JPH06308471A - Optical element and its production - Google Patents

Optical element and its production

Info

Publication number
JPH06308471A
JPH06308471A JP29628793A JP29628793A JPH06308471A JP H06308471 A JPH06308471 A JP H06308471A JP 29628793 A JP29628793 A JP 29628793A JP 29628793 A JP29628793 A JP 29628793A JP H06308471 A JPH06308471 A JP H06308471A
Authority
JP
Japan
Prior art keywords
light
liquid crystal
optical element
refractive index
polymer material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29628793A
Other languages
Japanese (ja)
Other versions
JP3162235B2 (en
Inventor
Keiji Tanaka
敬二 田中
Shinji Tsuru
信二 津留
Kinya Kato
謹矢 加藤
Shigenobu Sakai
重信 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP29628793A priority Critical patent/JP3162235B2/en
Priority to US08/198,811 priority patent/US5751452A/en
Publication of JPH06308471A publication Critical patent/JPH06308471A/en
Priority to US08/661,018 priority patent/US5748272A/en
Application granted granted Critical
Publication of JP3162235B2 publication Critical patent/JP3162235B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PURPOSE:To enable the control of diffraction/rectilinear advance or reflection/ rectilinear advance of light by flatly or three-dimensionally arranging liquid crystal regions and high-polymer regions in such a manner that diffracted light or reflected light converges or disperses with incident collimated beams of light. CONSTITUTION:For example, the regions 105 consisting of a photo or thermosetting type high-polymer material having a refractive index n3 and nematic liquid crystals 106 variable in refractive index from n1 to n2 by electric fields are arranged at varied intervals between two transparent electrodes 103, 104 consisting of ITO films formed on glass substrates 101, 102. The element is provided with a power source 107 for changing the refractive index of the nematic liquid crystals 106. The element has the structure of the diffraction grating arranged alternately with the high-polymer materials 105 and the liquid crystals 106 and arranged therewith in such a manner that the periods of the high-polymer materials 105 and the liquid crystals 106 are longer the nearer the central part. The liquid crystal regions 106 and the high-polymer regions 105 are flatly or three-dimensionally arranged in such a manner that the diffracted light or reflected light converges or disperses with the incident collimated beams of light.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光の回折/直進または
反射/直進を電気的に制御可能で、入射平行光に対する
回折光と反射光が収束または分散する光学素子とその製
造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical element capable of electrically controlling diffraction / straightening or reflection / straightening of light and converging or dispersing diffracted light and reflected light with respect to incident parallel light, and a manufacturing method thereof. Is.

【0002】[0002]

【従来の技術】電圧によって光の回折/直進または反射
/直進を制御することができる光学素子を、われわれは
発明した(特願平3−295617号および特願平3−
341531号)。光の回折/直進を制御する光学素子
の構造を図25に示し、光の反射/直進を制御する光学
素子の構造を図26に示す。これらの光学素子は透明電
極1003および1004の間に高分子材料1005の
領域と液晶1006の領域とからなる周期構造を形成し
ている。液晶は電界により屈折率が変化するため、液晶
と高分子材料との屈折率差を変化させることができる。
図25において、液晶と高分子材料との屈折率差が大き
い場合には、位相形回折格子の原理(例えば「光学の原
理」、ボルン、ウォルフ著、東海大学出版を参照)に従
い、光を回折する。また、電圧を印加して液晶の屈折率
を変え、高分子材料と液晶との屈折率差を小さくすると
回折格子の構造が消失し、光をそのまま直進させること
ができる。したがって、光の回折/直進が制御できる。
一方、図26において液晶と高分子材料の屈折率差が大
きい場合には、多層膜の光学的性質から特定波長の光を
反射する。また、電圧を印加して液晶の屈折率を変え、
高分子材料と液晶との屈折率差を小さくすると、上記多
層構造が消失し光をそのまま直進させることができる。
したがって、光の反射/直進を制御できる。
2. Description of the Related Art We have invented an optical element capable of controlling the diffraction / straightening or the reflection / straightening of light by a voltage (Japanese Patent Application No. 3-295617 and Japanese Patent Application No. 3-295617).
341531). The structure of the optical element for controlling the diffraction / straightening of light is shown in FIG. 25, and the structure of the optical element for controlling the reflection / straightening of light is shown in FIG. These optical elements form a periodic structure composed of a region of polymer material 1005 and a region of liquid crystal 1006 between transparent electrodes 1003 and 1004. Since the refractive index of liquid crystal changes with an electric field, the difference in refractive index between the liquid crystal and the polymer material can be changed.
In FIG. 25, when the difference in the refractive index between the liquid crystal and the polymer material is large, the light is diffracted according to the principle of the phase-type diffraction grating (see, for example, “The Principle of Optics”, Born and Wolf, Tokai University Press). To do. Further, when a voltage is applied to change the refractive index of the liquid crystal so as to reduce the difference in refractive index between the polymer material and the liquid crystal, the structure of the diffraction grating disappears and the light can go straight. Therefore, the diffraction / straightening of light can be controlled.
On the other hand, in FIG. 26, when the refractive index difference between the liquid crystal and the polymer material is large, light of a specific wavelength is reflected due to the optical properties of the multilayer film. Also, applying a voltage changes the refractive index of the liquid crystal,
When the difference in the refractive index between the polymer material and the liquid crystal is reduced, the above-mentioned multilayer structure disappears and the light can go straight.
Therefore, the reflection / straightening of light can be controlled.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記光
学素子においては、平行な入射光を平行光として回折お
よび反射するものであった。このため、回折光および反
射光を収束または分散するためには、レンズなどの光学
素子を別途に設ける必要があり、光の収束または分散を
必要とする光学装置に適用するには、構成が複雑になる
という問題があった。
However, in the above optical element, parallel incident light is diffracted and reflected as parallel light. Therefore, in order to converge or disperse the diffracted light and the reflected light, it is necessary to separately provide an optical element such as a lens, and the configuration is complicated to apply to an optical device that requires converging or dispersion of light. There was a problem of becoming.

【0004】本発明は、回折/直進または反射/直進が
電気的に制御可能であり、さらに、入射平行光に対する
回折光および反射光が収束または分散するように、レン
ズなどの光学素子機能を備えた光学素子を得ることを目
的とする。
The present invention is capable of electrically controlling diffraction / straightening or reflection / straightening, and further has an optical element function such as a lens so that diffracted light and reflected light with respect to incident parallel light are converged or dispersed. The purpose is to obtain an optical element.

【0005】[0005]

【課題を解決するための手段】上記目的は、液晶と高分
子材料とからなる屈折率が異なる複数の領域を有し、電
界により上記液晶の屈折率を変化させ、入射光の回折/
直進または反射/直進を制御可能にした光学素子におい
て、上記回折光または反射光が入射平行光に対し収束ま
たは分散するように、上記液晶領域と上記高分子領域と
を平面的または立体的に配置することにより達成され
る。
The above object is to have a plurality of regions of liquid crystal and polymer material having different refractive indexes, and to change the refractive index of the liquid crystal by an electric field to diffract incident light.
In an optical element capable of controlling straight movement or reflection / straight movement, the liquid crystal region and the polymer region are arranged two-dimensionally or three-dimensionally so that the diffracted light or reflected light converges or disperses with respect to incident parallel light. It is achieved by

【0006】また、上記高分子材料に光または熱硬化性
樹脂を用い、複数の光を制御したレーザ光を上記液晶と
光または熱硬化性樹脂との混合物に照射し、レーザの干
渉パタンによる光の強弱層によって、液晶と高分子材料
とを分離して各領域を配置して上記光学素子を製造する
ことにより達成できる。
Further, a light or thermosetting resin is used as the polymer material, and a plurality of light-controlled laser beams are applied to the mixture of the liquid crystal and the light or the thermosetting resin, and light is generated by the interference pattern of the laser. This can be achieved by separating the liquid crystal and the polymer material by the strong and weak layers and arranging the respective regions to manufacture the optical element.

【0007】[0007]

【作用】本発明の光学素子は、電界により液晶の屈折率
を変化させ、光の回折/直進または反射/直進を制御す
ることが可能であり、かつ、上記回折光または反射光を
収束あるいは分散するように、レンズ等のように光の光
束を制御する光学素子としての機能を持たせることがで
きる。このため、レンズ等の光学素子を別途に設ける必
要がなく、光学装置の構成が簡単になる。
The optical element of the present invention is capable of controlling the diffraction / straightening or the reflection / straightening of light by changing the refractive index of the liquid crystal by an electric field, and converging or dispersing the diffracted light or reflected light. As described above, it is possible to provide a function as an optical element such as a lens for controlling the luminous flux of light. Therefore, it is not necessary to separately provide an optical element such as a lens, and the configuration of the optical device is simplified.

【0008】また、回折光または反射光が収束または分
散するように液晶の領域と高分子材料の領域とを配置す
るために、上記高分子材料の原料としては光または熱硬
化性樹脂を用い、複数の光束を制御したレーザ光を上記
液晶と光または熱硬化性樹脂との混合物に照射し、レー
ザの干渉パタンによる光の強弱層によって、上記液晶と
上記高分子材料とを分離する。上記手法を用いると、レ
ーザ光の光束を干渉パタンとして記録しているため、ホ
ログラフィの原理(例えば「ホログラフィ」大越孝敬
著、電子通信学会編、1977年を参照)に従い、照射
したレーザ光の光束を再現することができる。すなわ
ち、光学素子作製時に照射するレーザ光の光束を制御す
ることによって、多種多様の回折光束や反射光束を再現
することができ、かつ、上記回折光および反射光を電気
的に制御可能な光学素子を形成することができる。ま
た、レーザ照射だけの極めて簡単な作製方法で上記光学
素子を作製することができる。
Further, in order to arrange the liquid crystal region and the polymer material region so that the diffracted light or the reflected light converges or disperses, a light or thermosetting resin is used as a raw material of the polymer material, A mixture of the liquid crystal and light or a thermosetting resin is irradiated with a laser beam in which a plurality of light fluxes are controlled, and the liquid crystal and the polymer material are separated by a light intensity layer due to a laser interference pattern. When the above method is used, since the light flux of the laser light is recorded as an interference pattern, the light flux of the laser light emitted according to the principle of holography (for example, “Holography” written by Takataka Ogoshi, edited by Institute of Electronics and Communication Engineers, 1977). Can be reproduced. That is, a variety of diffracted light beams and reflected light beams can be reproduced by controlling the light beam of the laser light applied when manufacturing the optical element, and the diffracted light and the reflected light can be electrically controlled. Can be formed. Further, the above optical element can be manufactured by an extremely simple manufacturing method only by laser irradiation.

【0009】[0009]

【実施例】つぎに本発明の実施例を図面とともに説明す
る。図1は本発明による集光した回折光を得るための光
学素子を示す図、図2は回折光を分散させる光学素子を
示す図、図3は回折光を複数領域で集光できる光学素子
を示す図、図4は回折光を複数領域で分散できる光学素
子を示す図、図5は回折光の集光位置が素子の中央部か
らずれている光学素子を示す図、図6は高分子材料内部
に液晶ドロップレットが形成されている光学素子で、
(a)は周期的に分布している素子、(b)は不均一に
形成されている素子を示す図、図7は上記集光した回折
光を得る光学素子の形成方法を示す図、図8は上記光学
素子に対するレーザ照射方法を示す図、図9は本発明に
よる集光した反射光を得るための光学素子を示す図、図
10は反射光を分散させる光学素子を示す図、図11は
複数の集光領域を有する光学素子を示す図、図12は複
数の分散領域を有する光学素子を示す図、図13は反射
光の集光位置を光学素子中央部からずらせた光学素子を
示す図、図14は上記集光した反射光を得る光学素子の
形成方法を示す図、図15は上記光学素子に対するレー
ザ照射方法を示す図、図16は2種類の液晶と高分子か
らなる回折格子を同一領域に有する光学素子を示す図、
図17は上記光学素子の形成方法を示す図、図18は2
種類の液晶と高分子からなる多層構造の回折格子を同一
領域に有する光学素子を示す図、図19は上記光学素子
の形成方法を示す図、図20は回折格子構造と多層構造
とを同一領域に有する光学素子を示す図、図21は上記
光学素子の形成方法を示す図、図22は本発明の光学素
子を複数平面配置した光学装置を示す図、図23は本発
明の光学素子を複数平面配置した他の光学装置を示す
図、図24は本発明の光学素子を複数積層使用した光学
装置を示す図である。
Embodiments of the present invention will now be described with reference to the drawings. FIG. 1 shows an optical element for obtaining condensed diffracted light according to the present invention, FIG. 2 shows an optical element that disperses diffracted light, and FIG. 3 shows an optical element that can condense diffracted light in a plurality of regions. FIG. 4, FIG. 4 is a diagram showing an optical element capable of dispersing diffracted light in a plurality of regions, FIG. 5 is a diagram showing an optical element in which the focusing position of diffracted light is deviated from the central portion of the element, and FIG. 6 is a polymer material. An optical element with a liquid crystal droplet formed inside,
7A is a diagram showing elements distributed periodically, FIG. 7B is a diagram showing elements formed non-uniformly, FIG. 7 is a diagram showing a method of forming an optical element for obtaining the condensed diffracted light, FIG. 8 is a diagram showing a laser irradiation method for the above optical element, FIG. 9 is a diagram showing an optical element for obtaining condensed reflected light according to the present invention, FIG. 10 is a diagram showing an optical element for dispersing reflected light, and FIG. Is a diagram showing an optical element having a plurality of condensing regions, FIG. 12 is a diagram showing an optical element having a plurality of dispersion regions, and FIG. 13 is an optical device in which the condensing position of reflected light is shifted from the center of the optical element. FIG. 14, FIG. 14 is a diagram showing a method of forming an optical element for obtaining the condensed reflected light, FIG. 15 is a diagram showing a laser irradiation method for the optical element, and FIG. 16 is a diffraction grating made of two kinds of liquid crystal and polymer. A diagram showing an optical element having the same region
FIG. 17 is a diagram showing a method for forming the above optical element, and FIG.
FIG. 19 is a diagram showing an optical element having a multi-layered diffraction grating made of liquid crystal and polymer in the same region, FIG. 19 is a diagram showing a method for forming the optical element, and FIG. 20 is a diagram showing the diffraction grating structure and the multi-layered structure in the same region. FIG. 21 is a diagram showing a method for forming the above optical element, FIG. 22 is a diagram showing an optical device in which a plurality of optical elements of the present invention are arranged on a plane, and FIG. 23 is a plurality of optical elements of the present invention. FIG. 24 is a diagram showing another optical device arranged in a plane, and FIG. 24 is a diagram showing an optical device using a plurality of laminated optical elements of the present invention.

【0010】第1実施例 本発明による光学素子の第1実施例として、集光した回
折光を得るための光学素子とその動作原理を図1に示
す。本実施例の光学素子は図1(a)に示すように、例
えばガラス基板101および102上に形成した膜厚5
00ÅのITO膜による2つの透明電極103と104
との間に、屈折率n3の光または熱硬化型高分子材料
(例えば熱硬化性樹脂:エポキシ樹脂(n3=1.
5)、あるいは光硬化性樹脂:ラックストラックLA0
208(n3=1.5)が硬化した高分子材料)による
領域105と、屈折率が電界によってn1からn2まで
可変なネマティック液晶(例えばメルク社製E−7:n
1=1.75、n2=1.52)による領域106と
を、間隔を変えて配列している。また、107は上記ネ
マティック液晶106の屈折率を変化させるための電源
である。
First Embodiment As a first embodiment of the optical element according to the present invention, an optical element for obtaining condensed diffracted light and its operating principle are shown in FIG. As shown in FIG. 1A, the optical element of this example has a film thickness of 5 formed on the glass substrates 101 and 102, for example.
Two transparent electrodes 103 and 104 made of an ITO film of 00Å
Between the light and thermosetting polymer material having a refractive index n3 (for example, thermosetting resin: epoxy resin (n3 = 1.
5) Or photocurable resin: Lux Track LA0
A region 105 made of 208 (n3 = 1.5) cured polymer material and a nematic liquid crystal whose refractive index is variable from n1 to n2 by an electric field (for example, E-7: n manufactured by Merck & Co., Inc.).
The regions 106 of 1 = 1.75 and n2 = 1.52) are arranged at different intervals. Reference numeral 107 is a power supply for changing the refractive index of the nematic liquid crystal 106.

【0011】上記光学素子においては、高分子材料10
5と液晶106とを交互に配置し、中心部になるほど高
分子材料105と液晶106との周期が長くなるように
配置してある回折格子の構造を有している。また、上記
高分子材料106と上記液晶105の界面と入射光とが
なす角度を、回折光が本発明の光学素子の中心部に向く
ように設定してある。上記光学素子は図1(a)に示す
ように、透明電極103と透明電極104との間に電源
107により電圧を加えないと、液晶による領域106
の屈折率をn1とするとき、全体として屈折率がn3/
n1/n3…n3/n1/n3(n1=1.75、n3
=1.5)の構造に等しくなり、よく知られた位相形回
折格子の原理(例えば前出「光学の原理」参照)に従っ
て光を回折する。回折角は、液晶106と光または熱硬
化型高分子材料105の間隔が狭いほど大きく、高分子
材料105と液晶106の界面と入射光とがなす角度を
回折光が中心に向くように設定してあるため、入射光1
08および109は大きく回折し入射光110は直進
し、回折光を集光することができた。
In the above optical element, the polymer material 10 is used.
5 and the liquid crystal 106 are alternately arranged, and the structure has a diffraction grating in which the polymer material 105 and the liquid crystal 106 are arranged so that the cycle becomes longer toward the center. The angle formed by the incident light and the interface between the polymer material 106 and the liquid crystal 105 is set so that the diffracted light is directed to the center of the optical element of the present invention. As shown in FIG. 1A, the optical element has a region 106 formed of liquid crystal unless a voltage is applied between the transparent electrode 103 and the transparent electrode 104 by a power source 107.
When the refractive index of is n1, the total refractive index is n3 /
n1 / n3 ... n3 / n1 / n3 (n1 = 1.75, n3
= 1.5) and diffracts light according to the well-known principle of a phase-type diffraction grating (for example, see the above-mentioned "Principle of optics"). The smaller the distance between the liquid crystal 106 and the light or thermosetting polymer material 105, the larger the diffraction angle. The angle formed by the incident light and the interface between the polymer material 105 and the liquid crystal 106 is set so that the diffracted light is directed toward the center. Incident light 1
08 and 109 were largely diffracted, and the incident light 110 went straight to collect the diffracted light.

【0012】また、図1(b)に示すように透明電極1
03と透明電極104との間に電源107により電圧を
加え、液晶106の屈折率をn2にすると、屈折率がn
3/n2/n3…n3/n2/n3(n2=1.52、
n3=1.5)の構造となり、各領域の屈折率差がほと
んどなくなり、このため光の回折がほとんどなく、光を
直進させることができる。なお、ここではn1=1.7
5、n2=1.52、n3=1.5の場合について示し
たが、これに限らず液晶の電圧を印加したときの屈折率
または電圧を印加しないときの屈折率のいずれかが、高
分子材料の屈折率に近ければよい。本実施例では、屈折
率が変化する材料にネマティック液晶を用いたが、その
限りではなく、電圧によって屈折率が変化する高分子液
晶や強誘電性液晶であってもよい。また、高分子材料の
原料としてエポキシ樹脂またはラックストラックLA0
208を用いたが、これに限ることなく、光または熱で
硬化する高分子材料を用いればよい。
Further, as shown in FIG. 1 (b), the transparent electrode 1
03 and the transparent electrode 104, a voltage is applied by the power source 107 to set the refractive index of the liquid crystal 106 to n2.
3 / n2 / n3 ... n3 / n2 / n3 (n2 = 1.52,
(n3 = 1.5), there is almost no difference in refractive index between the regions, and therefore there is almost no diffraction of light, and light can travel straight. Here, n1 = 1.7.
5, n2 = 1.52, and n3 = 1.5 are shown, but the invention is not limited to this, and the refractive index when a voltage is applied to the liquid crystal or the refractive index when no voltage is applied is a polymer. It should be close to the refractive index of the material. In this embodiment, nematic liquid crystal is used as the material whose refractive index changes, but the material is not limited to this, and polymer liquid crystal or ferroelectric liquid crystal whose refractive index changes with voltage may be used. Further, as a raw material of the polymer material, epoxy resin or Luxtrac LA0 is used.
Although 208 is used, the invention is not limited to this, and a polymer material that is cured by light or heat may be used.

【0013】 第2実施例、第3実施例、第4実施例、第5実施例 上記第1実施例の光学素子は回折光を集光する機能を有
するが、液晶と高分子材料との配置によって様々な光学
機能を具備させることが可能であり、例えば回折光を分
散させる光学素子の第2実施例を図2に示す。本実施例
は上記第1実施例と同様に、高分子材料205と液晶2
06の界面と入射光とがなす角度を変えている。図3に
示す第3実施例は、回折光を複数の領域で集光できる光
学素子である。また、図4に示す第4実施例は回折光を
複数の領域で分散できる光学素子であり、図5に示す第
5実施例は回折光の集光位置が素子の中央部からずれて
いる光学素子である。上記それぞれの光学素子では、液
晶と高分子材料との2つの領域が周期的に分離したもの
を示したが、上記実施例に限らず屈折率が周期的に変化
していればよい。このため、上記光学素子は、図6
(a)に示すように高分子材料305の内部に液晶ドロ
ップレット306が周期的に分布して屈折率分布を生じ
させてもよく、また図6(b)に示すように液晶ドロッ
プレットが不均一に形成されていても、屈折率分布が図
1と同様に形成されていればよい。
Second Embodiment, Third Embodiment, Fourth Embodiment, Fifth Embodiment Although the optical element of the first embodiment has a function of collecting diffracted light, the arrangement of the liquid crystal and the polymer material. It is possible to provide various optical functions by using, for example, a second embodiment of an optical element that disperses diffracted light is shown in FIG. In this embodiment, the polymer material 205 and the liquid crystal 2 are similar to the first embodiment.
The angle between the interface of No. 06 and the incident light is changed. The third embodiment shown in FIG. 3 is an optical element capable of focusing diffracted light in a plurality of regions. The fourth embodiment shown in FIG. 4 is an optical element capable of dispersing diffracted light in a plurality of regions, and the fifth embodiment shown in FIG. 5 is an optical device in which the condensing position of diffracted light is deviated from the central portion of the element. It is an element. In each of the above optical elements, the two regions of the liquid crystal and the polymer material are shown to be periodically separated, but the present invention is not limited to the above embodiment, and the refractive index may be periodically changed. For this reason, the optical element shown in FIG.
As shown in FIG. 6A, the liquid crystal droplets 306 may be periodically distributed inside the polymer material 305 to generate a refractive index distribution. Further, as shown in FIG. Even if it is formed uniformly, the refractive index distribution may be formed in the same manner as in FIG.

【0014】上記各光学素子の形成方法の概略を図7に
示す。図7において(a)〜(c)はそれぞれの形成工
程を示している。上記各光学素子の形成方法では、図7
(a)に示すように、例えばガラス基板401、402
上の膜厚500ÅのITO膜による2つの透明電極40
3と404との間に、例えばネマティック液晶(メルク
社製:E−7)と光または熱硬化性樹脂(例えば熱硬化
性樹脂:エポキシ樹脂、あるいは光硬化性樹脂:ラック
ストラックLA0208)の混合液405を配し、図7
(b)に示すように、例えばアルゴンレーザによる波長
488nmの平行光406と収束光407とを照射し
た。このとき、上記アルゴンレーザによる平行光406
と上記収束光407とは干渉を起こし、波面408の形
状と波長409とを反映して、光に強弱を生じた干渉パ
タン410が得られた。上記干渉パタン410は、照射
されたレーザ光406の強度、方向等の性質を反映して
一義的に決るホログラムパタンである。すなわち、上記
ホログラムパタンを屈折率変調として記録したホログラ
ムは、照射されたレーザ光の強度や方向等の性質を再生
できる(例えば大越孝敬著「ホログラフィ」電子通信学
会編、1997年)。上記干渉パタン410が照射され
た光または熱硬化性樹脂と液晶との混合物405は、図
7(c)に示すように、光硬化性樹脂を含んでいる混合
物の場合には光強度が強い領域で光硬化性樹脂が硬化し
た。また熱硬化性樹脂を含んだ混合物の場合には光強度
が強い領域で発熱がおこり、上記熱硬化性樹脂が硬化し
た。このため、光が弱い領域には主に液晶が集り、結果
として液晶412と高分子材料411とが分離された構
造によるホログラムが作製できた。本発明の製造方法に
よれば、ホログラフィの原理にしたがい、レーザ光を照
射するだけの工程で、波長間隔程度の微細間隔で液晶と
高分子材料とを繰返し配置させることができ、かつ、レ
ーザ光の光束を制御することにより、様々な光学特性を
有する光学素子を簡便に作製することができる。このた
め、図2に示す第2実施例の光学素子を形成するために
は図8(a)に示すレーザ照射方法により、図3に示す
第3実施例の光学素子を形成するためには図8(b)に
示すレーザ照射方法により、また図5に示す第5実施例
の光学素子を形成するためには図8(c)に示すレーザ
照射方法によって、それぞれ作製することができた。
FIG. 7 shows an outline of a method of forming each of the above optical elements. In FIG. 7, (a) to (c) show respective forming steps. In the method of forming each optical element described above,
As shown in (a), for example, glass substrates 401 and 402
Two transparent electrodes 40 made of ITO film with a thickness of 500 Å above
Between 3 and 404, for example, a mixed liquid of a nematic liquid crystal (Merck & Co .: E-7) and a light or thermosetting resin (for example, a thermosetting resin: an epoxy resin, or a photocuring resin: Lux Track LA0208). 405 is arranged in FIG.
As shown in (b), the parallel light 406 and the convergent light 407 having a wavelength of 488 nm were irradiated by, for example, an argon laser. At this time, the parallel light 406 generated by the argon laser is used.
And the converged light 407 interfered with each other, and an interference pattern 410 in which light intensity was generated was obtained by reflecting the shape of the wavefront 408 and the wavelength 409. The interference pattern 410 is a hologram pattern that is uniquely determined by reflecting properties such as intensity and direction of the irradiated laser beam 406. That is, the hologram in which the hologram pattern is recorded as the refractive index modulation can reproduce the properties such as the intensity and direction of the irradiated laser light (for example, Takahiro Ohgoshi, "Holography", Institute of Electronics and Communication Engineers, 1997). As shown in FIG. 7C, the mixture 405 of light or thermosetting resin and the liquid crystal irradiated with the interference pattern 410 has a high light intensity in the case of the mixture containing the photocuring resin. The photo-curable resin was cured. Further, in the case of a mixture containing a thermosetting resin, heat was generated in a region where the light intensity was strong, and the thermosetting resin was cured. Therefore, the liquid crystal mainly gathers in the region where the light is weak, and as a result, a hologram having a structure in which the liquid crystal 412 and the polymer material 411 are separated can be manufactured. According to the manufacturing method of the present invention, in accordance with the principle of holography, the liquid crystal and the polymer material can be repeatedly arranged at a fine interval of about the wavelength interval in the step of only irradiating the laser beam, and the laser beam By controlling the luminous flux of, the optical element having various optical characteristics can be easily manufactured. Therefore, in order to form the optical element of the second embodiment shown in FIG. 2, the laser irradiation method shown in FIG. 8A is used, and in order to form the optical element of the third embodiment shown in FIG. The laser irradiation method shown in FIG. 8B and the laser irradiation method shown in FIG. 8C for forming the optical element of the fifth embodiment shown in FIG.

【0015】上記各実施例では液晶にネマティック液晶
を用いたがその限りではなく、電圧によって屈折率また
は分子方向が変化する高分子液晶や強誘電性液晶であっ
てもよい。また、干渉パタンを得るためにアルゴンレー
ザを用いたがその限りでなく、干渉光が得られ位相が揃
った光源であればよい。さらにまた、熱硬化性樹脂にエ
ポキシ樹脂、光硬化性樹脂にラックストラックLA02
08を用いたがこれに限ることはなく、光または熱で硬
化する樹脂を用いればよい。
Although nematic liquid crystal is used as the liquid crystal in each of the above-mentioned embodiments, it is not limited thereto, and polymer liquid crystal or ferroelectric liquid crystal whose refractive index or molecular direction changes depending on voltage may be used. Further, although the argon laser is used to obtain the interference pattern, the present invention is not limited to this, and any light source capable of obtaining interference light and having a uniform phase may be used. Furthermore, the thermosetting resin is an epoxy resin, and the photocurable resin is a Luxtrack LA02.
Although 08 is used, it is not limited to this, and a resin that is cured by light or heat may be used.

【0016】第6実施例 つぎに本発明による光学素子の第6実施例として、集光
した反射光を得るための光学素子とその動作原理を図9
に示す。本光学素子の構造は、例えばガラス基板60
1、602上に形成した膜厚500ÅのITO膜による
2つの透明電極603と604との間に、高分子材料
(例えば熱硬化性樹脂:エポキシ樹脂、または光硬化性
樹脂:ラックストラックLA0208の硬化による高分
子材料)605と、例えばネマティック液晶(例えばメ
ルク社製E−7)606を凹面鏡のように湾曲させて積
層している。
Sixth Embodiment Next, as a sixth embodiment of the optical element according to the present invention, an optical element for obtaining condensed reflected light and its operating principle are shown in FIG.
Shown in. The structure of this optical element is, for example, a glass substrate 60.
Between the two transparent electrodes 603 and 604 made of an ITO film having a film thickness of 500 Å formed on the first and the second 602, a polymer material (for example, thermosetting resin: epoxy resin, or photo-curing resin: Lux track LA0208 is cured). 605 and a nematic liquid crystal (for example, E-7 manufactured by Merck & Co., Inc.) 606 are curved and laminated like a concave mirror.

【0017】上記光学素子では図9(a)に示すよう
に、透明電極103と透明電極104との間に電圧を加
えない場合には、上記液晶による領域606の屈折率を
n1とすると、全体として屈折率がn3/n1/n3…
n3/n1/n3(n1=1.75、n3=1.5)の
多層構造に等しくなり、よく知られた多層構造の反射条
件に従い(例えば、小山、西原著「光波電子光学」コロ
ナ社、参照)、入射した光のうち特定波長の光だけがブ
ラッグの反射条件を満たす角度で反射される。ここで、
高分子材料605と液晶606とによる層は湾曲してい
るため、平行光を入射した場合に反射光を集光させるこ
とができる。また、図9(b)に示すように透明電極6
03と透明電極604との間に電源607により電圧を
加え、液晶による領域606の屈折率をn2とすると、
屈折率がn3/n2/n3…n3/n2/n3(n2=
1.52、n3=1.5)の構造となり、各領域の屈折
率差がほとんどなくなる。このため、光の反射がほとん
ど起らなくなり光を直進させることができた。したがっ
て、光の反射/直進が制御でき、反射光を集光させるこ
とができる光学素子を作製することができた。
In the above optical element, as shown in FIG. 9A, when no voltage is applied between the transparent electrode 103 and the transparent electrode 104, assuming that the refractive index of the region 606 formed by the liquid crystal is n1, Has a refractive index of n3 / n1 / n3 ...
n3 / n1 / n3 (n1 = 1.75, n3 = 1.5), which is equal to the multilayer structure, and which follows the well-known reflection conditions of the multilayer structure (for example, Koyama, Nishihara, "Lightwave Electron Optics", Corona, Of the incident light, only light of a specific wavelength is reflected at an angle that satisfies the Bragg reflection condition. here,
Since the layer formed of the polymer material 605 and the liquid crystal 606 is curved, reflected light can be condensed when parallel light is incident. In addition, as shown in FIG. 9B, the transparent electrode 6
03 and the transparent electrode 604, a voltage is applied from the power source 607, and the refractive index of the region 606 formed by the liquid crystal is n2.
The refractive index is n3 / n2 / n3 ... n3 / n2 / n3 (n2 =
1.52, n3 = 1.5), and there is almost no difference in refractive index between the regions. Therefore, almost no reflection of light occurs, and the light can go straight. Therefore, an optical element capable of controlling reflection / straightening of light and condensing reflected light could be manufactured.

【0018】なお、ここではn1=1.75、n2=
1.52、n3=1.5の場合について示したがこれに
限らず、液晶の電圧を印加したときの屈折率または電圧
を印加しないときの屈折率のいずれかが、高分子材料の
屈折率に近ければよい。本実施例では屈折率が変化する
材料にネマティック液晶を用いたがその限りでなく、電
圧によって屈折率が変化する高分子液晶や強誘電性液晶
であってもよい。また、図9(a)に示す構成では光を
集光する機能を有するが、液晶と光または熱硬化型高分
子材料の配置を変えることによって、様々な光学機能を
具備させることが可能なことは明らかである。つぎに種
々の光学機能を備えた本発明による光学素子の実施例を
示す。
Here, n1 = 1.75, n2 =
Although the case where 1.52 and n3 = 1.5 is shown, the present invention is not limited to this, and either the refractive index of the liquid crystal when a voltage is applied or the refractive index when no voltage is applied is the refractive index of the polymer material. Close to In this embodiment, the nematic liquid crystal is used as the material whose refractive index changes, but the material is not limited to this, and polymer liquid crystal or ferroelectric liquid crystal whose refractive index changes with voltage may be used. Further, although the structure shown in FIG. 9A has a function of condensing light, various optical functions can be provided by changing the arrangement of the liquid crystal and the light or thermosetting polymer material. Is clear. Next, examples of the optical element according to the present invention having various optical functions will be shown.

【0019】 第7実施例、第8実施例、第9実施例、第10実施例 図10に示す第7実施例は反射光を分散させる光学素子
であり、図11に示す第8実施例は複数の集光領域を有
する光学素子であり、図12に示す第9実施例は複数の
分散領域を有する光学素子であり、図13に示す第10
実施例は反射光の集光位置を光学素子の中央部からずら
した光学素子である。また、上記各実施例では液晶と高
分子材料の2つの領域が周期的に分離したものを示した
が、これに限らず液晶ドロップレットの配置による屈折
率が周期的に変化していればよい。
Seventh Embodiment, Eighth Embodiment, Ninth Embodiment, Tenth Embodiment A seventh embodiment shown in FIG. 10 is an optical element for dispersing reflected light, and an eighth embodiment shown in FIG. An optical element having a plurality of condensing regions, a ninth embodiment shown in FIG. 12 is an optical device having a plurality of dispersion regions, and a tenth embodiment shown in FIG.
The embodiment is an optical element in which the condensing position of reflected light is shifted from the center of the optical element. Further, in each of the above embodiments, the two regions of the liquid crystal and the polymer material are periodically separated, but the present invention is not limited to this, and the refractive index depending on the arrangement of the liquid crystal droplets may be periodically changed. .

【0020】図14は上記各実施例の形成方法を示す概
略図である。図14(a)に示すように、例えばガラス
基板801、802上に形成された膜厚500ÅのIT
O膜による2つの透明電極803と804との間に、例
えばネマティック液晶(メルク社製:E−7)と光また
は熱硬化性樹脂(例えば熱硬化性樹脂:エポキシ樹脂あ
るいは光硬化性樹脂:ラックストラックLA0208)
の混合液805を配した。これに図14(b)に示すよ
うに、例えばアルゴンレーザによる波長488nmの平
行光807と収束光806とを照射した。このとき、上
記アルゴンレーザによる平行光807と収束光806と
は、波面808の形状と波長809とに対応して干渉を
起し、光に強弱を有する干渉パタン810が得られた。
上記干渉パタン810は、照射されたレーザ光の強度や
方向等の性質を反映して一義的に決るホログラムパタン
である(例えば大越孝敬著「ホログラフィ」電子通信学
会編、1977年)。上記干渉パタン810が照射され
た光硬化樹脂と液晶との混合物805は、図14(c)
に示すように光硬化性樹脂を含んでいる混合物の場合
は、光強度が強い領域で光硬化型高分子材料が硬化し
た。また、熱硬化性樹脂を含んだ混合物の場合には、光
強度が強い領域で発熱がおこり熱硬化型高分子材料が硬
化した。このため、光が弱い領域には主に液晶が集ま
り、この結果、高分子材料811と液晶812とに分離
された構造を作製できた。上記作製方法によると、レー
ザ光を照射するだけの工程で液晶と高分子材料とを繰返
し配置させることができ、かつ、ホログラフィの原理に
従いレーザ光を制御することによって、様々な光学特性
を有する光学素子を簡便に作製することができる。この
ため、図10に示す第7実施例の光学素子を形成するに
は図15(a)に示す方法でレーザ光を照射し、図11
に示す第8実施例の光学素子を形成するには図15
(b)に示す方法でレーザ光を照射し、図13に示す第
10実施例の光学素子を形成するには図15(c)に示
す方法でレーザ光を照射することにより、それぞれ作製
することができた。
FIG. 14 is a schematic view showing the forming method of each of the above embodiments. As shown in FIG. 14A, for example, an IT having a film thickness of 500Å formed on glass substrates 801 and 802.
Between the two transparent electrodes 803 and 804 made of an O film, for example, nematic liquid crystal (E-7 manufactured by Merck & Co.) and a light or thermosetting resin (for example, thermosetting resin: epoxy resin or photocuring resin: Lux). (Track LA0208)
A mixed solution 805 of was added. As shown in FIG. 14B, this was irradiated with parallel light 807 and convergent light 806 having a wavelength of 488 nm by an argon laser, for example. At this time, the parallel light 807 and the convergent light 806 by the argon laser cause interference corresponding to the shape of the wavefront 808 and the wavelength 809, and an interference pattern 810 having light intensity is obtained.
The interference pattern 810 is a hologram pattern that is uniquely determined by reflecting the properties such as the intensity and direction of the emitted laser light (for example, Takanori Ogoshi, "Holography," Institute of Electronics and Communication Engineers, 1977). The mixture 805 of the photo-curing resin and the liquid crystal irradiated with the interference pattern 810 is shown in FIG.
In the case of the mixture containing the photo-curable resin as shown in, the photo-curable polymer material was cured in the region where the light intensity was strong. Further, in the case of the mixture containing the thermosetting resin, heat was generated in the region where the light intensity was high, and the thermosetting polymer material was cured. Therefore, the liquid crystal mainly gathers in the region where the light is weak, and as a result, a structure in which the polymer material 811 and the liquid crystal 812 are separated can be manufactured. According to the above manufacturing method, the liquid crystal and the polymer material can be repeatedly arranged only in the step of irradiating the laser beam, and by controlling the laser beam according to the principle of holography, an optical element having various optical characteristics can be obtained. The element can be easily manufactured. Therefore, in order to form the optical element of the seventh embodiment shown in FIG. 10, laser light is irradiated by the method shown in FIG.
To form the optical element of Example 8 shown in FIG.
In order to form the optical element of the tenth embodiment shown in FIG. 13 by irradiating the laser beam with the method shown in FIG. 13B, the laser beam is irradiated with the method shown in FIG. I was able to.

【0021】第11実施例 本発明による光学素子の第11実施例を図16に示す。
本光学素子は同一領域に2種類の液晶と高分子からなる
回折格子構造を有し、1つの回折格子は光を分散させ他
の1つの回折格子は光を集光する。このため、入射光は
複数方向に分離して放射されることになる。図17は上
記光学素子の形成方法を示す図である。液晶と光硬化性
樹脂の混合液205Aに平行なレーザ光と集光されたレ
ーザ光と拡大されたレーザ光を照射する。このとき、レ
ーザ光の光束に対応してレーザ光の干渉がおこり、干渉
パタンに対応して光硬化性樹脂が硬化するため液晶と高
分子材料とが分離し、上記図16に示すような光学素子
が形成できた。
Eleventh Embodiment FIG. 16 shows an eleventh embodiment of the optical element according to the present invention.
This optical element has a diffraction grating structure composed of two kinds of liquid crystal and a polymer in the same region, and one diffraction grating disperses light and the other diffraction grating condenses light. Therefore, the incident light is radiated separately in a plurality of directions. FIG. 17 is a diagram showing a method for forming the optical element. The mixed liquid 205A of the liquid crystal and the photocurable resin is irradiated with the parallel laser light, the focused laser light, and the expanded laser light. At this time, interference of the laser light occurs corresponding to the light flux of the laser light, and the photocurable resin is cured corresponding to the interference pattern, so that the liquid crystal and the polymer material are separated, and the optical as shown in FIG. A device could be formed.

【0022】第12実施例 本発明による光学素子の第12実施例を図18に示す。
本光学素子は同一領域に2種類の液晶と高分子からなる
多層構造を有し、1つの多層構造は光を分散反射させ他
の1つの多層構造は光を集光反射する。このため、入射
光は複数方向に分離して反射される。図19は上記光学
素子の形成方法を示す図である。液晶と光硬化性樹脂の
混合液405Aに平行なレーザ光と集光されたレーザ光
と拡大されたレーザ光を照射している。このとき、レー
ザ光の光束に対応してレーザ光の干渉がおこり、干渉パ
タンに対応して光硬化性樹脂が硬化するため液晶と高分
子材料とが分離し、上記図18に示すような光学素子が
形成できた。
Twelfth Embodiment FIG. 18 shows a twelfth embodiment of the optical element according to the present invention.
This optical element has a multilayer structure composed of two kinds of liquid crystal and polymer in the same region, one multilayer structure dispersively reflects light, and the other multilayer structure condenses and reflects light. Therefore, the incident light is separated and reflected in a plurality of directions. FIG. 19 is a diagram showing a method of forming the optical element. The mixed liquid 405A of the liquid crystal and the photocurable resin is irradiated with the parallel laser light, the focused laser light, and the expanded laser light. At this time, the laser light interferes with the light flux of the laser light, and the photocurable resin cures in response to the interference pattern, so that the liquid crystal and the polymer material are separated from each other, and the optical as shown in FIG. A device could be formed.

【0023】第13実施例 本発明による光学素子の第13実施例を図20に示す。
本光学素子は同一領域に回折格子構造と多層構造とを有
し、回折光と反射光とを得ることができる。図21は上
記光学素子の形成方法を示す図である。液晶と光硬化性
樹脂の混合液605Aに3光束レーザ光を照射してい
る。このとき、レーザ光の光束に対応してレーザ光の干
渉がおこり、干渉パタンに対応して光硬化性樹脂が硬化
することにより液晶と高分子材料とが分離し、上記光学
素子が形成できた。
13th Embodiment FIG. 20 shows a 13th embodiment of the optical element according to the present invention.
This optical element has a diffraction grating structure and a multilayer structure in the same region, and can obtain diffracted light and reflected light. FIG. 21 is a diagram showing a method of forming the above optical element. A three-beam laser beam is applied to the mixed liquid 605A of the liquid crystal and the photocurable resin. At this time, interference of the laser light occurs corresponding to the luminous flux of the laser light, and the liquid crystal and the polymer material are separated by curing the photocurable resin corresponding to the interference pattern, and the above optical element can be formed. .

【0024】なお、上記各実施例では、同一領域に2種
類の多層構造あるいは回折格子構造を形成した光学素子
について示したが、さらに多くの多層構造や回折格子構
造を含んでいてもよく、この場合、さらに多くの方向へ
光が回折、反射することになる。また、上記のような素
子は、さらに多くのレーザ光を使用することによって容
易に作製することができる。
In each of the above embodiments, an optical element having two kinds of multilayer structures or diffraction grating structures formed in the same region has been shown, but more multilayer structures or diffraction grating structures may be included. In this case, light is diffracted and reflected in more directions. Further, the element as described above can be easily manufactured by using more laser light.

【0025】第14実施例 本発明による光学素子を複数平面配置した光学装置の例
を図22に示す。図22において、701Aは例えば透
明なガラス基板、702Aはマトリクス状に配置された
透明電極、703Aは液晶と高分子材料との複合体であ
る。上記光学装置によれば、複数の入射光に対し、各光
学素子により独立に光の回折もしくは反射を制御するこ
とができる。
Fourteenth Embodiment FIG. 22 shows an example of an optical device in which a plurality of optical elements according to the present invention are arranged in a plane. In FIG. 22, 701A is, for example, a transparent glass substrate, 702A is a transparent electrode arranged in a matrix, and 703A is a composite of liquid crystal and a polymer material. According to the above optical device, it is possible to independently control the diffraction or reflection of a plurality of incident lights by each optical element.

【0026】第15実施例、第16実施例 図23に示す第15実施例は上記第14実施例と同様の
構成であるが、駆動には例えば薄膜トランジスタまたは
薄膜ダイオードなどの能動素子804Aを設けて、各光
学素子をそれぞれ駆動している。図24に示す第16実
施例は、本発明による光学素子を複数積層して使用した
光学装置の例を示す図であり、本光学装置では回折およ
び反射の機能を増加させることができる。
Fifteenth and Sixteenth Embodiments A fifteenth embodiment shown in FIG. 23 has the same structure as the fourteenth embodiment, but an active element 804A such as a thin film transistor or a thin film diode is provided for driving. , Each optical element is driven respectively. The sixteenth embodiment shown in FIG. 24 is a diagram showing an example of an optical device in which a plurality of optical elements according to the present invention are laminated and used, and the present optical device can increase the functions of diffraction and reflection.

【0027】上記各実施例では、液晶にネマティック液
晶を用いたが、その限りでなく、電圧によって屈折率ま
たは分子方向が変化する高分子液晶や強誘電性液晶であ
ってもよい。また、干渉パタンを得るためにアルゴンレ
ーザを用いたが、その限りでなく、干渉光が得られる位
相が揃った光源であればよい。また、熱硬化性樹脂にエ
ポキシ樹脂、光硬化性樹脂にラックストラックLA02
08を用いたが、これに限ることなく、光または熱で硬
化する高分子材料を用いればよい。
In each of the above embodiments, the nematic liquid crystal is used as the liquid crystal, but the liquid crystal is not limited to the nematic liquid crystal and may be polymer liquid crystal or ferroelectric liquid crystal whose refractive index or molecular direction is changed by voltage. Further, the argon laser is used to obtain the interference pattern, but the present invention is not limited to this, and any light source having a uniform phase from which interference light can be obtained may be used. Further, the thermosetting resin is epoxy resin, and the photocuring resin is Luxtrax LA02.
Although 08 is used, the invention is not limited to this, and a polymer material that is cured by light or heat may be used.

【0028】[0028]

【発明の効果】上記のように本発明による光学素子は、
液晶と高分子材料とからなり屈折率が異なる複数の領域
を有し、電界により上記液晶の屈折率を変化させ、入射
光の回折/直進または反射/直進を制御可能にした光学
素子において、上記回折光または反射光が入射平行光に
対し収束または分散するように、上記液晶領域と上記高
分子領域とを平面的または立体的に配置したことによ
り、光の回折/直進または反射/直進が制御可能で、か
つ上記回折光および反射光を集光または分散するよう
に、レンズ等の光学素子の機能を有し、このため、回折
光および反射光を集光、分散させるためのレンズ等の光
学素子を別途に設ける必要がなく、光学装置の構成を簡
単にすることができる。また、本発明の光学素子形成方
法によれば、本発明の各種光学素子を、レーザ光を照射
するだけの工程で極めて簡単に作製することができる。
As described above, the optical element according to the present invention is
An optical element having a plurality of regions composed of a liquid crystal and a polymer material and having different refractive indexes, wherein the refractive index of the liquid crystal is changed by an electric field to control diffraction / straightening or reflection / straightening of incident light. By arranging the liquid crystal region and the polymer region two-dimensionally or three-dimensionally so that the diffracted light or the reflected light converges or disperses with respect to the incident parallel light, the light diffraction / straightening or reflection / straightening is controlled. It has a function of an optical element such as a lens so as to collect or disperse the diffracted light and the reflected light, and therefore, an optical such as a lens for collecting and disperse the diffracted light and the reflected light. It is not necessary to separately provide an element, and the configuration of the optical device can be simplified. Further, according to the optical element forming method of the present invention, various optical elements of the present invention can be extremely easily manufactured by a step of only irradiating a laser beam.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による光学素子の第1実施例として集光
した回折光を得る素子を示す図で、(a)は透明電極間
に電圧を加えない状態を示す図、(b)は透明電極間に
電圧を加えた状態を示す図である。
FIG. 1 is a diagram showing an element for obtaining condensed diffracted light as a first embodiment of an optical element according to the present invention, (a) showing a state in which no voltage is applied between transparent electrodes, and (b) showing a transparent state. It is a figure which shows the state which applied the voltage between electrodes.

【図2】本発明の第2実施例を示す図である。FIG. 2 is a diagram showing a second embodiment of the present invention.

【図3】本発明の第3実施例を示す図である。FIG. 3 is a diagram showing a third embodiment of the present invention.

【図4】本発明の第4実施例を示す図である。FIG. 4 is a diagram showing a fourth embodiment of the present invention.

【図5】本発明の第5実施例を示す図である。FIG. 5 is a diagram showing a fifth embodiment of the present invention.

【図6】高分子材料内部に液晶ドロップレットがある光
学素子を示す図で、(a)は液晶ドロップレットが周期
的に分布している光学素子図、(b)は液晶ドロップレ
ットが不均一に形成されている光学素子図である。
6A and 6B are diagrams showing an optical element having liquid crystal droplets inside a polymer material. FIG. 6A is an optical element diagram in which liquid crystal droplets are periodically distributed, and FIG. 6B is a non-uniform liquid crystal droplet. It is an optical element figure formed in.

【図7】上記各実施例の形成方法を示す図で、(a)〜
(c)はそれぞれの製造工程を示す図である。
FIG. 7 is a diagram showing a forming method of each of the above-described embodiments, in which (a)-
(C) is a figure which shows each manufacturing process.

【図8】上記製造工程におけるレーザ照射方法をそれぞ
れ(a)、(b)、(c)に示す図である。
FIG. 8 is a diagram showing a laser irradiation method in the manufacturing process, respectively (a), (b), and (c).

【図9】本発明の第6実施例として集光した反射光を得
る光学素子を示す図で、(a)は透明電極間に電圧を加
えない状態を示す図、(b)は透明電極間に電圧を加え
た状態を示す図である。
9A and 9B are diagrams showing an optical element for obtaining condensed reflected light as a sixth embodiment of the present invention, FIG. 9A showing a state in which no voltage is applied between the transparent electrodes, and FIG. It is a figure which shows the state which applied the voltage to.

【図10】本発明の第7実施例を示す図である。FIG. 10 is a diagram showing a seventh embodiment of the present invention.

【図11】本発明の第8実施例を示す図である。FIG. 11 is a diagram showing an eighth embodiment of the present invention.

【図12】本発明の第9実施例を示す図である。FIG. 12 is a diagram showing a ninth embodiment of the present invention.

【図13】本発明の第10実施例を示す図である。FIG. 13 is a diagram showing a tenth embodiment of the present invention.

【図14】上記各実施例の形成方法を示す図で、(a)
〜(c)はそれぞれの製造工程を示す図である。
FIG. 14 is a diagram showing a forming method of each of the above-described embodiments, (a)
(C) is a figure which shows each manufacturing process.

【図15】上記製造工程におけるレーザ照射方法をそれ
ぞれ(a)、(b)、(c)に示す図である。
FIG. 15 is a diagram showing a laser irradiation method in the manufacturing process described above in (a), (b), and (c), respectively.

【図16】本発明の第11実施例として、2種類の液晶
と高分子からなる回折格子を同一領域に有する光学素子
を示す図である。
FIG. 16 is a diagram showing an optical element having a diffraction grating made of two kinds of liquid crystal and a polymer in the same region as an eleventh embodiment of the present invention.

【図17】上記実施例の形成方法を示す図である。FIG. 17 is a diagram showing the forming method of the example.

【図18】本発明の第12実施例として、2種類の液晶
と高分子からなる多層構造回折格子を同一領域に有する
光学素子を示す図である。
FIG. 18 is a diagram showing, as a twelfth embodiment of the present invention, an optical element having a multilayer diffraction grating made of two types of liquid crystal and a polymer in the same region.

【図19】上記実施例の形成方法を示す図である。FIG. 19 is a diagram showing the forming method of the example.

【図20】本発明の第13実施例として、回折格子構造
と多層構造とを同一領域に有する光学素子を示す図であ
る。
FIG. 20 is a diagram showing an optical element having a diffraction grating structure and a multilayer structure in the same region as a thirteenth embodiment of the present invention.

【図21】上記実施例の形成方法を示す図である。FIG. 21 is a diagram showing the forming method of the example.

【図22】本発明の第14実施例として、上記光学素子
を複数平面配置した光学装置を示す図である。
FIG. 22 is a diagram showing an optical device in which a plurality of the above optical elements are arranged in a plane as a fourteenth embodiment of the present invention.

【図23】本発明の第15実施例として、上記光学素子
を複数平面配置した光学装置の他の例を示す図である。
FIG. 23 is a diagram showing another example of an optical device in which a plurality of the optical elements are arranged in a plane as a fifteenth embodiment of the present invention.

【図24】本発明の第16実施例として、上記光学素子
を複数積層使用した光学装置を示す図である。
FIG. 24 is a diagram showing, as a sixteenth embodiment of the present invention, an optical device in which a plurality of the above optical elements are laminated and used.

【図25】従来の光の回折/直進を制御する光学素子を
示す図である。
FIG. 25 is a diagram showing a conventional optical element for controlling the diffraction / straightening of light.

【図26】従来の光の反射/直進を制御する光学素子を
示す図である。
FIG. 26 is a diagram showing a conventional optical element for controlling reflection / straightening of light.

【符号の説明】[Explanation of symbols]

105、205、411、605、705、811、1
05A、205A、305A、505A 高分子材料 106、206、412、606、706、812、1
06A、306A、506A 液晶 107、607、107A、307A、507A 電
源 405、505、805、905、405A、605A 熱または光硬化性樹脂と液晶との混合物
105, 205, 411, 605, 705, 811, 1
05A, 205A, 305A, 505A Polymer material 106, 206, 412, 606, 706, 812, 1
06A, 306A, 506A Liquid crystal 107, 607, 107A, 307A, 507A Power source 405, 505, 805, 905, 405A, 605A Mixture of liquid crystal and thermosetting resin

───────────────────────────────────────────────────── フロントページの続き (72)発明者 酒井 重信 東京都千代田区内幸町一丁目1番6号 日 本電信電話株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Shigenobu Sakai 1-1-6 Uchisaiwaicho, Chiyoda-ku, Tokyo Nihon Telegraph and Telephone Corporation

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】液晶と高分子材料とからなり屈折率が異な
る複数の領域を有し、電界により上記液晶の屈折率を変
化させ、入射光の回折/直進または反射/直進を制御可
能にした光学素子において、上記回折光または反射光が
入射平行光に対し収束または分散するように、上記液晶
領域と上記高分子領域とを平面的または立体的に配置し
たことを特徴とする光学素子。
1. A liquid crystal and a polymer material are provided in a plurality of regions having different refractive indexes, and the refractive index of the liquid crystal is changed by an electric field so that diffraction / straightening or incident / reflecting of incident light can be controlled. In the optical element, the liquid crystal region and the polymer region are arranged two-dimensionally or three-dimensionally so that the diffracted light or the reflected light converges or disperses with respect to the incident parallel light.
【請求項2】液晶と高分子材料とからなり屈折率が異な
る複数の領域を有し、電界により上記液晶の屈折率を変
化させ、入射光の回折/直進または反射/直進を制御可
能にした光学素子の製造方法において、上記高分子材料
に光または熱硬化性樹脂を用い、複数の光束を制御した
レーザ光を上記液晶と光または熱硬化性樹脂との混合物
に照射し、レーザの干渉パタンによる光の強弱層により
液晶と高分子材料とを分離して、上記液晶の領域と上記
高分子材料の領域とを配置することを特徴とする光学素
子の製造方法。
2. A liquid crystal and a polymer material are provided in a plurality of regions having different refractive indexes, and the refractive index of the liquid crystal is changed by an electric field so that diffraction / straightening or incident / reflecting of incident light can be controlled. In the method of manufacturing an optical element, a light or thermosetting resin is used as the polymer material, and a laser beam in which a plurality of light fluxes are controlled is irradiated to a mixture of the liquid crystal and the light or thermosetting resin, and an interference pattern of the laser is irradiated. The method for producing an optical element, characterized in that the liquid crystal and the polymer material are separated by the light intensity layer according to (4) to dispose the liquid crystal region and the polymer material region.
JP29628793A 1993-02-22 1993-11-26 Optical element and manufacturing method thereof Expired - Fee Related JP3162235B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP29628793A JP3162235B2 (en) 1993-02-23 1993-11-26 Optical element and manufacturing method thereof
US08/198,811 US5751452A (en) 1993-02-22 1994-02-18 Optical devices with high polymer material and method of forming the same
US08/661,018 US5748272A (en) 1993-02-22 1996-06-10 Method for making an optical device using a laser beam interference pattern

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP3322193 1993-02-23
JP5-33221 1993-02-23
JP29628793A JP3162235B2 (en) 1993-02-23 1993-11-26 Optical element and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH06308471A true JPH06308471A (en) 1994-11-04
JP3162235B2 JP3162235B2 (en) 2001-04-25

Family

ID=26371885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29628793A Expired - Fee Related JP3162235B2 (en) 1993-02-22 1993-11-26 Optical element and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3162235B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6172792B1 (en) * 1997-01-31 2001-01-09 Mary Lou Jepsen Method and apparatus for forming optical gratings
JP2002156617A (en) * 2000-11-20 2002-05-31 Ricoh Co Ltd Image display device
US6618104B1 (en) 1998-07-28 2003-09-09 Nippon Telegraph And Telephone Corporation Optical device having reverse mode holographic PDLC and front light guide
WO2004053575A1 (en) * 2002-12-06 2004-06-24 Nikon Corporation Holographic optical device, camera finder indication, and camera
KR100451746B1 (en) * 2002-09-17 2004-10-08 엘지전자 주식회사 Flat panel display device using hologram pattern liquid crystal
US6819393B1 (en) 1998-07-28 2004-11-16 Nippon Telegraph And Telephone Corporation Optical device and display apparatus using light diffraction and light guide

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6172792B1 (en) * 1997-01-31 2001-01-09 Mary Lou Jepsen Method and apparatus for forming optical gratings
US6618104B1 (en) 1998-07-28 2003-09-09 Nippon Telegraph And Telephone Corporation Optical device having reverse mode holographic PDLC and front light guide
US6819393B1 (en) 1998-07-28 2004-11-16 Nippon Telegraph And Telephone Corporation Optical device and display apparatus using light diffraction and light guide
US6836314B2 (en) 1998-07-28 2004-12-28 Nippon Telegraph And Telephone Corporation Optical device and display apparatus having a plate-shaped light guide and an optical control surface thereon
JP2002156617A (en) * 2000-11-20 2002-05-31 Ricoh Co Ltd Image display device
KR100451746B1 (en) * 2002-09-17 2004-10-08 엘지전자 주식회사 Flat panel display device using hologram pattern liquid crystal
WO2004053575A1 (en) * 2002-12-06 2004-06-24 Nikon Corporation Holographic optical device, camera finder indication, and camera
US7426343B2 (en) 2002-12-06 2008-09-16 Nikon Corporation Holographic optical device, camera finder indication, and camera

Also Published As

Publication number Publication date
JP3162235B2 (en) 2001-04-25

Similar Documents

Publication Publication Date Title
US5748272A (en) Method for making an optical device using a laser beam interference pattern
EP1688783A1 (en) Optical element using liquid crystal having optical isotropy
US6587180B2 (en) Adjustable liquid crystal blazed grating deflector
JP2007519017A (en) Optical diffraction element
US7564504B2 (en) Phase plate and an optical data recording/reproducing device
JPS599884B2 (en) variable pitch optical grating
Hong et al. Ultracompact nanophotonics: light emission and manipulation with metasurfaces
JP3162235B2 (en) Optical element and manufacturing method thereof
JP4792679B2 (en) Isolator and variable voltage attenuator
JPS63249125A (en) Vari-focal optical system
JP3071916B2 (en) Optical switch and manufacturing method thereof
JP5195024B2 (en) Diffraction element, optical attenuator, optical head device, and projection display device
US11796740B2 (en) Optical device
JP4194377B2 (en) Method for producing optical functional element
JP3113434B2 (en) Optical element
JP3179638B2 (en) Optical element forming method
US7139233B2 (en) Optical information processing device and recording medium
JPS62111203A (en) Mode refractive-index bimodulation type phase grating
JP3421996B2 (en) Optical element
JPH02287441A (en) Optical deflecting element
JP3324083B2 (en) Optical element fabrication method
JP3432235B2 (en) How to create a holographic filter
WO2024131060A1 (en) Holographic metamaterial film and system and method for manufacturing holographic metamaterial optical device
JP3416571B2 (en) Optical element
JPH09258150A (en) Electro-optic lens

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20090223

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20090223

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20100223

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20110223

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20110223

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20120223

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130223

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees