT型撮像素子の平面
構成図である。
FIG. 9 is a plan configuration diagram of a FIT type image pickup device to which the present invention is applied.

【図10】 図9のX−X’線に沿った断面構成図であ
る。
10 is a cross-sectional configuration diagram taken along the line XX ′ in FIG.

【図11】 従来の駆動方法の説明図である。FIG. 11 is an explanatory diagram of a conventional driving method.

【図12】 従来の駆動方法を説明するためのフレーム
シフト期間終了時のV−CCDの電荷蓄積状態の説明図
である。
FIG. 12 is an explanatory diagram of a charge storage state of a V-CCD at the end of a frame shift period for explaining a conventional driving method.

【図13】 従来の駆動方法における第1のラインシフ
ト期間のV−CCDの電荷蓄積および転送状態の説明図
である。
FIG. 13 is an explanatory diagram of a charge storage and transfer state of the V-CCD in the first line shift period in the conventional driving method.

【図14】 従来の駆動方法における第2のラインシフ
ト期間のV−CCDの電荷蓄積および転送状態の説明図
である。
FIG. 14 is an explanatory diagram of charge storage and transfer states of the V-CCD during the second line shift period in the conventional driving method.

【図15】 従来の駆動方法における第3のラインシフ
ト期間のV−CCDの電荷蓄積および転送状態の説明図
である。
FIG. 15 is an explanatory diagram of charge accumulation and transfer states of the V-CCD during the third line shift period in the conventional driving method.

【図16】 従来の駆動方法における第4のラインシフ
ト期間のV−CCDの電荷蓄積および転送状態の説明図
である。
FIG. 16 is an explanatory diagram of a charge storage and transfer state of the V-CCD during the fourth line shift period in the conventional driving method.

【図17】 従来の駆動方法を説明するための掃き出し
期間のV−CCDの電荷蓄積および転送状態の説明図で
ある。
FIG. 17 is an explanatory diagram of charge storage and transfer states of the V-CCD during a sweep period for explaining a conventional driving method.

【図18】 従来の駆動方法を説明するためのフレーム
シフト期間のV−CCDの電荷蓄積および転送状態の説
明図である。
FIG. 18 is an explanatory diagram of charge storage and transfer states of the V-CCD during a frame shift period for explaining a conventional driving method.

【図19】 スミアー電荷による雑音画像の説明図であ
る。
FIG. 19 is an explanatory diagram of a noise image due to smear charges.

【図20】 従来技術の問題点を説明するための掃き出
し期間のV−CCDの電荷蓄積および転送状態の説明図
である。
FIG. 20 is an explanatory diagram of charge storage and transfer states of the V-CCD during the sweep period for explaining the problems of the conventional technique.

【図21】 従来技術の問題点を説明するためのフレー
ムシフト期間のV−CCDの電荷蓄積および転送状態の
説明図である。
FIG. 21 is an explanatory diagram of charge storage and transfer states of the V-CCD during the frame shift period for explaining the problems of the conventional technique.

【符号の説明】 :ラインシフト期間、 :掃き出し期間、 :読
み出し期間、 :フレームシフト期間、 :H−C
CD駆動期間、 D1:受光部のV−CCD、D2:蓄
積部のV−CCD、 D3:H−CCD、 D4:スミ
アーゲート、D5:スミアードレイン。
[Explanation of Codes]: Line shift period ,: Sweep period ,: Read period ,: Frame shift period ,: H-C
CD drive period, D1: V-CCD of light receiving portion, D2: V-CCD of storage portion, D3: H-CCD, D4: smear gate, D5: smear drain.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 複数列に配置した垂直CCDを有する受
光部と、前記各垂直CCDに連続する垂直CCDからな
る蓄積部と、該蓄積部の垂直CCDに接続された水平C
CDとを備え、前記受光部の各列の垂直CCDに複数の
受光素子が接続され、各受光素子に対応して前記受光部
および蓄積部の垂直CCDに電荷蓄積用ポテンシャル井
戸が形成される固体撮像装置の駆動方法において、前記
受光素子で光電変換された信号電荷を受光部の垂直CC
Dの各ポテンシャル井戸に取入れる信号読み出し期間
と、この読み出した受光部の垂直CCDの信号電荷を蓄
積部の垂直CCDの各ポテンシャル井戸に一度に転送す
るとともに該蓄積部の垂直CCDに蓄積されたスミア電
荷を前記水平CCDを介して排出するフレームシフト期
間と、受光部および蓄積部の垂直CCDの各ポテンシャ
ル井戸の電荷を隣接するポテンシャル井戸に順番に転送
するとともに最外側の蓄積部の垂直CCDのポテンシャ
ル井戸の電荷を前記水平CCDに転送するラインシフト
期間と、このラインシフト期間を繰り返して前記受光部
から蓄積部に転送された信号電荷を全て水平CCDに転
送した後に受光部の垂直CCD内に蓄積されたスミア電
荷を一度に蓄積部に転送する掃き出し期間とを有し、前
記各ラインシフト期間において、受光部の垂直CCDの
転送速度を蓄積部の転送速度より速くしたことを特徴と
する固体撮像素子の駆動方法。
1. A light receiving section having vertical CCDs arranged in a plurality of rows, a storage section composed of vertical CCDs continuous to each vertical CCD, and a horizontal C connected to the vertical CCDs of the storage section.
A solid state in which a plurality of light receiving elements are connected to the vertical CCDs in each column of the light receiving section, and charge storage potential wells are formed in the vertical CCDs of the light receiving section and the storage section corresponding to the respective light receiving elements. In a method of driving an image pickup device, a signal charge photoelectrically converted by the light receiving element is applied to a vertical CC of a light receiving unit.
A signal reading period for taking in each potential well of D and the read signal charges of the vertical CCD of the light receiving section are transferred to each potential well of the vertical CCD of the accumulating section at once and accumulated in the vertical CCD of the accumulating section. A frame shift period in which smear charges are discharged through the horizontal CCD, charges in each potential well of the vertical CCDs of the light receiving portion and the storage portion are sequentially transferred to the adjacent potential wells, and a vertical CCD of the outermost storage portion is stored. A line shift period for transferring the charges in the potential well to the horizontal CCD, and a line shift period is repeated to transfer all the signal charges transferred from the light receiving unit to the storage unit to the horizontal CCD, and then within the vertical CCD of the light receiving unit. A sweep period for transferring the accumulated smear charges to the accumulating portion at a time, and each line shift period In a method for driving a solid-state imaging device, characterized in that the faster transfer rate of the storage unit transfer rate of the vertical CCD of the light receiving portion.
【請求項2】 前記ラインシフト期間内において、受光
部の各ポテンシャル井戸間の電荷転送回数を蓄積部の各
ポテンシャル井戸間の電荷転送回数より多くすることに
より受光部の転送速度を蓄積部の転送速度より速くした
ことを特徴とする請求項1に記載の固体撮像素子の駆動
方法。
2. The transfer speed of the light receiving section is increased by increasing the number of times of charge transfer between the potential wells of the light receiving section more than the number of charge transfer between the potential wells of the storage section within the line shift period. The method for driving a solid-state image sensor according to claim 1, wherein the method is faster than the speed.
【請求項3】 前記蓄積部の垂直CCDの取扱い電荷量
は受光部の垂直CCDの取扱い電荷量より大きい固体撮
像素子を用いたことを特徴とする請求項1に記載の固体
撮像素子の駆動方法。
3. The method of driving a solid-state image pickup device according to claim 1, wherein the amount of charge handled by the vertical CCD of the storage unit is larger than the amount of charge handled by the vertical CCD of the light-receiving unit. .
【請求項4】 前記蓄積部は遮光され、前記各ラインシ
フト期間後の水平CCD駆動期間に前記受光部にのみ光
子が漏れ込む固体撮像素子に適用されたことを特徴とす
る請求項1に記載の固体撮像素子の駆動方法。
4. The solid-state image pickup device according to claim 1, wherein the storage unit is shielded from light and is applied to a solid-state imaging device in which photons leak only to the light receiving unit during a horizontal CCD driving period after each line shift period. Driving method of the solid-state image pickup device.
JP5114183A 1993-04-19 1993-04-19 Method for driving solid-state image pickup device Pending JPH06311433A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5114183A JPH06311433A (en) 1993-04-19 1993-04-19 Method for driving solid-state image pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5114183A JPH06311433A (en) 1993-04-19 1993-04-19 Method for driving solid-state image pickup device

Publications (1)

Publication Number Publication Date
JPH06311433A true JPH06311433A (en) 1994-11-04

Family

ID=14631280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5114183A Pending JPH06311433A (en) 1993-04-19 1993-04-19 Method for driving solid-state image pickup device

Country Status (1)

Country Link
JP (1) JPH06311433A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008124886A (en) * 2006-11-14 2008-05-29 Nec Corp Imaging apparatus with smear reducing function, and smear reducing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008124886A (en) * 2006-11-14 2008-05-29 Nec Corp Imaging apparatus with smear reducing function, and smear reducing method

Similar Documents

Publication Publication Date Title
US4811068A (en) Charge transfer device
JPS6252988B2 (en)
JP4314693B2 (en) Solid-state imaging device driving method, solid-state imaging device, and imaging system
WO1983000969A1 (en) Solid state image pickup device
US6356305B1 (en) Image-pickup apparatus and method for reading accumulated signal changes through transfer lines
JPH02309877A (en) Solid-state image pickup device
JPH0262170A (en) Solid-state image pickup device
US4862487A (en) Solid-state imaging device
JP3922853B2 (en) Solid-state imaging device
JPH10285467A (en) Image-pickup device
JPH06311433A (en) Method for driving solid-state image pickup device
JPH0654259A (en) Fit type solid state image pickup device
JP2500438B2 (en) Solid-state image sensor and driving method thereof
JP2825075B2 (en) Solid-state imaging device and driving method thereof
JP3158324B2 (en) Driving method of solid-state imaging device
JP4269701B2 (en) Driving method of solid-state imaging device
JPS63294080A (en) Solid-state image pickup device
JP2768324B2 (en) Solid-state imaging device and driving method thereof
JP2987844B2 (en) Solid-state imaging device and driving method thereof
JPH06268923A (en) Drive method for solid-state image pickup device
JPS60137174A (en) Solid-state image pickup device
JPH10215414A (en) Solid state image pickup device and driving method therefor
JPH0734584B2 (en) Solid-state imaging device
JPH0654245A (en) Driving system for solid state image pickup element
JPH04223681A (en) Solid-state image pickup device with electronic shutter function