JPH06310473A - Fine machining device and method therefor - Google Patents

Fine machining device and method therefor

Info

Publication number
JPH06310473A
JPH06310473A JP12081693A JP12081693A JPH06310473A JP H06310473 A JPH06310473 A JP H06310473A JP 12081693 A JP12081693 A JP 12081693A JP 12081693 A JP12081693 A JP 12081693A JP H06310473 A JPH06310473 A JP H06310473A
Authority
JP
Japan
Prior art keywords
processed
laser beam
magnetic field
processing
machined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12081693A
Other languages
Japanese (ja)
Inventor
Yoshitaka Goto
吉孝 後藤
Masao Nagakubo
雅夫 永久保
Seiji Fujino
誠二 藤野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP12081693A priority Critical patent/JPH06310473A/en
Publication of JPH06310473A publication Critical patent/JPH06310473A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To expand the object to be machined of a fine machining device by laying out a pair of counter electrodes where voltage is applied so that electric field is applied to a material to be machined in the incidence direction of laser beams in a vacuum bath and the material to be machined can be electrified. CONSTITUTION:An object 1 to be machined is installed between counter electrodes 4 and 5 inside a vacuum bath 9 where pressure is reduced. Laser beams 2 are applied via a crystal window so that a machining hole can be formed on the surface of the object 1 to be machined by focusing light with a lens 3. The counter electrodes 4 and 5 are laid out so that electric field can be applied to the object 1 to be machined in the vertical direction which is the machining direction by a high-voltage power supply 6 and the laser beams 2 through the crystal window are applied to the object 1 to be machined from an opening 10 provided at the counter electrode 4, thus applying magnetic field in the vertical direction by a high magnetic field coil 7, thus preventing machining residues from remaining at a site to be machined.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は微細加工技術に関し、微
細トレンチ孔を高アスペクト比に形成する技術に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fine processing technique, and more particularly to a technique for forming a fine trench hole with a high aspect ratio.

【0002】[0002]

【従来の技術】従来、微細加工装置・方法には集束イオ
ンビーム(Focused Ion Beam,FIB)による微細加工装置
(塩川,精密工学会誌55/2/1989,P32-36)や微細放電加
工機などがある。これらは微細なトレンチ孔を形成する
のに優れた方法である。FIB装置では、サブμmレベ
ルの加工を実現している。
2. Description of the Related Art Conventionally, microfabrication devices and methods include focused ion beam (FIB) microfabrication devices (Shiokawa, Journal of Precision Engineering 55/2/1989, P32-36) and micro electric discharge machines. There is. These are excellent methods for forming fine trench holes. The FIB device realizes sub-μm level processing.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、FIB
装置はイオンによって加工するため、その高エネルギー
イオンにより結晶的な損傷の心配のある被加工対象は用
いることはできず、また加工孔の形状はV字型となり加
工層に再付着層が存在するため、種々の問題が存在す
る。また、微細放電加工の場合は、放電させる電極の太
さ(細さ)で加工精度が決まり、加工対象が導電性のも
のに限られる。いずれも加工時に発生する残渣が中性物
のため、この残渣を加工部位から取り除くためには気流
や液体流を利用しなければならないが、加工孔の径が小
さければその除去は困難になる。FIB装置は真空中で
あるので流体を利用しての除去は困難で再付着してしま
うのである。したがってこれらの制約が加工の限度とな
っている問題がある。
However, the FIB
Since the device is processed by ions, it is not possible to use an object to be processed which may cause crystalline damage due to the high-energy ions, and the shape of the processing hole is V-shaped, and a re-adhesion layer exists in the processing layer. Therefore, there are various problems. Further, in the case of fine electric discharge machining, the processing accuracy is determined by the thickness (thinness) of the electrode to be discharged, and the processing target is limited to a conductive object. In both cases, since the residue generated during processing is a neutral substance, it is necessary to use an air flow or a liquid flow to remove this residue from the processing site, but if the diameter of the processing hole is small, it will be difficult to remove it. Since the FIB device is in a vacuum, it is difficult to remove it by using a fluid, and redeposition occurs. Therefore, there is a problem that these restrictions are the limits of processing.

【0004】[0004]

【課題を解決するための手段】上記の課題を解決するた
め第一の発明の構成は、レーザービームの照射によって
被加工材料の所定部位にレーザーアブレーションを生ぜ
しめて加工する微細加工装置において、前記被加工材料
を設置する台を内部に備え、前記レーザービームの透過
窓を備えた真空槽と、前記真空槽中で前記被加工材料に
対して前記レーザービームの入射方向に電界が掛かるよ
うに配置され、前記被加工材料が帯電されるように電圧
印加された一組の対向電極とからなることを特徴とす
る。また第一関連発明の構成は、前記入射方向と同一方
向に磁界がかかるように配置された磁界コイルで、レー
ザーアブレーションによって前記被加工材料から生じた
荷電粒子を電磁的に誘導して、加工部位から移動させる
誘導手段を有することを特徴とする。第二関連発明の構
成は、前記透過窓に直角な方向に第二の磁界をかけて、
誘導を受けて移動した前記荷電粒子が前記透過窓に当た
らないように電磁的に排除される排除手段を有すること
を特徴とする。第三関連発明の構成は、加工中に、必要
に応じて少なくとも一つの反応性ガスを前記被加工材料
に暴露させるガス供給手段を前記真空槽に有することを
特徴とする。
In order to solve the above-mentioned problems, the structure of the first invention is a fine processing apparatus which causes laser ablation at a predetermined portion of a material to be processed by irradiation of a laser beam to perform processing. A vacuum chamber provided with a table for placing a processing material therein and having a transmission window for the laser beam, and arranged so that an electric field is applied to the material to be processed in the vacuum chamber in the incident direction of the laser beam. And a pair of counter electrodes to which a voltage is applied so that the material to be processed is charged. The structure of the first related invention is a magnetic field coil arranged so that a magnetic field is applied in the same direction as the incident direction, and electromagnetically induces charged particles generated from the material to be processed by laser ablation to form a processed portion. It is characterized by having a guiding means for moving from. The configuration of the second related invention is to apply a second magnetic field in a direction perpendicular to the transmission window,
It is characterized by having an excluding means for electromagnetically excluding the charged particles moved by receiving the induction so as not to hit the transmission window. The structure of the third related invention is characterized in that the vacuum chamber has a gas supply means for exposing at least one reactive gas to the material to be processed as needed during processing.

【0005】また他の発明の構成は、負圧程度以上の真
空中において、被加工材料にレーザービームを照射して
レーザーアブレーションを生ぜしめてイオン化された荷
電粒子を飛散させ、前記被加工材料に対して帯電される
ように電圧印加され、前記レーザービームの入射方向に
印加された電界と、同じく前記入射方向と同一方向に印
加された磁界とで、前記被加工材料から飛散した該荷電
粒子を電磁的に加工部位から移動させるとともに、移動
した該荷電粒子を前記レーザービームの導入される石英
窓にぶつけないように第二の磁界でさらに電磁的に誘導
することを特徴とする。この発明の関連発明の構成は、
前記レーザービームの照射がパルス状に照射され、加
工、残渣除去が交互に行われることを特徴とする。
According to another aspect of the invention, the material to be processed is irradiated with a laser beam in a vacuum of a negative pressure or higher to cause laser ablation to scatter ionized charged particles, and the material to be processed is scattered. Voltage is applied so that the charged particles are electrically charged, and an electric field applied in the incident direction of the laser beam and a magnetic field applied in the same direction as the incident direction cause the charged particles scattered from the material to be processed to be electromagnetic. It is characterized in that the charged particles that have moved are further electromagnetically induced by a second magnetic field so as not to hit the quartz window into which the laser beam is introduced. The structure of the related invention of this invention is
It is characterized in that the laser beam irradiation is performed in a pulsed manner, and processing and residue removal are performed alternately.

【0006】[0006]

【作用】負圧程度以上の真空槽中の被加工材料の加工し
たい所定箇所に、集光レンズで極細のビームとしたレー
ザーを石英窓を通して照射する。同時に、被加工材料
に、対向電極に電圧を印加して表面を帯電させる。レー
ザーを照射された被加工材料はレーザーアブレーション
を生じて加工部位から原子、イオン、電子が飛び出す。
この領域にレーザービーム方向と同じ方向に電界が掛か
っているので、この飛び出してきた荷電粒子はクーロン
力を受けて、電界強度、荷電量、粒子質量などによって
決まる運動をし、加工部位から迅速に移動する。中性で
飛び出してきた原子は、やはり飛び出してきた電子と衝
突するためイオン化され移動除去される。
Function A laser beam made into an extremely fine beam by a condenser lens is irradiated through a quartz window to a predetermined portion of the material to be processed in a vacuum chamber having a negative pressure or more. At the same time, a voltage is applied to the counter electrode of the material to be processed to charge the surface. The material to be processed that has been irradiated with laser causes laser ablation, and atoms, ions, and electrons fly out from the processing site.
Since an electric field is applied to this area in the same direction as the laser beam direction, the ejected charged particles receive Coulomb force and make a motion determined by the electric field strength, charge amount, particle mass, etc. Moving. The atoms that have jumped out in neutrality are also ionized and moved away because they collide with the electrons that have jumped out.

【0007】[0007]

【発明の効果】加工部位に加工残渣が残らないのでレー
ザービームの届く範囲まで加工が深く形成できる。導電
性の無い材料でも高アスペクト比の孔を形成するための
加工対象とすることができた。原則として他の物質でエ
ッチングする訳ではないので汚染の心配がない。またパ
ルス動作で加工と残渣除去が交互に行われるので効率よ
く加工が進む。
[Effects of the Invention] Since no processing residue remains on the processing site, the processing can be formed deep within the reach of the laser beam. Even a non-conductive material could be processed to form a high aspect ratio hole. As a general rule, there is no worry of contamination because it is not etched with other substances. Further, since the machining and the residue removal are alternately performed by the pulse operation, the machining progresses efficiently.

【0008】[0008]

【実施例】以下、本発明を具体的な実施例に基づいて説
明する。図1は本発明を実施する真空槽の模式断面図
で、加工対象1は図示しない真空ポンプで減圧された真
空槽9内の対向電極4、5の間に設置される。加工対象
1の表面に垂直に加工孔を形成するようレーザービーム
2が石英窓8を通して、レンズ3によって2μm以下に
集光されて照射される。レーザーは波長193nmのAr
Fエキシマレーザーを用いレーザーアブレーションを生
じさせ、所定の部位に照射できるように水平方向に移動
可能となっている。対向電極4、5は高圧電源6によっ
て加工対象1に対して加工方向である垂直方向に電界が
かかるように配置され、石英窓8を透過したレーザービ
ーム2は上の対向電極4に設けられた開口部10より加
工対象1に照射される。また、高磁界コイル7によって
垂直方向に磁界がかけられるようになっている。
EXAMPLES The present invention will be described below based on specific examples. FIG. 1 is a schematic cross-sectional view of a vacuum chamber for carrying out the present invention. A processing target 1 is installed between opposing electrodes 4 and 5 in a vacuum chamber 9 whose pressure is reduced by a vacuum pump (not shown). A laser beam 2 passes through a quartz window 8 and is focused by a lens 3 to 2 μm or less so as to form a processing hole perpendicular to the surface of the processing target 1. The laser is Ar with a wavelength of 193 nm
Laser ablation is generated by using an F excimer laser, and it is movable in the horizontal direction so that a predetermined portion can be irradiated. The counter electrodes 4 and 5 are arranged by the high-voltage power source 6 so that an electric field is applied to the object 1 to be processed in the vertical direction, and the laser beam 2 transmitted through the quartz window 8 is provided on the counter electrode 4 above. The object to be processed 1 is irradiated through the opening 10. A magnetic field is applied in the vertical direction by the high magnetic field coil 7.

【0009】図2に詳しく示すように、レーザービーム
2が照射されると、加工対象1はレーザーの光エネルギ
ーを吸収し、文献(レーザー研究第18巻第4号、P3
2〜40)に解説される様にレーザーアブレーションを
起こす。すると加工対象のレーザーの当たった所はプラ
ズマ12の状態となり、そこから速度エネルギーが数e
V〜数100eV程度の高い運動エネルギーを持つイオ
ン13が飛び出す。例えば加工対象が金属等の場合、イ
オンは正電荷なので、加工対象が正に帯電するよう対向
電極に数十V以上、望ましくは数百V以上印加しておく
と大きなクーロン力を受けて、加工対象の上面にある負
に帯電した対向電極に向かって移動する。更にここで図
2のBのように加工孔の方向と平行な磁界11が掛かっ
ていると、放出された粒子でイオン化されているものは
ローレンツ力を受けて、
As shown in detail in FIG. 2, when the laser beam 2 is irradiated, the object 1 to be processed absorbs the light energy of the laser, and it is described in the literature (Laser Research Vol. 18, No. 4, P3).
Laser ablation occurs as described in 2-40). Then, the place where the laser to be processed hits becomes the state of plasma 12, and the velocity energy is several e from there.
Ions 13 having a high kinetic energy of about V to several hundred eV jump out. For example, when the object to be processed is a metal or the like, the ions are positively charged. Therefore, if a voltage of tens of volts or more, preferably several hundreds of volts or more is applied to the counter electrode so that the object to be processed is positively charged, a large Coulomb force is applied, and the processing is performed. It moves towards a negatively charged counter electrode on the top surface of the object. Further, here, when a magnetic field 11 parallel to the direction of the processed hole is applied as shown in FIG. 2B, the emitted particles that are ionized receive Lorentz force,

【数1】r=mv/qB ただし、m:イオンの重さ、v:磁界に対して垂直な方
向の速度、q:電荷数、B:磁束密度。 という半径rを描いて円運動する。もともと同時にクー
ロン力で対向電極4に向けて運動しているので、結局イ
オンは螺旋運動をしながら加工部位より放出される。加
工対象1はイオンと同じ電荷に帯電しているので、加工
孔の側壁からはわずかながらも反発を受け衝突を起こし
にくくなる(図3参照)。つまりイオンは任意の方向に
飛び出すが、これらの効果によって再付着は生じないで
加工孔から除去される。
Where r is mv / qB, m is the weight of ions, v is the velocity in the direction perpendicular to the magnetic field, q is the number of charges, and B is the magnetic flux density. A circular motion is performed by drawing a radius r. At the same time, since the Coulomb force is moving toward the counter electrode 4, ions are eventually ejected from the processed portion while making a spiral motion. Since the object 1 to be processed is charged with the same electric charge as the ions, the object 1 receives a slight repulsion from the side wall of the processed hole and is less likely to cause collision (see FIG. 3). That is, the ions are ejected in any direction, but due to these effects, redeposition does not occur and they are removed from the processed hole.

【0010】加工対象1を離れたイオン13はかなりの
量がレーザービームの入射する開口部5を通り抜けて石
英窓8の方に向かうため、窓で付着する恐れがある。こ
のため、窓の下で更に、図示しないコイルにより窓に垂
直な磁界14で石英窓8に向かうイオンの進行方向を変
えて、窓に付着しないようにする。また真空槽内に飛び
出したイオンは真空度を下げるための真空ポンプによっ
て排気されていく。
A large amount of the ions 13 that have left the object 1 to be processed pass through the opening 5 into which the laser beam is incident and head toward the quartz window 8, so there is a risk that they will be attached at the window. Therefore, below the window, a magnetic field 14 perpendicular to the window is used to change the traveling direction of the ions toward the quartz window 8 by a coil (not shown) to prevent the ions from adhering to the window. Ions that have jumped out into the vacuum chamber are exhausted by a vacuum pump for lowering the degree of vacuum.

【0011】またレーザーアブレーションで飛び出した
電子については、速度エネルギーが1eV以下で放出さ
れた場合を考えると、磁束密度Bが5000〔G〕の場
合、半径rが6.8μm以下の運動となり、加工半径が
この程度以下であっても、電子は加工孔内で回転運動を
しつつ他のイオン化していない原子に衝突してイオン化
させるので原子の再付着を防ぎ、加工効率を上げる。こ
れはプラズマといっても100%の原子がイオン化され
ていないためである。これ以外の速度の場合でも電子が
プラズマ中にある間は衝突によりイオン化する効果があ
る。しかし電子ももちろんクーロン力を受けるので加工
対象側に移動し、加工対象に当たってその電位に吸収さ
れる。
Regarding the electrons ejected by laser ablation, considering the case where the velocity energy is emitted at 1 eV or less, when the magnetic flux density B is 5000 [G], the radius r becomes a motion of 6.8 μm or less, Even if the radius is less than this level, the electrons collide with other non-ionized atoms to be ionized while rotating in the machining hole, thereby preventing reattachment of atoms and improving machining efficiency. This is because 100% of the atoms in plasma are not ionized. Even if the velocity is other than this, there is an effect that the electrons are ionized by collision while they are in the plasma. However, since electrons also receive Coulomb force, they move to the side of the object to be processed, and hit the object to be absorbed by the potential.

【0012】被加工対象はレーザーを吸収する固体物質
ならば何でも可能で、金属、セラミック、高分子化合物
等が含まれ、幅広い応用が考えられる。ただレーザービ
ームはイオン化するためのエネルギーを加工対象の原子
に与えるためには紫外線程度の波長より高いエネルギー
のレーザーである必要がある。
The object to be processed can be any solid substance that absorbs laser, and includes metals, ceramics, polymer compounds and the like, and is considered to have a wide range of applications. However, the laser beam needs to be a laser having an energy higher than the wavelength of ultraviolet rays in order to give the atom for ionization to the atom to be processed.

【0013】加工孔中でイオンを回転させるための高磁
界コイル7は図1では真空槽の外部に設置してあるが、
真空槽内部に設置しても効果は同様で、むしろ磁界強度
を高めることができる。また、ガス供給手段により加工
中にエッチングガスを導入して、通常のエッチング反応
を利用して加工の効果を高めてもよい。この場合には反
応生成物に対してもレーザーによってイオン化され除去
されることになる。
The high magnetic field coil 7 for rotating the ions in the processed hole is installed outside the vacuum chamber in FIG.
Even if it is installed inside the vacuum chamber, the effect is the same, and rather the magnetic field strength can be increased. Further, an etching gas may be introduced during processing by the gas supply means to enhance the processing effect by utilizing a normal etching reaction. In this case, the reaction product is also ionized and removed by the laser.

【0014】またレーザーの照射を連続ではなくパルス
化して照射すると、高エネルギー密度の照射によるプラ
ズマ発生と、未照射時にイオン排出の状態とが交互にお
こり、効率的な孔加工が実現する。なお、本実施例は電
界及び磁界を印加した場合であるが、電界をかけたのみ
の場合でも効果はある。
If the laser irradiation is not pulsed but pulsed, plasma generation due to high energy density irradiation and ion ejection state during non-irradiation alternate, and efficient hole processing is realized. In this embodiment, the electric field and the magnetic field are applied, but the effect is obtained even when only the electric field is applied.

【0015】以上のように本発明による加工装置および
加工方法は、残渣が加工壁に付着しないため、非常に深
い孔が加工できる。また、特に効率よく孔加工を施すこ
とができ、また加工対象を導電性のものに限らず、微細
加工の範囲を広げることができる。
As described above, in the processing apparatus and the processing method according to the present invention, since the residue does not adhere to the processing wall, a very deep hole can be processed. Further, it is possible to perform the hole processing particularly efficiently, and the processing target is not limited to the conductive object, and the range of fine processing can be expanded.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示す微細加工装置の模式的断
面図。
FIG. 1 is a schematic cross-sectional view of a microfabrication device showing an embodiment of the present invention.

【図2】加工対象部分の説明図。FIG. 2 is an explanatory diagram of a processing target portion.

【図3】加工孔のイオン化の状態の説明図。FIG. 3 is an explanatory diagram of an ionized state of a processed hole.

【図4】加工装置を上から見た断面図。FIG. 4 is a cross-sectional view of the processing device as viewed from above.

【符号の説明】[Explanation of symbols]

1 加工対象 2 レーザービーム 3 集光レンズ 4、5 対向電極 6 高圧電源 7 高磁界コイル 8 石英窓 9 真空槽 10 開口部 11 磁界方向 12 プラズマ 13 イオン(加工くず) 14 方向転換用の磁界 15 絶縁体 16 加工対象表面の正電荷 1 Processing Target 2 Laser Beam 3 Condensing Lens 4, 5 Counter Electrode 6 High Voltage Power Supply 7 High Magnetic Field Coil 8 Quartz Window 9 Vacuum Chamber 10 Opening 11 Magnetic Field Direction 12 Plasma 13 Ions (Processing Waste) 14 Magnetic Field for Direction Change 15 Insulation Body 16 Positive charge on the surface to be processed

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】レーザービームの照射によって被加工材料
の所定部位にレーザーアブレーションを生ぜしめて加工
する微細加工装置において、 前記被加工材料を設置する台を内部に備え、前記レーザ
ービームの透過窓を備えた真空槽と、 前記真空槽中で前記被加工材料に対して前記レーザービ
ームの入射方向に電界が掛かるように配置され、前記被
加工材料が帯電されるように電圧印加された一組の対向
電極とからなることを特徴とする微細加工装置。
1. A microfabrication apparatus for performing laser ablation at a predetermined portion of a material to be processed by laser beam irradiation, wherein a table for installing the material to be processed is provided inside, and a transmission window for the laser beam is provided. A vacuum chamber, and a pair of opposed electrodes that are arranged so that an electric field is applied to the material to be processed in the vacuum chamber in the incident direction of the laser beam, and a voltage is applied so that the material to be processed is charged. A microfabrication device comprising an electrode.
【請求項2】前記入射方向と同一方向に磁界がかかるよ
うに配置された磁界コイルで、レーザーアブレーション
によって前記被加工材料から生じた荷電粒子を電磁的に
誘導して、加工部位から移動させる誘導手段を有するこ
とを特徴とする請求項1に記載の微細加工装置。
2. A magnetic field coil arranged so that a magnetic field is applied in the same direction as the incident direction, and electromagnetically induces charged particles generated from the material to be processed by laser ablation to move the charged particles from the processing site. The microfabrication apparatus according to claim 1, further comprising means.
【請求項3】前記透過窓に直角な方向に第二の磁界をか
けて、誘導を受けて移動した前記荷電粒子が前記透過窓
に当たらないように電磁的に排除される排除手段を有す
ることを特徴とする請求項1に記載の微細加工装置。
3. Excluding means for electromagnetically excluding the charged particles moved by receiving a second magnetic field in a direction perpendicular to the transmission window so as not to hit the transmission window. The fine processing apparatus according to claim 1, wherein:
【請求項4】加工中に、必要に応じて少なくとも一つの
反応性ガスを前記被加工材料に暴露させるガス供給手段
を前記真空槽に有することを特徴とする請求項1に記載
の微細加工装置。
4. The microfabrication apparatus according to claim 1, wherein the vacuum chamber is provided with a gas supply means for exposing at least one reactive gas to the material to be processed as needed during processing. .
【請求項5】負圧程度以上の真空中において、 被加工材料にレーザービームを照射してレーザーアブレ
ーションを生ぜしめてイオン化された荷電粒子を飛散さ
せ、 前記被加工材料に対して帯電されるように電圧印加さ
れ、前記レーザービームの入射方向に印加された電界
と、同じく前記入射方向と同一方向に印加された磁界と
で、前記被加工材料から飛散した該荷電粒子を電磁的に
加工部位から移動させるとともに、 移動した該荷電粒子を前記レーザービームの導入される
石英窓にぶつけないように第二の磁界でさらに電磁的に
誘導することを特徴とする微細加工方法。
5. A material to be processed is irradiated with a laser beam in a vacuum of a negative pressure or higher to cause laser ablation and ionized charged particles are scattered, so that the material to be processed is charged. The charged particles scattered from the material to be processed are electromagnetically moved from the processing site by a voltage applied and an electric field applied in the direction of incidence of the laser beam and a magnetic field applied in the same direction as the direction of incidence. In addition, the fine machining method is characterized in that the moved charged particles are further electromagnetically induced by a second magnetic field so as not to hit the quartz window into which the laser beam is introduced.
【請求項6】前記レーザービームの照射がパルス状に照
射され、 加工、残渣除去が交互に行われることを特徴とする請求
項5に記載の微細加工方法。
6. The fine processing method according to claim 5, wherein the laser beam irradiation is performed in a pulsed manner, and the processing and the residue removal are performed alternately.
JP12081693A 1993-04-24 1993-04-24 Fine machining device and method therefor Pending JPH06310473A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12081693A JPH06310473A (en) 1993-04-24 1993-04-24 Fine machining device and method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12081693A JPH06310473A (en) 1993-04-24 1993-04-24 Fine machining device and method therefor

Publications (1)

Publication Number Publication Date
JPH06310473A true JPH06310473A (en) 1994-11-04

Family

ID=14795687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12081693A Pending JPH06310473A (en) 1993-04-24 1993-04-24 Fine machining device and method therefor

Country Status (1)

Country Link
JP (1) JPH06310473A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012040573A (en) * 2010-08-16 2012-03-01 Fuji Electric Co Ltd Microprocessing method of sample
CN107877010A (en) * 2017-12-15 2018-04-06 广东工业大学 A kind of processing unit (plant) of micro-nano hole array
CN115488505A (en) * 2022-09-27 2022-12-20 哈尔滨工业大学(威海) Electromagnetic device and method for solving problem of energy shielding of magnesium alloy negative-pressure laser welding

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012040573A (en) * 2010-08-16 2012-03-01 Fuji Electric Co Ltd Microprocessing method of sample
CN107877010A (en) * 2017-12-15 2018-04-06 广东工业大学 A kind of processing unit (plant) of micro-nano hole array
CN107877010B (en) * 2017-12-15 2019-02-22 广东工业大学 A kind of processing unit (plant) of micro-nano hole array
CN115488505A (en) * 2022-09-27 2022-12-20 哈尔滨工业大学(威海) Electromagnetic device and method for solving problem of energy shielding of magnesium alloy negative-pressure laser welding

Similar Documents

Publication Publication Date Title
US7652272B2 (en) Plasma-based debris mitigation for extreme ultraviolet (EUV) light source
JP3860954B2 (en) Plasma processing apparatus with real-time particle filter
US7598495B2 (en) Methods and systems for trapping ion beam particles and focusing an ion beam
KR100242483B1 (en) Neutral particle beam treatment apparatus
KR970008344A (en) Method and apparatus for removing contaminants on the inner surface of an ion beam injector
JP2008535193A (en) Apparatus and process for generating, accelerating and propagating electron and plasma beams
JP2552433B2 (en) Method and apparatus for removing debris from laser plasma X-ray source
US5316970A (en) Generation of ionized air for semiconductor chips
TWI757620B (en) Systems and methods for workpiece processing using neutral atom beams
JP5224014B2 (en) System and method for removing contaminant particles from an ion beam
US3271556A (en) Atmospheric charged particle beam welding
JPH06310473A (en) Fine machining device and method therefor
JPH11207478A (en) Method and device therefor laser beam machining
JPH07266073A (en) Laser beam machining device
JP3404930B2 (en) Fine processing device and fine processing method
JP3752259B2 (en) Cluster ion beam sputtering method
EP1628335A1 (en) Surface treating method using ion beam and surface treating device
JP2924013B2 (en) Dry etching method
JP2002043293A (en) Method and device for dry etching
JPH0628991A (en) Electron beam exciting ion irradiation device
RU2655339C1 (en) Device for protection of lithographic equipment from dust metal particles
RU2039849C1 (en) Vacuum arc unit
JPH06252096A (en) Semiconductor processing device
JPH11176372A (en) Ion irradiation device
JP2003170289A (en) Laser processing apparatus and laser processing method