JP4131531B2 - Cooling system - Google Patents

Cooling system Download PDF

Info

Publication number
JP4131531B2
JP4131531B2 JP2000020439A JP2000020439A JP4131531B2 JP 4131531 B2 JP4131531 B2 JP 4131531B2 JP 2000020439 A JP2000020439 A JP 2000020439A JP 2000020439 A JP2000020439 A JP 2000020439A JP 4131531 B2 JP4131531 B2 JP 4131531B2
Authority
JP
Japan
Prior art keywords
adsorption
channel
flow path
adsorbent
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000020439A
Other languages
Japanese (ja)
Other versions
JP2001208440A (en
Inventor
邦明 川村
克己 藤間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mayekawa Manufacturing Co
Original Assignee
Mayekawa Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mayekawa Manufacturing Co filed Critical Mayekawa Manufacturing Co
Priority to JP2000020439A priority Critical patent/JP4131531B2/en
Publication of JP2001208440A publication Critical patent/JP2001208440A/en
Application granted granted Critical
Publication of JP4131531B2 publication Critical patent/JP4131531B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0085Systems using a compressed air circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1423Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant with a moving bed of solid desiccants, e.g. a rotary wheel supporting solid desiccants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1004Bearings or driving means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1016Rotary wheel combined with another type of cooling principle, e.g. compression cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1032Desiccant wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1052Rotary wheel comprising a non-axial air flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1056Rotary wheel comprising a reheater
    • F24F2203/106Electrical reheater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1068Rotary wheel comprising one rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/108Rotary wheel comprising rotor parts shaped in sector form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1096Rotary wheel comprising sealing means

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Drying Of Gases (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、空気を冷媒として圧縮し、高温高圧となった圧縮空気を常温付近まで冷却した後、膨張機を介して低温空気を得るようにした冷凍サイクルにおいて、前記圧縮排熱の有効利用を図る高効率吸脱着システムを使用した冷却装置に関する。
【0002】
【従来の技術】
従来の空気冷凍サイクルを利用した冷却装置は、作動媒体となる空気を流路に沿って圧縮機、放熱用熱交換器、水蒸気分離装置、膨張機を配設し、原動機で圧縮機、膨張機を運転し、前記圧縮機で断熱圧縮を行い、放熱用熱交換器で周囲温度まで降温させ、水蒸気分離装置で水分を除去し、乾燥空気を膨張機で断熱圧縮を行い、低温空気を得るようにしたものである。
【0003】
ところが、前記水蒸気分離装置は、除湿器等が使用され、放熱器で降温させた低温高圧空気を完全な乾燥気体にすることは無理であった。そのため、本願発明者等により、特願平10−216707号には断熱膨張前の高圧空気を常に乾燥状態に維持する必要から、前記除湿器には吸着器の使用の提案がされている。
【0004】
上記提案においては、一対の吸着器を使用する構成とし、圧縮機からの高温高圧空気を吸着済みの吸着器内を貫流させて再生させ、ついで放熱用熱交換器からの断熱膨張前の高圧空気を他の再生済みの吸着器内に貫流除湿させ、一方の吸着器を再生させるとともに他方の吸着器により除湿を行い、再生と除湿とを交互に切り替え可能の構成としたものである。
【0005】
【発明が解決しようとする課題】
しかし、前記吸着剤の再生は単に圧縮機からの高圧空気による加熱を利用したもので、高真空下で行なわれたものでなく、また除湿は吸着剤の吸着時の反応熱の除去のもとに行なわれたものではないため、吸着剤の十分な再生及び膨張機への導入空気は完全に乾燥された低温空気が導入されないため、従来の空気冷却器では単なる顕熱冷房のみにたより、動作係数の低い状態での使用に甘んじている状況である。
【0006】
本発明は上記問題点に鑑みなされたもので、空気を冷媒として圧縮し、高温高圧となった圧縮空気を常温付近まで放熱器により冷却した後、膨張機を介して低温空気を得るようにした冷凍サイクルにおいて、圧縮機より放熱器までの流路において吸着剤の脱着再生ゾーンを設け、放熱器以後の膨張機に至る流路において吸着ゾーンを持つ回転体による高効率吸脱着システムを設け、動作係数の改善を図り空気の顕熱のみならず蒸発潜熱の利用を可能とした冷却装置の提供を目的としたものでる。
【0007】
【課題を解決するための手段】
そこで、本発明の冷却装置は、
空気を媒体として圧縮機、放熱器、膨張機の順よりなる流路を介して低温空気を形成して、冷却用熱負荷を冷却する空気冷却サイクルにおいて、
前記圧縮機と膨張機との間に吸着剤を内蔵する吸着回転体を持つ密閉回転除湿機を設け、介在する放熱器の手前に前記回転除湿機の再生ゾーンを設け、該ゾーンで圧縮機の吐出ガスを加熱流体として使用して、内蔵する吸着剤の真空脱着をさせ、
前記放熱器と膨張機との間に前記密閉回転除湿機の吸着ゾーンを設け、前記放熱器を経由した低温ガスを前記再生脱着した吸着剤により冷却流体の冷却のもとに吸着させ、
前記吸着剤の連続的脱吸着とともに吐出ガスの連続的排熱放出と乾燥とを可能にする構成としたことを特徴とする。
【0008】
前記請求項1記載の発明は、空気を媒体とする圧縮機、放熱器、放膨張機の順よりなる流路において、圧縮機と膨張機との間に吸着剤を充填した吸着回転体を持つ密閉回転除湿機は再生ゾーンと吸着ゾーンを持ち、前記再生ゾーンと吸着ゾーンの間に放熱用熱交換器を設けるようにしたもので、圧縮機を出た高温高圧の吐出ガスは、前記再生ゾーンの回転吸着器の真空脱着流路に隣接付設させた加熱流体流路を介して吸着剤を加熱して、真空密閉下で吸着剤の再生脱着を効率的に行なわせる。ついで、再生ゾーンを出た吐出ガスは放熱器で常温の低温ガスに降温させ、低温ガスとなって前記密閉回転除湿機のの吸着ゾーンに導入され、さきに再生ゾーンで再生させた吸着剤を充填した吸着回転体の吸着流路に導入される。そして、前記吸着流路に隣接付設した冷却流体流路を介して吸着用冷熱を供給して吸着反応熱を抑え高効率の吸着を可能としている。
斯くして、圧縮機を出た吐出ガスは、前記再生ゾーン及び吸着ゾーンを有する密閉回転除湿機により、その排熱の連続的放出により吸着剤の効率的真空再生と低温ガスの完全乾燥を可能とし、続く膨張機により冷熱を得て顕熱のみならず蒸発潜熱を冷却負荷に与えることができる。
【0009】
また、請求項1記載の密閉回転除湿機の再生ゾーンには、圧縮機吐出ガスの供給機構と真空吸引機構とを設け、吸着ゾーンには放熱器からの低温ガスの供給機構と冷却流体の供給機構とを設け、
前記吸着回転体は両端の対向位置には回転体を前記二分割ゾーンに分割する二分割固定シール板を設けるとともに、内筒及び外筒のいずれかに吸着剤を充填した二重円筒構造体を法線方向の貫通隔壁により前記二分割固定シール板より狭い幅で内外2連状に分割し得られた、多分劃2連流路により構成し、
前記二分割固定シール板を経由する毎に前記多分劃2連流路に流出入する流体の切り替えを順次行なう構成としたことを特徴とする。
【0010】
前記請求項2記載の発明により、請求項1記載の密閉回転除湿機の再生ゾーン及び吸着ゾーンは、吸着回転体の回転に対し、常に定位置に保持される。そのため、再生ゾーンには、圧縮機吐出ガスの供給機構と真空吸引機構とを設け、吸着ゾーンには放熱器からの低温ガスの供給機構と冷却流体の供給機構とを設ける構造とし、
吸着回転体に設けられ吸着剤を充填した再生/吸着用流路は、再生ゾーンでは吐出ガスの吸着剤加熱のための流入と真空処理を受け再生機構として機能させ、吸着ゾーンでは低温ガスの流入と冷却流体の流入を受け吸着機構として機能させ、且つその機能の切り替えは回転体の両端の対向位置に設けられた二分割固定シール板により行なうようにしたものである。
そのため、回転体は内筒及びそれに隣接する外筒よりなる二重円筒体で形成しその何れかに吸着剤を充填する構造にしてある。そして、該二重円筒体を法線方向に等分分劃して前記二分割固定シール板より小さい幅を持つ内筒、外筒の2連分劃流路よりなる複数の多分劃2連流路を形成する構造にしてある。
【0011】
また、請求項2記載の多分劃2連流路は、
再生ゾーンにおいては、二重円筒体の内外筒の何れか一方に形成された真空脱着用の多分劃流路と、該流路に隣接した他方に設けた加熱流体用の多分劃流路とより構成し、
吸着ゾーンにおいては、前記二重円筒体の内外筒の前記真空脱着流路と同じ側に形成され低温ガスが流入する吸着用の多分劃流路と、該流路に隣接した他方側に設けた冷却流体用の多分劃流路とより構成したことを特徴とする。
【0012】
前記請求項3記載の発明により、
請求項2に記載の発明により構成された多分劃2連流路は、前記二分割固定シール板を境にして再生機構として機能し、または吸着機構として機能する。
即ち、再生ゾーンにおいては、二重円筒体の内外筒の何れか一方に吸着剤を充填し、充填した吸着剤の脱着再生を真空下で行なうようにした真空脱着用の多分劃流路と、該流路に隣接した他方に設けた加熱流体用の多分劃流路とより構成し、
吸着ゾーンにおいては、前記二重円筒体の内外筒の前記真空脱着流路と同じ側に充填され且つ再生ゾーンで既に再生されている吸着剤の中に低温ガスを流入させ低温ガスの水分を吸着させるための吸着用多分劃流路と、該流路に隣接した他方側に設けた冷却流体用の多分劃流路とにより構成としてある。
【0013】
また、請求項1記載の密閉回転除湿機の吸着回転体は、
吸着回転体の両端の対向位置に設けた二分割固定シール板による被覆端面以外の回転体両端の左側端面には真空脱着流路と加熱流体流路の端面を覆う扇形固定シール板を設け、右側端面には吸着流路と冷却流体流路の端面を覆う扇形固定シール板を設け、
前記各扇形固定シール板の端面接触側に前記回転体の内外筒のそれぞれに形成された流路の出入り口を結ぶ連絡凹路を設ける構成とし、
前記真空脱着流路の両端出口の連絡凹路には脱着蒸気を吸引する真空空気の吸引口を設け、加熱流体流路の両端出口の連絡凹路には加熱流体である吐出ガスの出入り口を設け、前記吸着流路の両端出口の連絡凹路には被吸着流体の低温ガスの出入口を設け、冷却流体流路の両端出口の連絡凹路には冷却流体の出入口を設ける構成としたことを特徴とする。
【0014】
前記請求項4記載の発明により、
前記内筒、外筒の2連分劃流路よりなる多分劃流路が再生ゾーンにあるときは、外部より常に加熱流体の供給を受けるとともに真空ポンプによる吸引を受ける必要があり、また、吸着ゾーンにある時は外部より常に低温ガスと冷却流体の供給を受ける必要がある。
そのため、二重円筒体を形成する吸着回転体の端面の両端の回転中心を過る対向位置に設けた二分割固定シール板による被覆端面以外の両端の左側の端面には真空脱着流路と加熱流体流路の端面を覆う扇形固定シール板を設け、右側端面には吸着流路と冷却流体流路の端面を覆う扇形固定シール板を設け、前記各扇形固定シール板の端面接触側に前記二重円筒体の内外筒のそれぞれに形成された流路の出入り口を結ぶ連絡凹路を設け、且つそれぞれの扇形固定シール板に設けた連絡凹路には被覆するそれぞれの流路への流体の出入口または真空吸入口を設ける構造にしてある。
【0015】
また、 請求項1記載の吸着回転体は、
隣接する内筒、外筒よりなる回転可能の一体構造の気密構造で形成され、内筒と外筒との隣接部材は熱交換可能の高伝熱性素材で構成したことを特徴とする。
【0016】
前記請求項5記載の発明は、請求項1記載の密閉回転除湿機の吸着回転体の構造について記載したもので、該回転体を構成する内筒と外筒は、再生時においてその何れかが内蔵する吸着剤を真空脱着するため、気密性を保持するため一体構造の気密構造にしてある。
また、一体構造の内筒及び外筒は、それぞれ一方に充填された吸着剤を他方を流動する加熱流体により間接加熱をするか、または冷却流体により間接冷却をするため、内外筒は伝熱特性の高い素材を使用する構成にしてある。
【0017】
また、請求項1の吸着回転体は、再生ゾーンにおいては、吸着剤の脱着真空流路を外筒側に設け吸着剤を充填する構造とし、加熱流体流路は内筒側に設ける構成とし、
また、吸着ゾーンにおいては、吸着流路を外筒側に設け吸着剤を充填する構造とし、冷却流体流路は内筒側に設ける構成としたことを特徴とする。
【0018】
【発明の実施の形態】
以下、本発明を図に示した実施例を用いて詳細に説明する。但し、この実施例に記載される構成部品の寸法、材質、形状、その相対配置などは特に特定的な記載が無い限り、この発明の範囲をそれのみに限定する趣旨ではなく単なる説明例に過ぎない。
なお、従来の部品と同一の部品に対しては、本発明に於いては従来部品に使用した符号と同一の符号を使用してある。
図1は、本発明の冷却装置の概略の構成を示す模式図で、図2は図1の密閉回転除湿機の一実施例の概略の構成を示す断面図で、図3は図2の密閉回転除湿機の吸着回転体の端面と二分割固定シール板及び扇形固定シール板との間の関係位置を示す図であり、図4は図2の密閉回転除湿器の左側回転軸芯を含む分解斜視図である。
【0019】
図1に示すように、本発明の冷却装置は、圧縮機51と膨張機52と放熱器53と密閉回転除湿機10とより構成し、空気を媒体とした圧縮機51、放熱器53、膨張機52の順よりなる工程を介して低温空気を形成して、冷却負荷50を冷却する空気冷却サイクルにおいて、前記放熱器53の前後に再生ゾーン10aと吸着ゾーン10bを持つ密閉回転除湿機10を設けたもので、図5に示す圧縮機51と放熱器53との間に再生モードの吸着器54を設け、放熱器53と膨張機52との間に吸着モードの吸着器55を設けた従来の空気冷却器に比較して高効率の吸脱着を可能にし、顕熱冷却のみならず潜熱冷却を可能にしている。
【0020】
図2には図1の密閉回転除湿機10の一実施例についての概略の構成が示してある。
上記実施例においては、吸着回転体11の外筒に吸着剤を充填し放熱器53の前の再生ゾーン10aにおいては圧縮機51からの高温高圧の吐出ガスを加熱流体として再生加熱に使用して吸着剤の真空脱着を行い、ついで吸着ゾーン10bにおいては放熱器53を経由した低温ガスを再生済みの吸着剤に導入して冷却流体による吸着反応熱を抑えたなかで完全除湿を行い、後段の膨張機52へ導入するようにしたものである。
なお、図2に示す断面図は、再生ゾーン10aとその対向位置にある吸着ゾーン10bの中心を通る載断面による断面図を示してある。そのため、中心軸芯上に位置する二分割固定シール板は記載してない。
図に見るように、密閉回転除湿機10は、本体20とブラケット21a、21bと吸着回転体11と該回転体の回転する両端の端面に気密状に接触可能とする図示してない二分割固定シール板と扇形固定シール板13a、13b、14a、14bとより構成する。
【0021】
前記本体20とブラケット21a、21bは密閉状容器を形成し、該ブラケット21a、21bは回転中心に対し左右の対称位置(図3、図4では上下対称位置)にそれぞれ2分割固定シール板12a、12cと12b、12dを装着し、また、上下対称位置(図3、図4では左右対称位置)にそれぞれ扇形固定シール板13a、14aと13b、14bを装着してある。
前記二分割固定シール板は、当接接触する左右の2連分劃流路を閉鎖してそれにより分割された上側の真空脱着流路29とそれに隣接する加熱流体流路33よりなる2連分劃流路42cを含む2連分劃流路群を再生ゾーンに置き、(図4参照)
また、下側の吸着流路30とそれに隣接する冷却流体流路32よりなる2連分劃流路43cを含む2連分劃流路群を吸着ゾーンに置き、(図4参照)
前記再生ゾーン10aにおいては、高温吐出ガスによる間接加熱とバキュームポンプ10cによる真空脱着とにより内蔵する吸着剤31の連続再生を可能とさせ、吸着ゾーン10bにおいては、先に加熱に使用した吐出ガスを放熱器53を介して降温させた低温ガスの吸着流路30への導入と冷却流体による間接冷却とにより吐出ガスである低温ガスの連続的除湿を可能としている。
【0022】
即ち、前記2連分劃流路群に再生機能または吸着機能を機能させるため、再生ゾーン10aにおいては、圧縮機51の吐出ガスの供給及びバキュームポンプ10cが設けられ、前記高温高圧の吐出ガスは前記加熱流体流路33に導入され、隣接する外筒側の真空脱着流路29に充填した吸着剤を間接加熱し脱着再生熱を与えるとともに、脱着した水分をバキュームポンプ10cにより吸引させ外部へ放出させている。
そして、加熱流体流路33に導入され吸着剤に再生熱を与え圧縮機51の排熱の有効利用を図った吐出ガスは、放熱器53に導入降温され、常温の低温ガスとして吸着ゾーン10bに送り除湿される。
また吸着ゾーン10bにおいては、前記放熱器53を経由降温した被吸着ガスである低温ガスが上記のように用意され、吸着反応熱を吸収する冷却空気又は冷却水よりなる冷却流体も別途用意され、前記低温ガスは吸着流路30に導入され、該流路に充填されている再生済みの吸着剤によりその水分を吸着除湿させる。なおその際発生する吸着反応熱は隣接する冷却流体流路32に導入された冷却流体により冷却され吸着効率を上げるようにしてある。
【0023】
図3には、図2の密閉回転除湿機の吸着回転体の両端の端面と二分割固定シール板及び扇形固定シール板との間の関係位置が示してあり、図4には、図2の密閉回転除湿器の左側軸芯を含む分解斜視図が示してある。
図3、図4に見るように、回転する吸着回転体11のある瞬間において、回転体の前後の両端面の上側2連分劃流路41aを二分割固定シール板12a、12bにより密封閉鎖され、下側2連分劃流路41bを二分割固定シール板12c、12dにより密封閉鎖されると、残る略左半分の2連分劃流路42a、42b、42c、42d、42eは再生ゾーンとして機能され、右半分の2連分劃流路43a、43b、43c、43d、43eは吸着ゾーンとして機能されることになる。
この状態は、吸着回転体の11の回転方向が例えば右回りの場合は、該回転体が等分劃してある2連分劃流路の1個を経過する毎に、前記再生ゾーン及び吸着ゾーンは左にずれることになる。
なお、前記二分割固定シール板の幅は等分劃してある2連分劃流路の幅より僅か大きく設定して分劃した区劃毎に確実にシールできるようにしてある。
また、前記分劃した2連分劃流路の幅はある程度小さい方が機能の切り替えは円滑且つ効率的に行なうことができる。
【0024】
また、図3に見るように、扇形固定シール板13a、13bは前記二分割固定シール板により分割された左側の流路群への所用流体の分散導入と排出を可能とすべく気密状に設けたもので、14a、14bは同じく右側流路群への所用流体の分散導入と排出を可能とすべく気密状に設けたもので、そのため、図に見るように扇形固定シール板13a、13bや14a、14bにはそれぞれ吸着回転体11の端面との接触面に連絡凹路15a、16a、15b、16b、17a、17b、18a、18bが設けられ、各連絡凹路には真空吸入口34、吐出ガスの出入り口36a、36b、低温ガスの出入り口37a、37b、冷却流体の出入り口35a、35bを設け、所用の機能を連携する各流路に与えるようにしてある。
【0025】
なお、吸着回転体11は、図4に示す分解斜視図に見るように内筒と外筒とを一体構造とした気密二重円筒構造体で形成され、その端面に見るように法線方向の貫通隔壁により前記二分割固定シール板より狭い幅で内外2連分劃流路41a、41b、42a〜42e、43a〜43eよりなる多分劃2連流路により構成し、隣接する流路間において熱交換する構成にしてあるため、外筒と内筒の隣接部材は特に高伝熱性素材を使用する構成にしてある。
前記二分割固定シール板を経由する毎に前記多分劃2連流路に流出入する流体の切り替えを順次行なう構成にしてある。
【0026】
なお、組立に際しては、図4に示す左側軸芯を含む分解斜視図に見るように、本体20を形成する円筒状構造体に遊合自在の外径を持つ吸着回転体11を挿入する一方、ブラケット21aの内面の上部凹部に二分割固定シール板12aを矢印Aに示すようにスプリング22aを挟んで装着し、扇形固定シール板13aを矢印B、Bに示すようにスプリング23a、23aを挟んで右側凹部に装着し、他の下部や左側凹部にもそれぞれ二分割固定シール板12b、扇形固定シール板14aを装着する。
ついで、各スプリングをそれぞれ付設した二分割シール板及び扇形シール板の装着の終わったブラケット21aを矢印Cに示すように本体20と吸着回転体11の回転軸芯25に装着する。ついでベアリング26をベアリング押さえ27を介して装着する。
なお、上記装着の際、図1に示すように吸着回転体11の外周と本体20の内面の間にはパッキング28を装着し前記スプリング22a、23a等を嵌挿装着した二分割固定シール板12a、12b、12c、12dと扇形固定シール板13a、13b、14a、14bよりなるメカニカルシールにより完全な気密性を持つ回転構造体にしてある。
ついで、図示していない右側も同様の手順により行ない組立を終了する。
【0027】
【発明の効果】
上記構成により、密閉回転除湿機に内蔵する吸着回転体を互いに再生熱の付与吸着熱の除去を可能とする伝熱性の高い2連分劃流路よりなる多分劃2連流路により構成してあるため、再生ゾーンと吸着ゾーンの切り替えを効率的に行なうことができ、高効率吸脱着システムを形成でき、動作係数の改善と空気の顕熱のみならず蒸発潜熱の利用を可能とした冷却装置を提供できる。
【図面の簡単な説明】
【図1】 本発明の冷却装置の概略の構成を示す模式図である。
【図2】 図1の密閉回転除湿機の一実施例についての概略の構成を示す断面図である。
【図3】 図2の密閉回転除湿機の吸着回転体の端面と二分割固定シール板及び扇形固定シール板との間の関係位置を示す図である。
【図4】 図2の密閉回転除湿機の左側軸芯を含む分解斜視図である。
【図5】 従来の空気冷却サイクルの概略の構成を示す模式図である。
【符号の説明】
10 密閉回転除湿機
10a 再生ゾーン
10b 吸着ゾーン
10c バキュームポンプ
11 吸着回転体
12a、12b、12c、12d 二分割固定シール板
13a、13b、14a、14b 扇形固定シール板
15a、15b、16a、16b、18a、18b、17a、17b連絡凹路
20 本体
21a、21b ブラケット
22a、23a スプリング
25 回転軸芯
29 真空脱着流路
30 吸着流路
31 吸着剤
32 冷却流体流路
33 加熱流体流路
41a、41b、42a〜42e、43a〜43e 2連分劃流路
[0001]
BACKGROUND OF THE INVENTION
In the refrigeration cycle in which low-temperature air is obtained through an expander after compressing air as a refrigerant and cooling the compressed air that has become high temperature and high pressure to near normal temperature, the effective use of the compressed exhaust heat is achieved. The present invention relates to a cooling device using a high-efficiency adsorption / desorption system.
[0002]
[Prior art]
A conventional cooling device using an air refrigeration cycle is provided with a compressor, a heat-dissipating heat exchanger, a water vapor separator, and an expander along the flow path of air serving as a working medium. So that the adiabatic compression is performed with the compressor, the temperature is lowered to the ambient temperature with the heat exchanger for heat dissipation, the moisture is removed with a water vapor separator, and the dry air is adiabatic with the expander to obtain low-temperature air. It is a thing.
[0003]
However, a dehumidifier or the like is used for the water vapor separator, and it is impossible to make the low-temperature and high-pressure air cooled by the radiator into a completely dry gas. For this reason, the inventors of the present application have proposed to use an adsorber as the dehumidifier because Japanese Patent Application No. 10-216707 needs to always maintain high-pressure air before adiabatic expansion in a dry state.
[0004]
In the above proposal, a pair of adsorbers are used, and the high-temperature high-pressure air from the compressor is regenerated by flowing through the adsorbed adsorber, and then the high-pressure air before adiabatic expansion from the heat-dissipating heat exchanger. In the other regenerated adsorbers, one adsorber is regenerated and dehumidified by the other adsorber, and regeneration and dehumidification can be switched alternately.
[0005]
[Problems to be solved by the invention]
However, the regeneration of the adsorbent is simply performed by heating with high-pressure air from a compressor, not performed under high vacuum, and dehumidification is based on the removal of heat of reaction during adsorption of the adsorbent. Because it was not carried out in this way, sufficient regeneration of the adsorbent and air introduced into the expander was not introduced with completely dried low-temperature air, so conventional air coolers operate more than just sensible heat cooling. It is a situation that is unsatisfactory for use in a low coefficient state.
[0006]
The present invention has been made in view of the above-described problems. After compressing air as a refrigerant and cooling the compressed air that has become high temperature and high pressure to near room temperature with a radiator, low temperature air is obtained through an expander. In the refrigeration cycle, an adsorbent desorption / regeneration zone is provided in the flow path from the compressor to the radiator, and a high-efficiency adsorption / desorption system using a rotating body with an adsorption zone is provided in the flow path from the radiator to the expander. The purpose is to provide a cooling device that can improve the coefficient and use not only sensible heat of air but also latent heat of vaporization.
[0007]
[Means for Solving the Problems]
Therefore, the cooling device of the present invention is
In the air cooling cycle that cools the heat load for cooling by forming low temperature air through the flow path consisting of the compressor, radiator, and expander in the order of air as a medium,
A hermetic rotary dehumidifier having an adsorption rotator containing an adsorbent is provided between the compressor and the expander, a regeneration zone of the rotary dehumidifier is provided in front of the intervening radiator, and the compressor Using the discharge gas as the heating fluid, vacuum desorption of the built-in adsorbent,
An adsorption zone of the hermetic rotary dehumidifier is provided between the radiator and the expander, and the low-temperature gas passing through the radiator is adsorbed under cooling of the cooling fluid by the regenerated and desorbed adsorbent,
The adsorbent may be continuously desorbed, and the exhaust gas may be discharged continuously and dried.
[0008]
The invention according to claim 1 has an adsorption rotating body filled with an adsorbent between the compressor and the expander in the flow path including the compressor, the radiator, and the expander using air as a medium. The hermetic rotary dehumidifier has a regeneration zone and an adsorption zone, and a heat-dissipating heat exchanger is provided between the regeneration zone and the adsorption zone. The adsorbent is heated through a heating fluid flow path adjacent to the vacuum desorption flow path of the rotary adsorber so that the adsorbent is efficiently regenerated and desorbed in a vacuum sealed state. Next, the discharged gas that exits the regeneration zone is cooled to a low temperature gas at a room temperature by a radiator, and is introduced into the adsorption zone of the hermetic rotary dehumidifier as a low temperature gas. It is introduced into the adsorption flow path of the filled adsorption rotator. And the cold for adsorption is supplied through the cooling fluid flow path provided adjacent to the adsorption flow path, thereby suppressing the heat of adsorption reaction and enabling highly efficient adsorption.
Thus, the exhaust gas discharged from the compressor enables efficient vacuum regeneration of the adsorbent and complete drying of the low-temperature gas by continuous release of the exhaust heat by the hermetic rotary dehumidifier having the regeneration zone and adsorption zone. Then, it is possible to obtain cold heat by the subsequent expander and give not only sensible heat but also latent heat of vaporization to the cooling load.
[0009]
Further, the regeneration zone of the hermetic rotary dehumidifier according to claim 1 is provided with a compressor discharge gas supply mechanism and a vacuum suction mechanism, and the adsorption zone has a low temperature gas supply mechanism and a cooling fluid supply from a radiator. A mechanism,
The adsorption rotator is provided with a double-divided fixed seal plate that divides the rotator into the two-divided zones at opposite positions at both ends, and a double cylindrical structure in which an adsorbent is filled in either the inner cylinder or the outer cylinder. It is composed of two continuous flow channels, possibly divided into two inner and outer channels with a narrower width than the two-divided fixed seal plate by a through partition wall in the normal direction,
Each time it passes through the two-divided fixed seal plate, the fluid that flows into and out of the two-way continuous flow channel is preferably sequentially switched.
[0010]
According to the second aspect of the present invention, the regeneration zone and the adsorption zone of the hermetic rotary dehumidifier according to the first aspect are always held at a fixed position with respect to the rotation of the adsorption rotating body. Therefore, the regeneration zone is provided with a compressor discharge gas supply mechanism and a vacuum suction mechanism, and the adsorption zone is provided with a low temperature gas supply mechanism and a cooling fluid supply mechanism from a radiator,
The regeneration / adsorption flow path provided in the adsorption rotator and filled with the adsorbent functions as a regeneration mechanism in response to the inflow of the discharge gas for heating the adsorbent and vacuum treatment in the regeneration zone, and the inflow of low-temperature gas in the adsorption zone The cooling fluid is received to function as an adsorption mechanism, and the function is switched by a two-part fixed sealing plate provided at opposite positions on both ends of the rotating body.
Therefore, the rotating body is formed as a double cylinder composed of an inner cylinder and an outer cylinder adjacent to the inner cylinder, and either of them is filled with an adsorbent. Then, the double cylindrical body is equally divided in the normal direction, and a plurality of maybe two continuous flows comprising two split flow paths of an inner cylinder and an outer cylinder having a width smaller than the two-part fixed sealing plate. The structure forms a path.
[0011]
In addition, the maybe double-connected channel according to claim 2
In the regeneration zone, a vacuum removal / removal maybe flow path formed in one of the inner and outer cylinders of the double cylinder and a heating fluid flow breaker provided on the other side adjacent to the flow path. Configure
In the adsorption zone, it is provided on the other side adjacent to the flow path for adsorption, which is formed on the same side as the vacuum desorption flow path of the inner and outer cylinders of the double cylinder and into which low temperature gas flows. It is characterized in that it is composed of a cooling fluid flow channel.
[0012]
According to the invention of claim 3,
The maybe double-connected channel constituted by the invention according to claim 2 functions as a regeneration mechanism or functions as an adsorption mechanism with the two-part fixed sealing plate as a boundary.
That is, in the regeneration zone, either a double cylindrical inner or outer cylinder is filled with an adsorbent, and the desorption / removal of the filled adsorbent is performed under vacuum, possibly a desorption channel; It is composed of a heated fluid flow channel provided on the other side adjacent to the flow channel,
In the adsorption zone, cold gas is introduced into the adsorbent that is filled on the same side as the vacuum desorption flow path of the inner and outer cylinders of the double cylinder and is already regenerated in the regeneration zone, thereby adsorbing moisture from the cold gas. And a multi-sided flow channel for cooling fluid provided on the other side adjacent to the flow channel.
[0013]
Further, the adsorption rotating body of the hermetic rotary dehumidifier according to claim 1 is:
A fan-shaped fixed seal plate that covers the vacuum desorption flow path and the end face of the heating fluid flow path is provided on the left end face of both ends of the rotary body other than the coated end face by the two-part fixed seal plates provided at opposite positions on both ends of the adsorption rotary body. The end face is provided with a fan-shaped fixed seal plate that covers the end face of the adsorption flow path and the cooling fluid flow path,
A configuration is provided in which a connecting recess that connects the entrance and exit of the flow path formed in each of the inner and outer cylinders of the rotating body is provided on the end surface contact side of each fan-shaped fixed seal plate,
A vacuum air suction port for sucking desorption vapor is provided in the communication recess at both ends of the vacuum desorption channel, and a discharge gas outlet / inlet for heating fluid is provided in the communication recess at both ends of the heating fluid channel. The low temperature gas inlet / outlet of the fluid to be adsorbed is provided in the connecting recess at both ends of the adsorption channel, and the cooling fluid inlet / outlet is provided in the connecting recess at both ends of the cooling fluid channel. And
[0014]
According to the invention of claim 4,
When there is a multi-passage channel consisting of a double split flow channel of the inner cylinder and the outer cylinder in the regeneration zone, it is necessary to always receive a heated fluid from the outside and receive suction by a vacuum pump. When in the zone, it is necessary to always receive cold gas and cooling fluid from the outside.
Therefore, the vacuum desorption flow path and the heating are provided on the left end surfaces other than the coated end surfaces by the two-part fixed sealing plates provided at the opposite positions over the rotation centers of both ends of the adsorption rotating body forming the double cylinder. A fan-shaped fixed seal plate that covers the end face of the fluid flow path is provided, a fan-shaped fixed seal plate that covers the end faces of the adsorption flow path and the cooling fluid flow path is provided on the right end face, and the two end faces on the end face contact side of each of the fan-shaped fixed seal plates are provided. A connecting recess that connects the entrance and exit of the flow path formed in each of the inner and outer cylinders of the heavy cylindrical body is provided, and the entrance and exit of the fluid to each flow path that covers the connecting recess provided in each fan-shaped fixed seal plate Alternatively, a structure is provided in which a vacuum suction port is provided.
[0015]
The adsorption rotating body according to claim 1 is:
It is formed of a rotatable integral airtight structure composed of adjacent inner cylinders and outer cylinders, and the adjacent members of the inner cylinder and outer cylinder are made of a highly heat-conductive material capable of heat exchange.
[0016]
The invention according to claim 5 describes the structure of the adsorption rotating body of the hermetic rotary dehumidifier according to claim 1, and the inner cylinder and the outer cylinder constituting the rotating body are either of them during regeneration. The built-in adsorbent is vacuum-desorbed, so that the airtight structure is maintained in order to maintain airtightness.
Also, the inner and outer cylinders of the integral structure are either indirectly heated by the heating fluid flowing through the other of the adsorbent filled in one side, or indirectly cooled by the cooling fluid, so the inner and outer cylinders have heat transfer characteristics. It is configured to use high-quality materials.
[0017]
Further, the adsorption rotating body according to claim 1 is configured such that, in the regeneration zone, an adsorbent desorption vacuum channel is provided on the outer cylinder side and filled with the adsorbent, and a heating fluid channel is provided on the inner cylinder side.
Further, the adsorption zone is characterized in that an adsorption flow path is provided on the outer cylinder side and filled with an adsorbent, and a cooling fluid flow path is provided on the inner cylinder side.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the embodiments shown in the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are merely illustrative examples and not intended to limit the scope of the present invention unless otherwise specified. Absent.
For the same parts as the conventional parts, the same reference numerals as those used for the conventional parts are used in the present invention.
FIG. 1 is a schematic diagram showing a schematic configuration of the cooling device of the present invention, FIG. 2 is a cross-sectional view showing a schematic configuration of one embodiment of the hermetic rotary dehumidifier of FIG. 1, and FIG. 3 is a hermetic diagram of FIG. FIG. 4 is a diagram showing a relational position between an end face of an adsorption rotating body of a rotary dehumidifier and a two-part fixed seal plate and a fan-shaped fixed seal plate, and FIG. 4 is an exploded view including a left rotation axis of the hermetic rotary dehumidifier of FIG. It is a perspective view.
[0019]
As shown in FIG. 1, the cooling device of the present invention includes a compressor 51, an expander 52, a radiator 53, and a hermetic rotary dehumidifier 10, and includes a compressor 51, a radiator 53, and an expansion using air as a medium. In the air cooling cycle in which the low temperature air is formed through the steps of the machine 52 and the cooling load 50 is cooled, the hermetic rotary dehumidifier 10 having the regeneration zone 10a and the adsorption zone 10b before and after the radiator 53 is provided. In the prior art, an adsorber 54 in the regeneration mode is provided between the compressor 51 and the radiator 53 shown in FIG. 5, and an adsorber 55 in the adsorption mode is provided between the radiator 53 and the expander 52. Compared with this air cooler, it is possible to perform adsorption and desorption with higher efficiency, and not only sensible heat cooling but also latent heat cooling.
[0020]
FIG. 2 shows a schematic configuration of one embodiment of the hermetic rotary dehumidifier 10 of FIG.
In the above embodiment, the outer cylinder of the adsorption rotating body 11 is filled with an adsorbent, and in the regeneration zone 10a in front of the radiator 53, the high-temperature and high-pressure discharge gas from the compressor 51 is used as a heating fluid for regeneration heating. The adsorbent is desorbed in vacuum, and in the adsorption zone 10b, a low-temperature gas passing through the radiator 53 is introduced into the regenerated adsorbent to completely dehumidify while suppressing the heat of adsorption reaction by the cooling fluid, and the subsequent expansion This is introduced into the machine 52.
The cross-sectional view shown in FIG. 2 is a cross-sectional view of a loading cross section passing through the center of the regeneration zone 10a and the adsorption zone 10b at the opposite position. Therefore, the two-part fixed sealing plate located on the central axis is not described.
As shown in the figure, the hermetic rotary dehumidifier 10 is fixed in two parts (not shown) that allows airtight contact with the main body 20, the brackets 21a and 21b, the adsorption rotator 11, and the end surfaces of the rotating ends of the rotator. It comprises a seal plate and fan-shaped fixed seal plates 13a, 13b, 14a, 14b.
[0021]
The main body 20 and the brackets 21a and 21b form a sealed container, and the brackets 21a and 21b are respectively divided into two split fixed sealing plates 12a at left and right symmetrical positions (vertical symmetrical positions in FIGS. 3 and 4). 12c, 12b, and 12d are mounted, and fan-shaped fixed sealing plates 13a, 14a, 13b, and 14b are mounted at vertically symmetrical positions (left and right symmetrical positions in FIGS. 3 and 4), respectively.
The two-part fixed sealing plate closes the left and right two-part split flow passages in contact with each other and is divided into two pieces consisting of an upper vacuum desorption passage 29 and a heating fluid passage 33 adjacent thereto. A group of two continuous dredging channels including the dredging channel 42c is placed in the regeneration zone (see FIG. 4).
Further, a group of double split flow channels including a double split flow channel 43c including the lower adsorption flow channel 30 and the cooling fluid flow channel 32 adjacent thereto is placed in the adsorption zone (see FIG. 4).
In the regeneration zone 10a, the built-in adsorbent 31 can be continuously regenerated by indirect heating with a high-temperature discharge gas and vacuum desorption by a vacuum pump 10c. In the adsorption zone 10b, the discharge gas previously used for heating is used. The dehumidification of the low temperature gas, which is the discharge gas, is enabled by the introduction of the low temperature gas, which has been cooled down via the radiator 53, into the adsorption flow path 30 and the indirect cooling by the cooling fluid.
[0022]
That is, in order to cause the regeneration function or the adsorption function to function in the double split channel group, in the regeneration zone 10a, a discharge gas supply of the compressor 51 and a vacuum pump 10c are provided, and the high temperature and high pressure discharge gas is The adsorbent introduced into the heating fluid channel 33 and filled in the vacuum desorption channel 29 on the adjacent outer cylinder side is indirectly heated to give desorption regeneration heat, and the desorbed water is sucked by the vacuum pump 10c and released to the outside. I am letting.
Then, the discharge gas introduced into the heating fluid flow path 33 and regenerating heat to the adsorbent to effectively use the exhaust heat of the compressor 51 is introduced and lowered into the radiator 53, and is introduced into the adsorption zone 10b as a cold gas at normal temperature. The feed is dehumidified.
In addition, in the adsorption zone 10b, a low-temperature gas that is a gas to be adsorbed that has been cooled through the radiator 53 is prepared as described above, and a cooling fluid made of cooling air or cooling water that absorbs heat of adsorption reaction is also prepared separately. The low-temperature gas is introduced into the adsorption channel 30 and the moisture is adsorbed and dehumidified by the regenerated adsorbent filled in the channel. The adsorption reaction heat generated at this time is cooled by the cooling fluid introduced into the adjacent cooling fluid channel 32 to increase the adsorption efficiency.
[0023]
FIG. 3 shows the relative positions between the end faces of both ends of the adsorption rotating body of the hermetic rotary dehumidifier of FIG. 2 and the two-part fixed seal plate and the fan-shaped fixed seal plate. An exploded perspective view including the left axis of the hermetic rotary dehumidifier is shown.
As shown in FIGS. 3 and 4, at a certain moment of the rotating adsorption rotating body 11, the upper two-part dividing flow channel 41a on both front and rear end faces of the rotating body is hermetically closed by the two-part fixed sealing plates 12a and 12b. When the lower two-part split flow passage 41b is hermetically closed by the two-part fixed sealing plates 12c, 12d, the remaining two-part split flow passages 42a, 42b, 42c, 42d, 42e on the left half are used as regeneration zones. The two half-split channels 43a, 43b, 43c, 43d, and 43e in the right half function as an adsorption zone.
In this state, when the rotation direction of the adsorption rotator 11 is, for example, clockwise, the regeneration zone and the adsorption each time one of the two continuous dividing channels in which the rotator is equally divided passes. The zone will shift to the left.
Note that the width of the two-part fixed sealing plate is set to be slightly larger than the width of the equally divided two-part dividing flow path so as to ensure sealing for each divided section.
The function switching can be performed smoothly and efficiently when the divided double dividing flow path has a relatively small width.
[0024]
Further, as shown in FIG. 3, the fan-shaped fixed seal plates 13a and 13b are provided in an airtight manner so that the required fluid can be dispersed and introduced into and discharged from the left channel group divided by the two-divided fixed seal plate. 14a and 14b are provided in an airtight manner so that the required fluid can be dispersed and introduced into and discharged from the right channel group, and as shown in the figure, the fan-shaped fixed seal plates 13a and 13b and 14a and 14b are respectively provided with connecting recesses 15a, 16a, 15b, 16b, 17a, 17b, 18a and 18b on the contact surface with the end face of the suction rotating body 11, and each connecting recess has a vacuum suction port 34, The discharge gas inlet / outlet ports 36a and 36b, the low temperature gas inlet / outlet ports 37a and 37b, and the cooling fluid inlet / outlet ports 35a and 35b are provided, and the desired functions are provided to the associated flow paths.
[0025]
In addition, the adsorption | suction rotation body 11 is formed with the airtight double cylinder structure which integrated the inner cylinder and the outer cylinder as seen in the exploded perspective view shown in FIG. 4, and it is normal direction so that it may look at the end surface. The penetrating partition wall is constituted by a multi-split double continuous flow path that is narrower than the two-part fixed sealing plate and is composed of inner and outer double split flow paths 41a, 41b, 42a to 42e, 43a to 43e, and heat is generated between adjacent flow paths. Since it is configured to be replaced, the adjacent member between the outer cylinder and the inner cylinder is configured to use a particularly highly heat-conductive material.
Each time it passes through the two-divided fixed sealing plate, the fluid that flows into and out of the two-way continuous flow channel is sequentially switched.
[0026]
When assembling, as seen in the exploded perspective view including the left axis shown in FIG. 4, while inserting the suction rotating body 11 having a freely slidable outer diameter into the cylindrical structure forming the main body 20, A two-part fixed sealing plate 12a is mounted on the upper concave portion of the inner surface of the bracket 21a with a spring 22a as shown by an arrow A, and a fan-shaped fixed sealing plate 13a is held with a spring 23a and 23a as shown by arrows B and B. It is mounted on the right-side recess, and the two-part fixed seal plate 12b and the fan-shaped fixed seal plate 14a are mounted on the other lower and left-side recesses, respectively.
Next, the bracket 21a after the mounting of the two-part seal plate and the fan-shaped seal plate each provided with each spring is attached to the main body 20 and the rotary shaft core 25 of the suction rotating body 11 as indicated by an arrow C. Next, the bearing 26 is mounted via the bearing retainer 27.
At the time of mounting, as shown in FIG. 1, a two-part fixed sealing plate 12a in which a packing 28 is mounted between the outer periphery of the suction rotating body 11 and the inner surface of the main body 20 and the springs 22a, 23a and the like are inserted and mounted. , 12b, 12c, 12d and fan-shaped fixed sealing plates 13a, 13b, 14a, 14b are used to form a rotating structure having complete airtightness.
Next, the same procedure is performed on the right side (not shown) to complete the assembly.
[0027]
【The invention's effect】
With the above configuration, the adsorption rotator built in the hermetic rotary dehumidifier is composed of a two-part flow channel, which is composed of a two-part split flow channel with high heat transfer that enables regeneration heat to be imparted to each other and removal of the heat of adsorption. Therefore, it is possible to efficiently switch between the regeneration zone and the adsorption zone, to form a high-efficiency adsorption / desorption system, and to improve the operating coefficient and enable the use of latent heat of vaporization as well as sensible heat of air Can provide.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a schematic configuration of a cooling device of the present invention.
FIG. 2 is a cross-sectional view showing a schematic configuration of an embodiment of the hermetic rotary dehumidifier of FIG. 1;
FIG. 3 is a diagram showing a relational position between an end face of an adsorption rotating body of the hermetic rotary dehumidifier of FIG. 2 and a two-part fixed seal plate and a fan-shaped fixed seal plate.
4 is an exploded perspective view including a left axis of the hermetic rotary dehumidifier of FIG. 2. FIG.
FIG. 5 is a schematic diagram showing a schematic configuration of a conventional air cooling cycle.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Sealing rotary dehumidifier 10a Regeneration zone 10b Adsorption zone 10c Vacuum pump 11 Adsorption rotary body 12a, 12b, 12c, 12d Two-part fixed sealing plate 13a, 13b, 14a, 14b Fan-shaped fixed sealing plate 15a, 15b, 16a, 16b, 18a , 18b, 17a, 17b Connecting recess 20 Main body 21a, 21b Bracket 22a, 23a Spring 25 Rotating shaft core 29 Vacuum desorption channel 30 Adsorption channel 31 Adsorbent 32 Cooling fluid channel 33 Heating fluid channel 41a, 41b, 42a -42e, 43a-43e Double split flow path

Claims (6)

空気を媒体として圧縮機、放熱器、膨張機の順よりなる流路を介して低温空気を形成して、冷却用熱負荷を冷却する空気冷却サイクルにおいて、
前記圧縮機と膨張機との間に吸着剤を内蔵する吸着回転体を持つ密閉回転除湿機を設け、介在する放熱器の手前に前記回転除湿機の再生ゾーンを設け、該ゾーンで圧縮機の吐出ガスを加熱流体として使用して、吸着回転体に内蔵する吸着剤の真空脱着をさせ、
前記放熱器と膨張機との間に前記密閉回転除湿機の吸着ゾーンを設け、前記放熱器を経由した低温ガスを前記吸着回転体の再生脱着した吸着剤により冷却流体の冷却のもとに吸着させ、
前記吸着剤の連続的脱吸着とともに吐出ガスの連続的排熱放出と乾燥とを可能にする構成としたことを特徴とする冷却装置。
In the air cooling cycle that cools the heat load for cooling by forming low temperature air through the flow path consisting of the compressor, radiator, and expander in the order of air as a medium,
A hermetic rotary dehumidifier having an adsorption rotator containing an adsorbent is provided between the compressor and the expander, a regeneration zone of the rotary dehumidifier is provided in front of the intervening radiator, and the compressor Using the discharge gas as a heating fluid, vacuum desorption of the adsorbent built in the adsorption rotating body
An adsorption zone of the hermetic rotary dehumidifier is provided between the radiator and the expander, and the low-temperature gas that has passed through the radiator is adsorbed under cooling of the cooling fluid by the adsorbent that is regenerated and desorbed from the adsorption rotor. Let
A cooling device characterized in that the adsorbent can be continuously desorbed and discharged exhaust gas can be discharged continuously and dried.
前記密閉回転除湿機の再生ゾーンには圧縮機吐出ガスの供給機構と真空吸引機構とを設け、吸着ゾーンには放熱器からの低温ガスの供給機構と冷却流体の供給機構とを設け、
前記吸着回転体は両端の対向位置には回転体を前記二分割ゾーンに分割する二分割固定シール板を設けるとともに、内筒及び外筒のいずれかに吸着剤を充填した二重円筒構造体を法線方向の貫通隔壁により前記二分割固定シール板より狭い幅での内筒、外筒の2連分劃流路よりなる多分劃2連流路により構成し、
前記二分割固定シール板を経由する毎に前記多分劃2連流路に流出入する流体の切り替えを順次行なう構成としたことを特徴とする請求項1記載の冷却装置。
The regeneration zone of the hermetic rotary dehumidifier is provided with a compressor discharge gas supply mechanism and a vacuum suction mechanism, and the adsorption zone is provided with a low temperature gas supply mechanism and a cooling fluid supply mechanism from a radiator,
The adsorption rotator is provided with a double-divided fixed seal plate that divides the rotator into the two-divided zones at opposite positions at both ends, and a double cylindrical structure in which an adsorbent is filled in either the inner cylinder or the outer cylinder. A normal through-direction partition wall is constituted by a two-part flow channel, which is composed of a double-part flow channel of an inner cylinder and an outer cylinder having a narrower width than the two-part fixed sealing plate,
2. The cooling device according to claim 1, wherein each time the fluid passes through the two-part fixed sealing plate, the fluid flowing into and out of the two-way continuous channel is sequentially switched.
前記多分劃2連流路は、
再生ゾーンにおいては、二重円筒体の内外筒の何れか一方に形成された真空脱着用の多分劃流路と、該流路に隣接した他方に設けた加熱流体用の多分劃流路とより構成し、
吸着ゾーンにおいては、前記二重円筒体の内外筒の前記真空脱着流路と同じ側に形成され低温ガスが流入する吸着用の多分劃流路と、該流路に隣接した他方側に設けた冷却流体用の多分劃流路とより構成したことを特徴とする請求項2記載の冷却装置。
Perhaps the 劃 duplex channel is
In the regeneration zone, a vacuum removal / removal maybe flow path formed in one of the inner and outer cylinders of the double cylinder and a heating fluid flow breaker provided on the other side adjacent to the flow path. Configure
In the adsorption zone, it is provided on the other side adjacent to the flow path for adsorption, which is formed on the same side as the vacuum desorption flow path of the inner and outer cylinders of the double cylinder and into which low temperature gas flows. 3. The cooling device according to claim 2, wherein the cooling device is composed of a cooling fluid flow channel.
前記吸着回転体は、該回転体の両端の対向位置に設けた二分割固定シール板による被覆端面以外の回転体両端の左側端面には真空脱着流路と加熱流体流路の端面を覆う扇形固定シール板を設け、右側端面には吸着流路と冷却流体流路の端面を覆う扇形固定シール板を設け、
前記各扇形固定シール板の端面接触側に前記回転体の内外筒のそれぞれに形成された流路の出入り口を結ぶ連絡凹路を設ける構成とし、
前記真空脱着流路の両端出口の連絡凹路には脱着蒸気を吸引する真空空気の吸引口を設け、加熱流体流路の両端出口の連絡凹路には加熱流体である吐出ガスの出入り口を設け、前記吸着流路の両端出口の連絡凹路には被吸着流体の低温ガスの出入口を設け、冷却流体流路の両端出口の連絡凹路には冷却流体の出入口を設ける構成としたことを特徴とする請求項1記載の冷却装置。
The adsorption rotator is fan-shaped fixed to the left end surfaces of both ends of the rotating body other than the coated end surfaces by the two-part fixed sealing plates provided at opposite positions of the both ends of the rotating body so as to cover the end faces of the vacuum desorption channel and the heating fluid channel. A seal plate is provided, and a fan-shaped fixed seal plate that covers the end surfaces of the adsorption flow path and the cooling fluid flow path is provided on the right end surface,
A configuration is provided in which a connecting recess that connects the entrance and exit of the flow path formed in each of the inner and outer cylinders of the rotating body is provided on the end surface contact side of each fan-shaped fixed seal plate,
A vacuum air suction port for sucking desorption vapor is provided in the communication recess at both ends of the vacuum desorption channel, and a discharge gas outlet / inlet for heating fluid is provided in the communication recess at both ends of the heating fluid channel. The low temperature gas inlet / outlet of the fluid to be adsorbed is provided in the connecting recess at both ends of the adsorption channel, and the cooling fluid inlet / outlet is provided in the connecting recess at both ends of the cooling fluid channel. The cooling device according to claim 1.
前記吸着回転体は、隣接する内筒、外筒よりなる回転可能の一体構造の気密構造で形成され、内筒と外筒との隣接部材は熱交換可能の高伝熱性素材で構成したことを特徴とする請求項1記載の冷却装置。The adsorption rotating body is formed of a rotatable integral airtight structure composed of an adjacent inner cylinder and an outer cylinder, and the adjacent members of the inner cylinder and the outer cylinder are made of a heat-exchangeable high heat transfer material. The cooling device according to claim 1. 前記吸着回転体は、再生ゾーンにおいては、吸着剤の真空脱着流路を外筒側に設け吸着剤を充填する構造とし、加熱流体流路は内筒側に設ける構成とし、
吸着ゾーンにおいては、吸着流路を外筒側に設け吸着剤を充填する構造とし、冷却流体流路は内筒側に設ける構成としたことを特徴とする請求項1の冷却装置。
In the regeneration zone, the adsorption rotator has a structure in which an adsorbent vacuum desorption channel is provided on the outer cylinder side and is filled with the adsorbent, and a heating fluid channel is provided on the inner cylinder side.
The cooling device according to claim 1, wherein the adsorption zone has a structure in which an adsorption flow path is provided on the outer cylinder side and is filled with an adsorbent, and a cooling fluid flow path is provided on the inner cylinder side.
JP2000020439A 2000-01-28 2000-01-28 Cooling system Expired - Fee Related JP4131531B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000020439A JP4131531B2 (en) 2000-01-28 2000-01-28 Cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000020439A JP4131531B2 (en) 2000-01-28 2000-01-28 Cooling system

Publications (2)

Publication Number Publication Date
JP2001208440A JP2001208440A (en) 2001-08-03
JP4131531B2 true JP4131531B2 (en) 2008-08-13

Family

ID=18546999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000020439A Expired - Fee Related JP4131531B2 (en) 2000-01-28 2000-01-28 Cooling system

Country Status (1)

Country Link
JP (1) JP4131531B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5624443B2 (en) * 2010-12-02 2014-11-12 株式会社ササクラ Air conditioner
CN103776113B (en) * 2014-01-16 2016-08-24 陕西科技大学 A kind of dehumidified air adjusting means
CN103868266B (en) * 2014-03-23 2016-05-18 龚炳新 Novel energy-conserving refrigeration plant
CN108266842A (en) * 2018-01-29 2018-07-10 青岛志青华新能源有限公司 A kind of compression air-conditioning system
CN115075900A (en) * 2022-04-28 2022-09-20 哈尔滨工业大学 Adsorption type compressed supercritical CO 2 Combined heat and power storage and supply system and operation method thereof
CN115163229A (en) * 2022-08-03 2022-10-11 哈尔滨工业大学 Transcritical and supercritical coupled compressed CO 2 Energy storage system and method for operating same
CN115306500A (en) * 2022-08-03 2022-11-08 哈尔滨工业大学 Transcritical compressed carbon dioxide energy storage system and operation method thereof
CN117160179B (en) * 2023-10-26 2024-02-13 福建德尔科技股份有限公司 Raw material purification equipment for preparing electronic grade chlorine trifluoride

Also Published As

Publication number Publication date
JP2001208440A (en) 2001-08-03

Similar Documents

Publication Publication Date Title
US8276892B2 (en) Humidity controller
JP4131531B2 (en) Cooling system
JPH11118192A (en) Air conditioner with dehumidifying function
CN210385380U (en) Heat exchange device and freeze dryer
WO2014208083A1 (en) Dehumidification device and dehumidification system
CN107921353A (en) Rotary adsorption dehumifier for compressed gas
TW201831840A (en) Dehumidifier
JP3831959B2 (en) Adsorption type refrigerator
JP3837339B2 (en) Dehumidification cooling unit
KR101207947B1 (en) Apparatus for dehumidifying and cooling air
JP2008142656A (en) Dehumidification apparatus
JP3879762B2 (en) Humidity control device
JP4325716B2 (en) Humidity control device
JP2010156498A (en) Refrigerating device
JP2011177632A (en) Method and apparatus for dehumidifying compressed gas
JP2002186824A (en) Dehumidifier
JP2000241041A (en) Adsorption refrigerating machine
JP2014129950A (en) Humidification unit
CN112337272A (en) Adsorption separation device
WO2019087695A1 (en) Adsorption type refrigeration device
KR100590974B1 (en) Aircon system using magnetocaloric effect
JP2004321885A (en) Humidity control element
CN214182451U (en) Adsorption separation device
JP7129942B2 (en) refrigerator
JPH0942157A (en) Air compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080523

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080523

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees