JPH0631131A - Rotary adsorptive dryer - Google Patents

Rotary adsorptive dryer

Info

Publication number
JPH0631131A
JPH0631131A JP4185032A JP18503292A JPH0631131A JP H0631131 A JPH0631131 A JP H0631131A JP 4185032 A JP4185032 A JP 4185032A JP 18503292 A JP18503292 A JP 18503292A JP H0631131 A JPH0631131 A JP H0631131A
Authority
JP
Japan
Prior art keywords
zone
cooling
adsorption rotor
regeneration
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4185032A
Other languages
Japanese (ja)
Inventor
Masanori Konishi
正憲 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP4185032A priority Critical patent/JPH0631131A/en
Publication of JPH0631131A publication Critical patent/JPH0631131A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1423Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant with a moving bed of solid desiccants, e.g. a rotary wheel supporting solid desiccants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1004Bearings or driving means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1016Rotary wheel combined with another type of cooling principle, e.g. compression cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1032Desiccant wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1056Rotary wheel comprising a reheater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1056Rotary wheel comprising a reheater
    • F24F2203/106Electrical reheater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1068Rotary wheel comprising one rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1084Rotary wheel comprising two flow rotor segments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1088Rotary wheel comprising three flow rotor segments

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Drying Of Gases (AREA)

Abstract

PURPOSE:To improve the regeneration efficiency and to continuously use without lowering the dehumidifying performance by installing a cooling zone between a dehumidifying zone and a regeneration zone. CONSTITUTION:Spaces opposite to both ends of an adsorptive rotor 2 in a vessel 22 are divided by a partition to form regeneration zones 8a, 8b and simultaneously to be connected to a cooling passage 25 in the turning direction of the adsorptive rotor 2. By the cooling gas passage 2, cooling gas is conveyed to one cooling zone 24a and is passed through the adsorptive rotor 2 and reaches the other cooling zone 24b. As a result, heat transfer from regeneration parts 8a, 8b of the adsorptive rotor 2 which underwent temperature rise to dehumidifying parts 7a, 7b is prevented to improve the regeneration efficiency without lowering the dehumidifying performance.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、再生可能な回転吸着式
ドライヤに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reproducible rotary adsorption dryer.

【0002】[0002]

【従来の技術】従来、図5,図6に示す回転吸着式ドラ
イヤ1が公知であり、吸着ロータ2が容器3内に収納し
てある。吸着ロータ2は、円柱形状をし、軸方向に微細
な流体流路を有する材料、例えばセラミックにシリカゲ
ルを化学的合成したハニカム構造の材料からなってい
る。また、この吸着ロータ2は、図示しないモータの出
力軸に結合した軸4により支持され、図6中矢印Aで示
す方向に回転可能となっている。なお、図6中の小円群
は吸着ロータ2の微細な上記流体流路を表している。容
器3は、吸着ロータ2の外径と略同じ内径を有する空間
を有し、この空間内に、図示しないモータの出力軸に結
合した軸4により支持された吸着ロータ2を回転可能に
収容してある。また、この容器3内には、吸着ロータ2
の両端面に対向する空間を、径方向に延びた隔壁5,6
により仕切って、吸着ロータ2の両側に形成した除湿ゾ
ーン7a,7b,再生ゾーン8a,8bが形成してあ
る。
2. Description of the Related Art Conventionally, a rotary adsorption type dryer 1 shown in FIGS. 5 and 6 is known, and an adsorption rotor 2 is housed in a container 3. The adsorption rotor 2 has a cylindrical shape and is made of a material having a fine fluid flow path in the axial direction, for example, a honeycomb structure material in which silica gel is chemically synthesized with ceramics. Further, the adsorption rotor 2 is supported by a shaft 4 coupled to an output shaft of a motor (not shown) and is rotatable in a direction indicated by an arrow A in FIG. The small circles in FIG. 6 represent the fine fluid flow paths of the adsorption rotor 2. The container 3 has a space having an inner diameter substantially the same as the outer diameter of the adsorption rotor 2, and the adsorption rotor 2 supported by a shaft 4 coupled to an output shaft of a motor (not shown) is rotatably accommodated in the space. There is. Further, in the container 3, the adsorption rotor 2
Partition walls 5, 6 that extend in the radial direction in the space facing both end faces of the
The dehumidifying zones 7a, 7b and the regeneration zones 8a, 8b formed on both sides of the adsorption rotor 2 are formed by partitioning by.

【0003】なお、図6において、吸着ロータ2の図5
中右側の隔壁5,6のみを示してあるが、吸着ロータ2
の図5中左側にも、同様の隔壁5,6が設けてある。こ
のうち、再生ゾーン8a,8bについては、吸着ロータ
2の両側に設けた扇形のケーシング9a,9bにより、
さらに除湿ゾーン7a,7bと隔離されている。また、
容器3は、除湿ゾーン7a,7bに通じる除湿ガス流路
10と、再生ゾーン8a,8bに通じる再生ガス流路1
1とに接続している。そして、吸着ロータ2を回転させ
ながら、除湿ガス流路10により、図5中左側から湿っ
たガスを、除湿ゾーン7aへ送り、吸着ロータ2を貫通
させてガス中の水分を吸着ロータ2に吸着させ、乾燥し
たガスを除湿ゾーン7bより、図5中右側の除湿ガス流
路10に送り出すようになっている。
In FIG. 6, the suction rotor 2 shown in FIG.
Only the partition walls 5 and 6 on the right side of the middle are shown, but the suction rotor 2
Similar partition walls 5 and 6 are provided on the left side of FIG. Of these, the regeneration zones 8a and 8b are provided by fan-shaped casings 9a and 9b provided on both sides of the adsorption rotor 2,
Further, it is separated from the dehumidifying zones 7a and 7b. Also,
The container 3 includes a dehumidifying gas channel 10 that communicates with the dehumidifying zones 7a and 7b and a regenerating gas channel 1 that communicates with the regenerating zones 8a and 8b.
It is connected to 1. Then, while rotating the adsorption rotor 2, the dehumidified gas flow path 10 sends the moist gas from the left side in FIG. 5 to the dehumidification zone 7a, and penetrates the adsorption rotor 2 to adsorb the moisture in the gas to the adsorption rotor 2. Then, the dried gas is sent from the dehumidifying zone 7b to the dehumidifying gas passage 10 on the right side in FIG.

【0004】一方、再生ガス流路11により、図5中右
側から高温ガスを、再生ゾーン8aへ送り、吸着ロータ
2を貫通させている。この高温ガスは、水分を含んだ吸
着ロータ2の部分より蒸気分圧が低いため、この部分に
吸着されている水分を遊離し、蒸気にして含み、吸着ロ
ータ2を再生し、吸着ロータ2から再生ゾーン8bを経
て、図5中左側の再生ガス流路11へ流出する。なお、
再生ゾーン8bでは、水滴を図示しないドレン配管によ
り容器3外に排出するようにしてある。このように、こ
のドライヤ1では、除湿剤である吸着ロータ2を回転さ
せ、除湿と再生を連続的に行うようになっている
On the other hand, a high temperature gas is sent to the regeneration zone 8a from the right side in FIG. 5 through the regeneration gas flow passage 11 to penetrate the adsorption rotor 2. Since this high-temperature gas has a lower vapor partial pressure than the portion of the adsorption rotor 2 containing water, the moisture adsorbed in this portion is released and contained as vapor, and the adsorption rotor 2 is regenerated. After passing through the regeneration zone 8b, it flows out to the regeneration gas channel 11 on the left side in FIG. In addition,
In the regeneration zone 8b, water droplets are discharged to the outside of the container 3 by a drain pipe (not shown). As described above, in the dryer 1, the adsorption rotor 2, which is a dehumidifying agent, is rotated to continuously perform dehumidification and regeneration.

【0005】[0005]

【発明が解決しようとする課題】上記従来のドライヤ1
では、除湿と再生が同時に行われており、再生効率を高
める程、除湿性能も向上するため、この点だけを考えれ
ば、再生ガス流路11よりドライヤ1に送り込むガスの
温度は高い程好ましいことになる。一方、除湿性能の向
上のためには、吸着ロータ2の温度が低い程好ましい。
しかしながら、このドライヤ1では除湿ゾーン7a,7
bと再生ゾーン8a,8bとが隣合っているため、再生
ガス流路11より高温のガスを吸着ロータ2に送り込む
と、除湿ゾーン7a,7bに対向する吸着ロータ2の部
分の温度も高くなり、除湿性能が低下する。
SUMMARY OF THE INVENTION The above conventional dryer 1
Since dehumidification and regeneration are performed at the same time, and the higher the regeneration efficiency, the higher the dehumidification performance. Therefore, considering only this point, it is preferable that the temperature of the gas sent from the regeneration gas passage 11 to the dryer 1 is higher. become. On the other hand, in order to improve the dehumidifying performance, it is preferable that the temperature of the adsorption rotor 2 is lower.
However, in this dryer 1, the dehumidification zones 7a, 7a
b and the regeneration zones 8a and 8b are adjacent to each other, when a gas having a higher temperature than the regeneration gas flow path 11 is sent to the adsorption rotor 2, the temperature of the portion of the adsorption rotor 2 facing the dehumidification zones 7a and 7b also rises. , The dehumidification performance is reduced.

【0006】このため、除湿ゾーン7a,7bと再生ゾ
ーン8a,8bとの間に自然冷却ゾーンを設けたドライ
ヤも作られているが、このドライヤを圧縮機から吐出さ
れた圧縮ガスの除湿に用いた場合、上記自然冷却ゾーン
により十分に除湿ゾーンに対向する吸着ロータ2の部分
の温度を低下させられないという問題がある。本発明
は、斯る従来の問題点を課題としてなされたもので、除
湿性能を低下させることなく、再生効率を向上させて、
連続使用を可能とした回転吸着式ドライヤを提供しよう
とするものである。
Therefore, although a dryer having a natural cooling zone provided between the dehumidifying zones 7a and 7b and the regeneration zones 8a and 8b is also made, this dryer is used for dehumidifying the compressed gas discharged from the compressor. In that case, there is a problem in that the temperature of the portion of the adsorption rotor 2 facing the dehumidification zone cannot be sufficiently lowered by the natural cooling zone. The present invention has been made to solve the problems of the related art, improve the regeneration efficiency without reducing the dehumidification performance,
It is intended to provide a rotary adsorption dryer that can be continuously used.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
に、本発明は、吸着ロータと容器とを備え、この吸着ロ
ータが、円柱形状をし、軸方向に微細な流体流路を多数
有する材料からなり、上記容器が、上記吸着ロータの外
径と略同じ内径を有する断面円形の空間に上記吸着ロー
タを回転可能に収納するとともに、この吸着ロータの両
端面に対向する空間を、径方向に延びた隔壁により仕切
って、上記吸着ロータの両側に形成した除湿ゾーンおよ
び再生ゾーンを備えるとともに、除湿ガス流路と再生ガ
ス流路とに接続し、上記除湿ガス流路が、一方の上記除
湿ゾーンに湿りガスを送り、この除湿ゾーンから上記吸
着ロータを貫通して、他方の上記除湿ゾーンに達した乾
燥ガスを送り出し、上記再生ガス流路が、一方の上記再
生ゾーンに高温ガスを送り、この再生ゾーンから上記吸
着ロータを貫通して、他方の上記除湿ゾーンに達した高
温ガスを送り出すものである回転吸着式ドライヤにおい
て、上記吸着ロータの両端面の対向する空間を、上記容
器内に径方向に延びた隔壁により仕切って、上記吸着ロ
ータの回転方向に関して、上記再生ゾーンの進入側に、
冷却ゾーンを形成するとともに、冷却ガス流路に接続
し、この冷却ガス流路が、一方の上記冷却ゾーンに冷却
ガスを送り、この冷却ゾーンから上記吸着ロータを貫通
して、他方の上記冷却ゾーンに達した冷却ガスを送り出
すものである構成とした。
In order to solve the above-mentioned problems, the present invention comprises an adsorption rotor and a container, which has a cylindrical shape and has a large number of fine fluid flow paths in the axial direction. The container is made of material, and the adsorption rotor is rotatably housed in a space having a circular cross section having an inner diameter substantially the same as the outer diameter of the adsorption rotor. Is provided with a dehumidification zone and a regeneration zone formed on both sides of the adsorption rotor, and is connected to a dehumidification gas channel and a regeneration gas channel, and the dehumidification gas channel is one of the dehumidification channels. Wet gas is sent to the zone, the dry gas that has passed through the adsorption rotor from this dehumidification zone and reached the other dehumidification zone is sent out, and the regenerated gas flow channel is a high temperature gas in one regenerated zone. In the rotary adsorption type dryer, which sends out the high temperature gas reaching the dehumidifying zone on the other side through the adsorption rotor from this regeneration zone, the opposite spaces of both end surfaces of the adsorption rotor are Partitioned by a partition wall extending in the radial direction, with respect to the rotation direction of the adsorption rotor, on the entry side of the regeneration zone,
While forming a cooling zone, it is connected to a cooling gas flow path, this cooling gas flow path sends the cooling gas to one of the cooling zones, penetrates the adsorption rotor from this cooling zone, and the other cooling zone of the other. The cooling gas that has reached the temperature is sent out.

【0008】[0008]

【作用】上記発明のように構成することにより、吸着ロ
ータの昇温した再生部から、除湿部へ熱が伝わるのが阻
止されるようになる。
With the configuration as described above, it is possible to prevent heat from being transferred from the heated regenerating portion of the adsorption rotor to the dehumidifying portion.

【0009】[0009]

【実施例】次に、本発明の一実施例を図面にしたがって
説明する。図1〜図3は、本発明に係る回転吸着式ドラ
イヤ21を示し、図5,図6に示すドライヤ1と共通す
る部分については、互いに同一番号を付して説明を省略
する。本実施例では、容器22内の、吸着ロータ2の両
端面に対向する空間を、上記同様の隔壁5,6の他に、
吸着ロータ2の回転方向に関して進入側に、設けた隔壁
23により仕切り、吸着ロータ2の両側に除湿ゾーン7
a,7b,再生ゾーン8a,8b、および冷却ゾーン2
4a,24bが形成してある。隔壁23は、図2におい
て、吸着ロータ2の図1中右側のもののみが示されてい
るが、図1中左側にも同様の隔壁23が設けてある点
は、隔壁5,6の場合と同様である。
An embodiment of the present invention will be described below with reference to the drawings. 1 to 3 show a rotary suction dryer 21 according to the present invention, and portions common to the dryer 1 shown in FIGS. 5 and 6 are given the same reference numerals and description thereof is omitted. In this embodiment, the space in the container 22 facing both end surfaces of the adsorption rotor 2 is provided in addition to the partition walls 5 and 6 similar to the above.
The adsorbing rotor 2 is partitioned by a partition wall 23 provided on the entry side with respect to the rotation direction, and the dehumidifying zones 7 are provided on both sides of the adsorbing rotor 2.
a, 7b, regeneration zones 8a, 8b, and cooling zone 2
4a and 24b are formed. In FIG. 2, only the partition wall 23 on the right side of the adsorption rotor 2 is shown in FIG. 2, but the same partition wall 23 is provided on the left side of FIG. 1 as compared with the partition walls 5 and 6. It is the same.

【0010】なお、図3では、図を分かり易くするため
に、便宜上冷却ゾーン24a,24bの部分のみ2点鎖
線で示してある。また、図1において、再生ゾーン8
a,8bと冷却ゾーン24a,24bとは、必ずしも明
確には区別されるようには表れず、両者は一部重複して
表れている。さらに、容器22は、冷却ゾーン24a,
24bに通じる冷却ガス流路25に接続している。そし
て、上記構成からなるドライヤ21において、図1中右
側から冷却ガスを、冷却ゾーン24aへ送り、回転して
いる吸着ロータ2を貫通させ、冷却ゾーン24bから、
図1中左側の冷却ガス流路25に送り出すように形成し
てある。このようして、冷却ガスにより、冷却ゾーン2
4aに対向する吸着ロータ2の部分を冷却して、吸着ロ
ータ2の昇温した再生部から吸着ロータ2の除湿側へ熱
が伝わるのを防いでいる。この結果、吸着ロータ2の除
湿性能を低下させることなく、再生効率を向上させて、
連続使用が可能となっている。
In FIG. 3, for the sake of clarity, only the cooling zones 24a and 24b are shown by chain double-dashed lines for the sake of convenience. In addition, in FIG.
The a and 8b and the cooling zones 24a and 24b do not always appear so as to be clearly distinguished from each other, but both of them partially overlap. Further, the container 22 includes a cooling zone 24a,
It is connected to a cooling gas passage 25 leading to 24b. Then, in the dryer 21 having the above-described configuration, the cooling gas is sent from the right side in FIG. 1 to the cooling zone 24a to penetrate the rotating adsorption rotor 2, and from the cooling zone 24b,
It is formed so as to be sent out to the cooling gas passage 25 on the left side in FIG. In this way, the cooling gas is cooled by the cooling zone 2
The portion of the adsorption rotor 2 facing 4a is cooled to prevent heat from being transferred from the heated regenerating portion of the adsorption rotor 2 to the dehumidification side of the adsorption rotor 2. As a result, the regeneration efficiency is improved without lowering the dehumidification performance of the adsorption rotor 2,
It can be used continuously.

【0011】次に、このドライヤ21の具体的な適用例
の一である圧縮機を図4に示す。この圧縮機は、圧縮機
本体31の吸込流路32に吸込消音器33,吸込フィル
タ34,吸気調節弁35と、吐出流路36に吐出消音器
37,第1逆止弁38,後方冷却器39,第1ドレン分
離器40,第1インジェクタ41,第2インジェクタ4
2,ドライヤ21、および第2逆止弁43とを備えてい
る。ここで、吐出流路36は、ドライヤ21にて、除湿
ゾーン7a,吸着ローラ2、および除湿ゾーン7bを通
るようになっており、除湿ガス流路でもある。また、第
1逆止弁38と後方冷却器39との間の吐出流路36の
部分にて分岐し、第1流量調節弁44,ドライヤ21の
再生ゾーン8a,吸着ローラ2,再生ゾーン8b,バイ
パス冷却器45、および第2ドレン分離器46を経て、
第1インジェクタ41にて吐出流路36に合流する再生
ガス流路47が設けてある。
Next, FIG. 4 shows a compressor which is an example of a specific application of the dryer 21. This compressor includes a suction silencer 33, a suction filter 34, an intake control valve 35 in a suction passage 32 of a compressor body 31, and a discharge silencer 37, a first check valve 38, a rear cooler in a discharge passage 36. 39, 1st drain separator 40, 1st injector 41, 2nd injector 4
2, a dryer 21, and a second check valve 43. Here, the discharge flow path 36 is adapted to pass through the dehumidifying zone 7a, the adsorption roller 2 and the dehumidifying zone 7b in the dryer 21, and is also a dehumidifying gas flow path. Further, the discharge flow path 36 is branched between the first check valve 38 and the rear cooler 39, and the first flow control valve 44, the regeneration zone 8a of the dryer 21, the adsorption roller 2, the regeneration zone 8b, After passing through the bypass cooler 45 and the second drain separator 46,
A regeneration gas flow channel 47 is provided that joins the discharge flow channel 36 at the first injector 41.

【0012】さらに、第1ドレン分離器40と第1イン
ジェクタ41との間の吐出流路36の部分にて分岐し、
ドライヤ21の冷却ゾーン24a,吸着ローラ2、冷却
ゾーン24b、および第2流量調節弁48を経て、第2
インジェクタ42にて吐出流路36に合流する冷却ガス
流路43が設けてある。なお、図4中,印について
は、同一番号同志が互いに連続していることを示してい
る。そして、吸込消音器33,吸込フィルタ34,吸気
調節弁35を介して吸込流路32より圧縮機本体31に
吸込んだ空気を、圧縮して、圧縮機本体31より吐出
し、圧縮空気を吐出消音器37,第1逆止弁38を介し
て後方冷却器39に導いている。圧縮空気は、この後方
冷却器39にて冷却され、圧縮空気中の水分は、後方冷
却器39で過飽和状態となり、ドレン水が発生する。こ
のドレン水は、第1ドレン分離器40にて圧縮空気から
分離され、機外に排出される。
Furthermore, the discharge flow path 36 between the first drain separator 40 and the first injector 41 is branched,
After passing through the cooling zone 24a of the dryer 21, the suction roller 2, the cooling zone 24b, and the second flow rate control valve 48, the second
A cooling gas passage 43 is provided which joins the discharge passage 36 with the injector 42. In addition, in FIG. 4, the mark indicates that the same numbers are continuous with each other. Then, the air sucked into the compressor body 31 from the suction flow passage 32 via the suction silencer 33, the suction filter 34, and the intake control valve 35 is compressed and discharged from the compressor body 31, and the compressed air is discharged and silenced. It is led to the rear cooler 39 via the device 37 and the first check valve 38. The compressed air is cooled by the rear cooler 39, and the moisture in the compressed air is supersaturated by the rear cooler 39, and drain water is generated. The drain water is separated from the compressed air by the first drain separator 40 and discharged to the outside of the machine.

【0013】後方冷却器39,第1ドレン分離器40を
経由した圧縮空気は、完全には水分の除去は行われてい
ないため、さらにこの圧縮空気を第1インジェクタ4
1,第2インジェクタ42を経て、ドライヤ21の除湿
部を通し、ここで除湿した後、乾燥状態にして、第2逆
止弁50を経て、ユーザ側に送るようになっている。一
方、再生ガス流路47により、吐出流路36から分岐し
た高温の圧縮空気を、第1流量調節弁44を経由させた
後、ドライヤ21の再生部を通して、吸着ローラ2を昇
温させて、これをを再生させている。さらに、このドラ
イヤ21を出た水分を含んだ高温の圧縮空気をバイパス
冷却器45にて冷却し、ここで発生したドレン水を第2
ドレン分離器46にて機外に排出し、圧縮空気を第1イ
ンジェクタ41を介して吐出流路36に送り込んでい
る。なお、第1インジェクタ41は、この内部の吐出流
路36の一部を構成する部分がオリフィスとなってお
り、この部分で吐出流路36内の圧縮空気の流速を高め
て、減圧し、これにより再生ガス流路47からの圧縮空
気を引込むようにしたものである。
The compressed air that has passed through the rear cooler 39 and the first drain separator 40 is not completely dewatered, so that the compressed air is further passed through the first injector 4.
After passing through the dehumidifying part of the dryer 21 through the first and second injectors 42, and after dehumidifying here, the dryer 21 is dried and sent to the user side via the second check valve 50. On the other hand, after the high temperature compressed air branched from the discharge flow path 36 by the regeneration gas flow path 47 is passed through the first flow rate control valve 44, the adsorption roller 2 is heated through the regeneration part of the dryer 21, This is reproduced. Further, the high-temperature compressed air containing moisture that has exited from the dryer 21 is cooled by the bypass cooler 45, and the drain water generated there
The drain separator 46 discharges the compressed air to the outside of the machine and sends the compressed air to the discharge passage 36 via the first injector 41. In addition, in the first injector 41, a portion which constitutes a part of the discharge flow passage 36 inside is an orifice, and at this portion, the flow velocity of the compressed air in the discharge flow passage 36 is increased to reduce the pressure. The compressed air from the regeneration gas flow path 47 is drawn in by.

【0014】さらに、冷却ガス流路43により、吐出流
路36から分岐した冷却された圧縮空気を、第2流量調
整弁48を経由させた後、ドライヤ21の冷却部を通し
て、吸着ローラ2の除湿部と再生部との間の冷却部を冷
却して、再生部の熱が除湿部に伝わるのを阻止させてい
る。その後、この冷却用の圧縮空気を第2インジェクタ
42を介して吐出流路36に送り込んでいる。この第2
インジェクタ42は、第1インジェクタ41と同様の作
用をなすものである。
Further, after the cooled compressed air branched from the discharge passage 36 by the cooling gas passage 43 is passed through the second flow rate adjusting valve 48, the dehumidifying of the adsorption roller 2 is performed through the cooling portion of the dryer 21. The cooling section between the regenerating section and the regenerating section is cooled to prevent heat of the regenerating section from being transferred to the dehumidifying section. Then, this compressed air for cooling is sent into the discharge flow path 36 via the second injector 42. This second
The injector 42 has the same function as the first injector 41.

【0015】そして、上記圧縮機では、上述したように
ドライヤ21を適用することにより、圧縮機本体31か
ら吐出された圧縮空気の圧縮熱、および後方冷却器3
9,第ドレン分離器40を出た圧縮空気の冷熱を有効り
ようして、ドライヤ21の除湿性能を低下させることな
く、再生効率を高め、ドライヤ21を連続使用するよう
にしてある。なお、ドライヤ21は、図4に示すよう
に、圧縮機本体31を1段だけ有する圧縮機に適用され
るだけでなく、直列配置した2段以上の圧縮機本体を有
する多段圧縮機にも適用される。
In the compressor, by applying the dryer 21 as described above, the compression heat of the compressed air discharged from the compressor body 31 and the rear cooler 3 are used.
9. The cold heat of the compressed air discharged from the drain drain separator 40 is effectively used to improve the regeneration efficiency without lowering the dehumidification performance of the dryer 21, and the dryer 21 is continuously used. As shown in FIG. 4, the dryer 21 is applied not only to a compressor having a single compressor main body 31 but also to a multi-stage compressor having two or more compressor main bodies arranged in series. To be done.

【0016】[0016]

【発明の効果】以上の説明より明らかなように、本発明
によれば、吸着ロータと容器とを備え、この吸着ロータ
が、円柱形状をし、軸方向に微細な流体流路を多数有す
る材料からなり、上記容器が、上記吸着ロータの外径と
略同じ内径を有する断面円形の空間に上記吸着ロータを
回転可能に収納するとともに、この吸着ロータの両端面
に対向する空間を、径方向に延びた隔壁により仕切っ
て、上記吸着ロータの両側に形成した除湿ゾーンおよび
再生ゾーンを備えるとともに、除湿ガス流路と再生ガス
流路とに接続し、上記除湿ガス流路が、一方の上記除湿
ゾーンに湿りガスを送り、この除湿ゾーンから上記吸着
ロータを貫通して、他方の上記除湿ゾーンに達した乾燥
ガスを送り出し、上記再生ガス流路が、一方の上記再生
ゾーンに高温ガスを送り、この再生ゾーンから上記吸着
ロータを貫通して、他方の上記除湿ゾーンに達した高温
ガスを送り出すものである回転吸着式ドライヤにおい
て、上記吸着ロータの両端面の対向する空間を、上記容
器内に径方向に延びた隔壁により仕切って、上記吸着ロ
ータの回転方向に関して、上記再生ゾーンの進入側に、
冷却ゾーンを形成するとともに、冷却ガス流路に接続
し、この冷却ガス流路が、一方の上記冷却ゾーンに冷却
ガスを送り、この冷却ゾーンから上記吸着ロータを貫通
して、他方の上記冷却ゾーンに達した冷却ガスを送り出
すものである構成としてある。
As is apparent from the above description, according to the present invention, the adsorption rotor and the container are provided, and the adsorption rotor has a cylindrical shape and has a large number of fine fluid flow paths in the axial direction. The container comprises the adsorption rotor rotatably housed in a space having a circular cross section having an inner diameter substantially the same as the outer diameter of the adsorption rotor, and a space facing both end surfaces of the adsorption rotor is arranged in a radial direction. Partitioned by an extended partition wall, the dehumidification zone and the regeneration zone formed on both sides of the adsorption rotor are provided, and the dehumidification gas channel and the regeneration gas channel are connected, and the dehumidification gas channel is one of the dehumidification zones. Wet gas is sent to, through the adsorption rotor from this dehumidification zone, the dry gas that has reached the other dehumidification zone is sent out, and the regenerated gas flow path supplies high temperature gas to one of the regenerated zones. In the rotary adsorption type dryer, which sends out the high temperature gas reaching the other dehumidifying zone from the regeneration zone through the adsorption rotor, the opposite spaces of both end surfaces of the adsorption rotor are set in the container. Is partitioned by a partition wall extending in the radial direction to the entrance side of the regeneration zone with respect to the rotation direction of the adsorption rotor,
While forming a cooling zone, it is connected to a cooling gas flow path, this cooling gas flow path sends the cooling gas to one of the cooling zones, penetrates the adsorption rotor from this cooling zone, and the other cooling zone of the other. It is configured to send out the cooling gas that has reached.

【0017】このため、吸着ロータの昇温した再生部か
ら、除湿部へ熱が伝わるのが阻止されるようになり、除
湿性能を低下させることなく、再生効率の向上させて、
連続使用できるという効果を奏する。
Therefore, it is possible to prevent heat from being transferred from the heated regenerating portion of the adsorption rotor to the dehumidifying portion, improving the regenerating efficiency without lowering the dehumidifying performance,
The effect is that it can be used continuously.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明に係るドライヤの平面図である。FIG. 1 is a plan view of a dryer according to the present invention.

【図2】 図1のII−II線断面図である。FIG. 2 is a sectional view taken along line II-II of FIG.

【図3】 図1に示すドライヤの吸着ローラ部を示す斜
視図である。
FIG. 3 is a perspective view showing a suction roller portion of the dryer shown in FIG.

【図4】 図1に示すドライヤの適用例である圧縮機の
全体構成図である。
4 is an overall configuration diagram of a compressor which is an application example of the dryer shown in FIG.

【図5】 従来のドライヤの平面図である。FIG. 5 is a plan view of a conventional dryer.

【図6】 図4のV−V線断面図である。6 is a sectional view taken along line VV of FIG.

【符号の説明】[Explanation of symbols]

2 吸着ロータ5,6 隔壁7a,7b 除湿ゾーン8
a,8b 再生ゾーン10 除湿ガス流路11 再生ガ
ス流路21 ドライヤ22 容器23 隔壁25 冷却
ガス流路
2 Adsorption rotors 5, 6 Partition walls 7a, 7b Dehumidification zone 8
a, 8b Regeneration zone 10 Dehumidification gas flow channel 11 Regeneration gas flow channel 21 Dryer 22 Container 23 Partition wall 25 Cooling gas flow channel

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 吸着ロータと容器とを備え、この吸着ロ
ータが、円柱形状をし、軸方向に微細な流体流路を多数
有する材料からなり、上記容器が、上記吸着ロータの外
径と略同じ内径を有する断面円形の空間に上記吸着ロー
タを回転可能に収納するとともに、この吸着ロータの両
端面に対向する空間を、径方向に延びた隔壁により仕切
って、上記吸着ロータの両側に形成した除湿ゾーンおよ
び再生ゾーンを備えるとともに、除湿ガス流路と再生ガ
ス流路とに接続し、上記除湿ガス流路が、一方の上記除
湿ゾーンに湿りガスを送り、この除湿ゾーンから上記吸
着ロータを貫通して、他方の上記除湿ゾーンに達した乾
燥ガスを送り出し、上記再生ガス流路が、一方の上記再
生ゾーンに高温ガスを送り、この再生ゾーンから上記吸
着ロータを貫通して、他方の上記除湿ゾーンに達した高
温ガスを送り出すものである回転吸着式ドライヤにおい
て、上記吸着ロータの両端面の対向する空間を、上記容
器内に径方向に延びた隔壁により仕切って、上記吸着ロ
ータの回転方向に関して、上記再生ゾーンの進入側に、
冷却ゾーンを形成するとともに、冷却ガス流路に接続
し、この冷却ガス流路が、一方の上記冷却ゾーンに冷却
ガスを送り、この冷却ゾーンから上記吸着ロータを貫通
して、他方の上記冷却ゾーンに達した冷却ガスを送り出
すものであることを特徴とする回転吸着式ドライヤ。
1. An adsorption rotor and a container are provided, the adsorption rotor is made of a material having a cylindrical shape and having a number of fine fluid flow paths in the axial direction, and the container has an outer diameter substantially equal to that of the adsorption rotor. The adsorption rotor was rotatably housed in a space having a circular cross section with the same inner diameter, and the space facing both end surfaces of the adsorption rotor was partitioned by radially extending partition walls to form on both sides of the adsorption rotor. A dehumidification zone and a regeneration zone are provided, and the dehumidification gas channel and the regeneration gas channel are connected to each other, and the dehumidification gas channel sends the moist gas to one of the dehumidification zones and penetrates the adsorption rotor from the dehumidification zone. Then, the dry gas that has reached the other dehumidifying zone is sent out, and the regeneration gas flow path sends the high temperature gas to one of the regeneration zones, and penetrates the adsorption rotor from this regeneration zone. In the rotary adsorption dryer for delivering the high temperature gas reaching the other dehumidification zone, the opposite spaces of both end faces of the adsorption rotor are partitioned by partition walls extending in the container in the radial direction, and the adsorption is performed. With respect to the rotation direction of the rotor, on the entry side of the regeneration zone,
While forming a cooling zone, it is connected to a cooling gas flow path, this cooling gas flow path sends the cooling gas to one of the cooling zones, penetrates the adsorption rotor from this cooling zone, and the other cooling zone of the other. The rotary adsorption dryer is characterized in that the cooling gas that has reached the temperature is sent out.
JP4185032A 1992-07-13 1992-07-13 Rotary adsorptive dryer Pending JPH0631131A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4185032A JPH0631131A (en) 1992-07-13 1992-07-13 Rotary adsorptive dryer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4185032A JPH0631131A (en) 1992-07-13 1992-07-13 Rotary adsorptive dryer

Publications (1)

Publication Number Publication Date
JPH0631131A true JPH0631131A (en) 1994-02-08

Family

ID=16163597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4185032A Pending JPH0631131A (en) 1992-07-13 1992-07-13 Rotary adsorptive dryer

Country Status (1)

Country Link
JP (1) JPH0631131A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1975523A1 (en) * 2007-03-30 2008-10-01 Nichias Corporation Dehumidifier and dehumidification method
JP2013501871A (en) * 2009-08-11 2013-01-17 アトラス コプコ エアーパワー,ナームローゼ フェンノートシャップ Compressor device provided with dryer and method for drying compressed gas
CN115174797A (en) * 2022-08-31 2022-10-11 江苏华诚自动化设备有限公司 Monitoring control system for rescue capsule
WO2022244641A1 (en) * 2021-05-18 2022-11-24 コベルコ・コンプレッサ株式会社 Adsorption dryer and method for operating adsorption dryer

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1975523A1 (en) * 2007-03-30 2008-10-01 Nichias Corporation Dehumidifier and dehumidification method
JP2013501871A (en) * 2009-08-11 2013-01-17 アトラス コプコ エアーパワー,ナームローゼ フェンノートシャップ Compressor device provided with dryer and method for drying compressed gas
WO2022244641A1 (en) * 2021-05-18 2022-11-24 コベルコ・コンプレッサ株式会社 Adsorption dryer and method for operating adsorption dryer
KR20240007669A (en) 2021-05-18 2024-01-16 코벨코 컴프레서 가부시키가이샤 Desiccant dryers and how they work
CN115174797A (en) * 2022-08-31 2022-10-11 江苏华诚自动化设备有限公司 Monitoring control system for rescue capsule
CN115174797B (en) * 2022-08-31 2022-11-29 江苏华诚自动化设备有限公司 Monitoring control system for rescue capsule

Similar Documents

Publication Publication Date Title
JP4010640B2 (en) Gas purification method and apparatus
US5242473A (en) Apparatus for dehumidifying gas
EP1975523B1 (en) Dehumidifier and dehumidification method
US5584916A (en) Organic-solvent vapor adsorbing apparatus
RU2408414C2 (en) Gas drying method and device
CA2150203A1 (en) Ventilator/dryer assembly
JP2006112769A (en) Ventilation device
JP4439785B2 (en) Compressor unit with adsorption dryer and adsorption dryer for the unit
JP3948248B2 (en) Adsorption rotor and adsorption apparatus using the same
JPH0631131A (en) Rotary adsorptive dryer
JP3837339B2 (en) Dehumidification cooling unit
US4540420A (en) Dehumidifier for flexible envelopes
JP2003112008A (en) Dehumidifying rotor and dehumidifying apparatus using the same
JP4131531B2 (en) Cooling system
JP2681403B2 (en) Gas sorption method and gas sorption device
CN107921359A (en) Compression and the method and device of dry gas
JP2012229641A (en) Air compressor
JPS61178018A (en) Dehumidification tank in gas dehumidifier
GB2165465A (en) Drying apparatus
CN218523076U (en) Air inlet and outlet valve group and suction dryer thereof
WO2022244641A1 (en) Adsorption dryer and method for operating adsorption dryer
JPH038346Y2 (en)
JPH0199629A (en) Dehumidifying method
JP2002273148A (en) Humidistat
JPS61192324A (en) Apparatus for dehumidifying compressed gas