JPH06308230A - Target tracking processing device for radar - Google Patents

Target tracking processing device for radar

Info

Publication number
JPH06308230A
JPH06308230A JP9822893A JP9822893A JPH06308230A JP H06308230 A JPH06308230 A JP H06308230A JP 9822893 A JP9822893 A JP 9822893A JP 9822893 A JP9822893 A JP 9822893A JP H06308230 A JPH06308230 A JP H06308230A
Authority
JP
Japan
Prior art keywords
input
target
frequency
predicted
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9822893A
Other languages
Japanese (ja)
Inventor
Kazuki Tamai
一樹 玉井
Katsumi Matsumoto
勝己 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP9822893A priority Critical patent/JPH06308230A/en
Publication of JPH06308230A publication Critical patent/JPH06308230A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

PURPOSE:To invariably stabilize the output of a high-speed Fourier transfomation device by shifting the frequency of the time wave-form data in the extraction range inputted to a distance tracker before convergence and after convergence respectively. CONSTITUTION:A distance tracker 3 estimates the future position of a target at each pulse repetition interval(PRI), inputs the estimated position, observed position, and estimated speed to a repetition gating section 2, and reduces the extraction range. Before convergence when the extraction range inputted to the tracker 3 has a large error, the frequency of the time wave-form data is shifted by the change quantity of the PRI, and the shape change of the filter of a high-speed Fourier transformation (FFT) device 1 passing the input data by the PRI is suppressed. After convergence when a smaller error is recognized, the frequency of the input time wave-form data is shifted by the quantity subtracted with the center frequency of the filter from the estimated speed of the target indicated in frequency. The input data pass through the center frequency position of the filter, and the output of the device 1 is stabilized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、レーダの標的追随処理
装置の改良に関する。図3は1例のターゲット追随の概
念図である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a target tracking processing device for radar. FIG. 3 is a conceptual diagram of target tracking in one example.

【0002】レーダよりターゲット迄の距離は、レーダ
が出力したパルスがターゲットに反射して戻ってくる迄
の時間に比例し、ターゲットの速度は反射波のドップラ
シフトに比例する。
The distance from the radar to the target is proportional to the time until the pulse output from the radar is reflected back to the target and returned, and the velocity of the target is proportional to the Doppler shift of the reflected wave.

【0003】追随とは、測定した距離,速度情報からタ
ーゲットの現在位置及び未来位置を推定することであ
る。追随の1例につき図3を用いて説明する。
Tracking is to estimate the current position and future position of the target from the measured distance and speed information. A following example will be described with reference to FIG.

【0004】図3は位置平滑化定数をα,速度平滑化定
数をβとする直線予測器として第nスキャンから第(n
+1)スキャンをする様子を示している。即ち,nスキ
ャンでの予測位置をP(n),観測データ位置をR
(n)とすると追尾誤差E(n)は、E(n)=R
(n)−P(n)である。
FIG. 3 shows a straight line predictor having a position smoothing constant α and a velocity smoothing constant β, from the nth scan to the (nth).
+1) shows how to scan. That is, the predicted position for n scans is P (n) and the observed data position is R.
(N), the tracking error E (n) is E (n) = R
(N) -P (n).

【0005】平滑位置S(n)と平滑速度・S(n)
は、 S(n)=P(n)−αE(n) ・S(n)=・S(n−1)+βE(n)/tで求めら
れる。
Smooth position S (n) and smooth velocity S (n)
Is calculated by S (n) = P (n) −αE (n) · S (n) = · S (n−1) + βE (n) / t.

【0006】ここでtはパルス繰り返し時間である。こ
れから(n+1)スキャンの予測位置P(n+1)は、
予測位置P(n+1)=S(n)+・S(n)tで求め
られる。
Here, t is the pulse repetition time. The predicted position P (n + 1) of the (n + 1) scan is
The predicted position P (n + 1) = S (n) +. S (n) t is obtained.

【0007】α=0は予測位置を、α=1は観測データ
位置を平滑位置とするわけで、αは小さい程深く平滑さ
れることを意味している。等速直線運動と判断される時
はα,βともに小さくしてゆらぎを十分平滑化すること
により追尾精度がよくなる。この時を収束したと言う。
Α = 0 means the predicted position, and α = 1 means the observation data position as the smoothed position. The smaller α means the smoother the position is. When it is determined that the motion is a constant-velocity linear motion, both α and β are reduced to smooth the fluctuation sufficiently and the tracking accuracy improves. It is said that this time has converged.

【0008】[0008]

【従来の技術】図4は従来例のレーダのターゲット追随
処理装置の要部のブロック図及び各部の説明図、図5は
1例の高速フーリェ変換装置のフィルタ関係部分を示す
図である。
2. Description of the Related Art FIG. 4 is a block diagram of an essential part of a target tracking processing device of a conventional radar and an explanatory view of each part, and FIG. 5 is a diagram showing a filter-related part of an example of a high-speed Fourier transform device.

【0009】図4(A)では、ターゲット迄の距離を示
す図で、a1,a2,・・・anは、ターゲットが同一
位置にある時のターゲットの時間波形で、aはターゲッ
ト迄の距離を示す時間である。
FIG. 4A is a diagram showing the distance to the target, where a1, a2, ... An are time waveforms of the target when the target is at the same position, and a is the distance to the target. It is time to show.

【0010】図4(A)に示す入力データの時間波形
が、高速フーリェ変換装置(以下FFT装置と称す)1
に入力すると(B)に示す如き、距離(時間)と速度
(周波数)を示すデータに変換され、ゲーティング部2
に入力する。
The time waveform of the input data shown in FIG. 4A has a high-speed Fourier transform device (hereinafter referred to as FFT device) 1
When input to, the data is converted into data indicating the distance (time) and the velocity (frequency) as shown in (B), and the gating unit 2
To enter.

【0011】ゲーティング部2では、距離追随器3’よ
りのターゲットの予測位置,観測位置,予測速度より、
予測位置に誤差をみこんだ部分を抜き出し、距離追随器
3’に入力し、距離追随器3’では、次のパルス繰り返
し時間(以下PRIと称す)での目標の未来位置の推定
を行い、次のPRIになると又ターゲットの予測位置,
観測位置,予測速度を該ゲーティング部2に入力するこ
とを順次繰り返すことで順次入力する抜き出し範囲を小
さくさせ、距離追随器3’の出力をレーダ制御部4に入
力し、レーダ制御部4にて、未来の予測位置が、図4
(C)に示す如く、クラッタによる雑音の少ないPRI
の後段から一定時間Tの位置になる様にPRIを制御し
てターゲットの追尾処理を行う。
In the gating unit 2, from the predicted position of the target, the observed position and the predicted speed from the distance follower 3 ',
A portion including an error in the predicted position is extracted and input to the distance follower 3 ′. The distance follower 3 ′ estimates the target future position at the next pulse repetition time (hereinafter referred to as PRI), and then When it comes to PRI, the predicted position of the target again,
By sequentially repeating the input of the observation position and the predicted speed to the gating unit 2, the extraction range that is sequentially input is reduced, and the output of the distance follower 3 ′ is input to the radar control unit 4 and the radar control unit 4 is input. And the future predicted position is
As shown in (C), PRI with less noise due to clutter
The target tracking process is performed by controlling the PRI so that the position of T is maintained for a certain period of time from the latter stage.

【0012】[0012]

【発明が解決しようとする課題】しかしながら、収束前
でPRIが変化すると、パルス繰り返し周波数(以下P
RFと称し、PRF=1/PRIである)をFFT装置
1のフィルタの個数Nで割ったPRF/Nを中心周波数
とする図5(A)に示すフィルタの形状はPRIの変化
に応じて伸縮するのでフィルタよりの出力レベルが変化
しFFT装置1の出力が安定しない問題点があり、又収
束し、PRFが変化しなくなっても、ターゲットの速度
は未知である為図5(B)に示す如く入力データがフィ
ルタの中心にくるとは限らずフィルタよりの出力レベル
が変化し、FFT装置1の出力が安定しない問題点があ
る。
However, if the PRI changes before the convergence, the pulse repetition frequency (hereinafter P
(RF is referred to as PRF = 1 / PRI) divided by the number N of filters of the FFT device 1 and the center frequency is PRF / N. The shape of the filter shown in FIG. 5A expands or contracts according to the change of PRI. Therefore, there is a problem that the output level from the filter changes and the output of the FFT device 1 is not stable, and even if the output converges and the PRF does not change, the target speed is unknown, so that it is shown in FIG. 5 (B). As described above, the input data does not always come to the center of the filter, the output level from the filter changes, and the output of the FFT apparatus 1 is not stable.

【0013】本発明は、収束前及び収束後共FFT装置
1の出力が安定なレーダの標的追随処理装置の提供を目
的としている。
An object of the present invention is to provide a target tracking processing device for a radar in which the outputs of the FFT device 1 before and after convergence are stable.

【0014】[0014]

【課題を解決するための手段】図1は本発明の原理ブロ
ック図である。図1に示す如く、標的にて反射して返っ
てくる入力の時間波形データを、FFT装置1にて時間
で示す距離と周波数で示す速度のデータに変換しゲーテ
ィング部2に入力し、該ゲーティング部2にて、距離追
随器3よりの標的の予測位置,観測位置,予測速度よ
り、予測位置に誤差をみこんだ部分を抜き出し、該距離
追随器3に入力し、該距離追随器3では、次のPRIで
の標的の未来位置の推定を行い、次のPRIになると又
標的の予測位置,観測位置,予測速度を該ゲーティング
部2に入力することを順次繰り返すことで順次入力する
抜き出し範囲を小さくさせ、該距離追随器3の出力をレ
ーダ制御部4に入力し、該レーダ制御部4にて、未来の
予測位置が、PRIの後段から一定時間になるようにP
RIを制御する、レーダの標的追随処理装置において、
該距離追随器3に入力する抜き出し範囲が、誤差が大き
い収束前は、PRIの変化分だけ入力の時間波形データ
の周波数をシフトさせ、誤差が小さくなったと認められ
る収束後は標的の予測速度より、該FFT装置1の入力
データを通すフィルタの中心周波数を差し引いた分、入
力の時間波形データの周波数をシフトさせるシフト手段
5を設けた構成とする。
FIG. 1 is a block diagram showing the principle of the present invention. As shown in FIG. 1, the time waveform data of the input reflected and returned by the target is converted by the FFT device 1 into the data of the distance represented by time and the velocity represented by the frequency, and the data is input to the gating unit 2. The gating unit 2 extracts a portion including an error in the predicted position from the predicted position, the observed position, and the predicted velocity of the target from the distance follower 3, inputs the extracted portion into the distance follower 3, and then the distance follower 3 Then, the future position of the target is estimated at the next PRI, and when the next PRI is reached, the predicted position, the observed position, and the predicted speed of the target are sequentially input by sequentially repeating the input to the gating unit 2. The extraction range is reduced, the output of the distance follower 3 is input to the radar control unit 4, and the radar control unit 4 sets P so that the future predicted position will be a fixed time from the subsequent stage of the PRI.
In a target tracking processing device of a radar for controlling RI,
Before the convergence in which the extraction range input to the distance follower 3 has a large error, the frequency of the input time waveform data is shifted by the amount of change in PRI before the convergence, and it is recognized that the error has become smaller than the predicted speed of the target after the convergence. The shift means 5 is provided to shift the frequency of the input time waveform data by the amount obtained by subtracting the center frequency of the filter that passes the input data of the FFT device 1.

【0015】[0015]

【作用】本発明によれば、距離追随器3にて、収束前
は、PRIの変化分だけ入力の時間波形データの周波数
をシフトさせ、FFT装置1のPRIによるフィルタの
形状変化を抑えるのでフィルタよりの出力は安定しFF
T装置1の出力も安定し、又収束後は、周波数で示すタ
ーゲットの予測速度より、FFT装置1の入力データを
通すフィルタの中心周波数を差し引いた分だけ、入力の
時間波形データの周波数をシフトさせるので、入力デー
タはフィルタの中心周波数の位置を通るようになりフィ
ルタの出力は安定し、FFT装置1の出力は安定する。
According to the present invention, the distance follower 3 shifts the frequency of the input time waveform data by the amount of change in PRI before the convergence so that the filter shape change due to the PRI of the FFT apparatus 1 is suppressed. Output is stable and FF
The output of the T device 1 is also stable, and after convergence, the frequency of the input time waveform data is shifted by the amount obtained by subtracting the center frequency of the filter that passes the input data of the FFT device 1 from the target predicted speed indicated by the frequency. Therefore, the input data passes through the position of the center frequency of the filter, the output of the filter becomes stable, and the output of the FFT device 1 becomes stable.

【0016】[0016]

【実施例】図2は本発明の実施例の周波数をシフトさせ
る部分を示す図である。本発明では、図1に示す如くシ
フト手段5を設けるが、シフト手段5としては、距離追
随器3よりの基本位相θが、θ=2πfΔt(但しΔt
は図4(A)に示すデータのサンプリング間隔、fはシ
フト周波数)により求めた周波数のシフト量b(n)を
発生させるシフト周波数発生部30と乗算器31を持
ち、入力の時間波形データa(n)に周波数シフト量b
(n)を乗算器31にて乗算し、周波数シフトされた時
間波形データc(n)をFFT装置1に入力するように
している。
FIG. 2 is a diagram showing a frequency shifting portion according to an embodiment of the present invention. In the present invention, the shift means 5 is provided as shown in FIG. 1. As the shift means 5, the basic phase θ from the distance follower 3 is θ = 2πfΔt (however, Δt
Is a sampling interval of the data shown in FIG. 4A, f is a shift frequency, and has a shift frequency generator 30 for generating a frequency shift amount b (n) obtained by the shift frequency and a multiplier 31, and the input time waveform data a Frequency shift amount b in (n)
(N) is multiplied by the multiplier 31, and the frequency-shifted time waveform data c (n) is input to the FFT device 1.

【0017】これを式で示すと、c(n)=a(n)×
b(n) b(n)=EXP〔jθ×n〕となる。尚収束前のシフ
ト周波数fを式で示すと次の如くなる。
This can be expressed by the equation: c (n) = a (n) ×
b (n) b (n) = EXP [jθ × n]. The shift frequency f before convergence is expressed by the following equation.

【0018】f=k(PRF0 −PRF)/N 但し、k=FFT装置1のフィルタの番号(1〜N) N=FFT装置1のフィルタ数 PRF0 =最初に使用した予測バルス繰り返し周波数で
ある。
F = k (PRF 0 −PRF) / N where k = number of filters of FFT apparatus 1 (1 to N) N = number of filters of FFT apparatus 1 PRF 0 = predicted pulse repetition frequency used is there.

【0019】収束後のシフト周波数fを式で示すと次の
如くなる。 f=ff−fp 但しff=k×PRF/N fp=予測速度(周波数) 次に図2を用い、基本位相により周波数のシフト量を求
め、入力の時間波形のデータをシフトさせる点につき説
明する。
The shift frequency f after convergence is expressed by the following equation. f = ff−fp where ff = k × PRF / N fp = predicted speed (frequency) Next, referring to FIG. 2, the point of shifting the input time waveform data by obtaining the frequency shift amount by the basic phase will be described. .

【0020】距離追随器3の基本位相θ=2πfΔtを
求めるルーチンでは、ステップ1にて収束前であればス
テップ2に進み、f=k(PRF0 −PRF)/Nを求
めステップ4にて、このfを用いたθ=2πfΔtを求
め、ステップ1にて収束後であれば、ステップ3に進み
f=ff−fpを求め、ステップ4にて、このfを用い
たθ=2πfΔtを求め、シフト周波数発生部30に入
力する。
In the routine for obtaining the basic phase θ = 2πfΔt of the distance follower 3, if convergence is not made in step 1, the process proceeds to step 2 to obtain f = k (PRF 0 -PRF) / N, and in step 4, If θ = 2πfΔt using this f is obtained, and if it is after convergence in step 1, then go to step 3 to obtain f = ff-fp, and in step 4, obtain θ = 2πfΔt using this f and shift. It is input to the frequency generator 30.

【0021】シフト周波数発生部30では、加算器1
0,バッフア11を用い、p=θ+p(pの初期値は
0)の式が成立するようにして、基本位相θをθづつ増
加させ、p,mod,2π部12にてpを2πで割つた
余りを求め、余りに相当するCos値,Sin値をCo
sテーブル13,Sinテーブル14より求め、周波数
シフト量をb(n)とし、入力の時間波形データa
(n)のIチャネルには乗算器15にてCos値を乗
じ、乗算器17にてSin値を乗じ、a(n)のQチャ
ネルには乗算器16にてSin値を乗じ、乗算器18に
てCos値を乗じ、減算器19にて、乗算器15,16
の出力の差分を求め、加算器20にて乗算器17,18
の出力の和を求め、周波数シフトされた入力の時間波形
データc(n)としてFFT装置1に入力する。
In the shift frequency generator 30, the adder 1
0, the buffer 11 is used, and the basic phase θ is increased by θ so that the equation of p = θ + p (the initial value of p is 0) is established, and p is divided by 2π in the p, mod, 2π section 12. The remainder is calculated, and the Cos value and the Sin value corresponding to the remainder are set to Co
From the s table 13 and the Sin table 14, the frequency shift amount is set to b (n), and the input time waveform data a
The I channel of (n) is multiplied by the Cos value in the multiplier 15, the Sin value is multiplied by the multiplier 17, and the Q channel of a (n) is multiplied by the Sin value in the multiplier 16 and the multiplier 18 Is multiplied by the Cos value, and the subtracter 19 multiplies the multipliers 15, 16
Of the outputs of the multipliers 17 and 18 in the adder 20.
Then, the sum of the outputs of the above is calculated and input to the FFT device 1 as time-shifted input time waveform data c (n).

【0022】このようにすると、収束前はPRI変化分
だけ入力の時間波形のデータの周波数をシフトさせるの
で、FFT装置1のPRI変化によるフィルタの形状変
化を抑えるのでフィルタよりの出力は安定し、FFT装
置1の出力は安定する。
In this way, the frequency of the input time waveform data is shifted by the amount of PRI change before convergence, so that the filter shape change due to the PRI change of the FFT apparatus 1 is suppressed, and the output from the filter is stabilized. The output of the FFT device 1 is stable.

【0023】収束後は、ターゲットの予測速度(周波
数)よりFFT装置1の入力データを通すフィルタの中
心周波数を差し引いた分だけ、入力の時間波形のデータ
の周波数をシフトさせるので、入力データはフィルタの
中心周波数の位置を通るようになり、フィルタの出力は
安定し、FFT装置1の出力は安定する。
After the convergence, the frequency of the input time waveform data is shifted by the amount obtained by subtracting the center frequency of the filter for passing the input data of the FFT device 1 from the predicted speed (frequency) of the target, so that the input data is filtered. , The output of the filter becomes stable, and the output of the FFT device 1 becomes stable.

【0024】[0024]

【発明の効果】以上詳細に説明せる如く本発明によれ
ば、収束前はPRIの変化にてフィルタの形状は変化し
ないので、フィルタの出力は安定し、収束後は、常にフ
ィルタの中心に入力データがくる為に出力が安定し、F
FT装置の出力が安定する効果がある。
As described in detail above, according to the present invention, since the shape of the filter does not change due to the change of PRI before the convergence, the output of the filter is stable, and after the convergence, it is always input to the center of the filter. The output is stable because the data comes, and F
This has the effect of stabilizing the output of the FT device.

【図面の簡単な説明】[Brief description of drawings]

【図1】は本発明の原理ブロック図、FIG. 1 is a block diagram of the principle of the present invention,

【図2】は本発明の実施例の周波数をシフトさせる部分
を示す図、
FIG. 2 is a diagram showing a frequency shifting portion of an embodiment of the present invention,

【図3】は1例のターゲット追随の概念図、FIG. 3 is a conceptual diagram of target tracking in one example,

【図4】は従来例のレーダのターゲット追随処理装置の
要部のブロック図及び各部の説明図、
FIG. 4 is a block diagram of a main part of a target tracking processing device of a conventional radar and an explanatory view of each part;

【図5】は1例の高速フーリェ変換装置のフィルタ関係
部分を示す図である。
FIG. 5 is a diagram showing a filter-related portion of an example high-speed Fourier transform device.

【符号の説明】[Explanation of symbols]

1は高速フーリェ変換装置、 2はゲーティング部、 3,3’は距離追随器、 4はレーダ制御部、 5はシフト手段、 10,20は加算器、 11はバッフア、 12はpmod2π部、 13はCosテーブル、 14はSinテーブル、 15〜18,31は乗算器、 19は減算器、 30はシフト周波数発生部を示す。 1 is a high-speed Fourier transform device, 2 is a gating unit, 3 and 3'are distance followers, 4 is a radar control unit, 5 is shift means, 10 and 20 are adders, 11 is buffer, 12 is pmod2π unit, 13 Is a Cos table, 14 is a Sin table, 15 to 18 and 31 are multipliers, 19 is a subtractor, and 30 is a shift frequency generator.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 標的にて反射して返ってくる入力の時間
波形データを、高速フーリェ変換装置(1)にて時間で
示す距離と周波数で示す速度のデータに変換しゲーティ
ング部(2)に入力し、該ゲーティング部(2)にて、
距離追随器(3)よりの標的の予測位置,観測位置,予
測速度より、予測位置に誤差をみこんだ部分を抜き出
し、該距離追随器(3)に入力し、該距離追随器(3)
では、次のパルス繰り返し時間での標的の未来位置の推
定を行い、次のパルス繰り返し時間になると又標的の予
測位置,観測位置,予測速度を該ゲーティング部(2)
に入力することを順次繰り返すことで順次入力する抜き
出し範囲を小さくさせ、該距離追随器(3)の出力をレ
ーダ制御部(4)に入力し、該レーダ制御部(4)に
て、未来の予測位置が、パルス繰り返し時間の後段から
一定時間になるようにパルス繰り返し時間を制御する、
レーダの標的追随処理装置において、該距離追随器
(3)に入力する抜き出し範囲が、誤差が大きい収束前
は、パルス繰り返し時間の変化分だけ入力の時間波形デ
ータの周波数をシフトさせ、誤差が小さくなったと認め
られる収束後は標的の予測速度より、該高速フーリェ変
換装置(1)の入力データを通すフィルタの中心周波数
を差し引いた分、入力の時間波形データの周波数をシフ
トさせるシフト手段(5)を設けたことを特徴とするレ
ーダの標的追随処理装置。
1. A gating unit (2) for converting time waveform data of an input reflected and returned by a target into data of a distance represented by time and a velocity represented by frequency by a high-speed Fourier transform device (1). And enter in the gating unit (2)
From the predicted position of the target, the observed position, and the predicted velocity from the distance follower (3), a portion having an error in the predicted position is extracted and input to the distance follower (3), and the distance follower (3)
Then, the future position of the target at the next pulse repetition time is estimated, and at the next pulse repetition time, the predicted position, observation position, and predicted speed of the target are calculated again by the gating unit (2).
The output range of the distance follower (3) is input to the radar control unit (4) by sequentially repeating the input to the radar control unit (4). The pulse repetition time is controlled so that the predicted position becomes a constant time from the latter stage of the pulse repetition time,
In the target tracking processing device of the radar, the extraction range input to the distance follower (3) has a large error. After the convergence which is recognized to have occurred, the shift means (5) for shifting the frequency of the input time waveform data by the amount obtained by subtracting the center frequency of the filter for passing the input data of the high-speed Fourier transform device (1) from the predicted speed of the target. A target follow-up processing device for a radar, characterized in that:
JP9822893A 1993-04-26 1993-04-26 Target tracking processing device for radar Withdrawn JPH06308230A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9822893A JPH06308230A (en) 1993-04-26 1993-04-26 Target tracking processing device for radar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9822893A JPH06308230A (en) 1993-04-26 1993-04-26 Target tracking processing device for radar

Publications (1)

Publication Number Publication Date
JPH06308230A true JPH06308230A (en) 1994-11-04

Family

ID=14214108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9822893A Withdrawn JPH06308230A (en) 1993-04-26 1993-04-26 Target tracking processing device for radar

Country Status (1)

Country Link
JP (1) JPH06308230A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6018311A (en) * 1998-07-14 2000-01-25 Raytheon Company Noncoherent gain enhancement technique for improved detection-estimation performance
US7652618B2 (en) * 2008-02-15 2010-01-26 Deere & Company Method and system for determining velocity by using variable or distinct sampling rates

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6018311A (en) * 1998-07-14 2000-01-25 Raytheon Company Noncoherent gain enhancement technique for improved detection-estimation performance
US7652618B2 (en) * 2008-02-15 2010-01-26 Deere & Company Method and system for determining velocity by using variable or distinct sampling rates

Similar Documents

Publication Publication Date Title
Bar-Ilan et al. Sub-Nyquist radar via Doppler focusing
AU596386B2 (en) Apparatus for scanning moving objects, notably flowing blood, by means of ultrasound echography
JP2980715B2 (en) Method and apparatus for digital phased array imaging
US5864313A (en) Process for determining the intermediate frequency deviation in frequency pulsed radar systems
US20130038485A1 (en) Data analysis method and apparatus for estimating time-axis positions of peak values within a signal based on a series of sample values of the signal
CN115828074B (en) Combined estimation method for target positioning parameters of radiation source
US4241350A (en) Radar target pattern recognition system using logarithmic analysis
JP6696575B2 (en) Moving target detecting system and moving target detecting method
KR970010077B1 (en) Doppler tracking method for object imaging from radar returns
CN111965611B (en) Construction method of phase jitter DDMA waveform
JP4702117B2 (en) Pulse radar apparatus and distance measuring method
US3295127A (en) Doppler frequency tracker
JPH06308230A (en) Target tracking processing device for radar
US6281833B1 (en) Range rate aiding in a pulsed radar system
US4249179A (en) Circuit arrangement for displacing the clutter spectrum in a radar receiver
JPH0643235A (en) Propagation path length measuring device
CN112654894A (en) Radar detection method and related device
JP3508000B2 (en) Target motion estimation device
Hara et al. Development of a chaotic signal radar system for vehicular collision-avoidance
CN111539323A (en) Frequency estimation method and device for cyclic prefix linear frequency modulation signal
US4587523A (en) Radar range tracking apparatus and method
JPH1066695A (en) Ultrasonic flow measurement system
RU2314552C1 (en) Mode of automatic tracking of a target according to speed in a pulse-doppler locator
CN111693990A (en) Simple gesture recognition method based on 24GHz radar
Wang et al. MGRFT-Based Coherent Integration Method for High-Speed Maneuvering Target with Range Ambiguity

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000704