JPH06308120A - Controlling substance for measurement of saccharized hemoglobin and its manufacture - Google Patents

Controlling substance for measurement of saccharized hemoglobin and its manufacture

Info

Publication number
JPH06308120A
JPH06308120A JP10146893A JP10146893A JPH06308120A JP H06308120 A JPH06308120 A JP H06308120A JP 10146893 A JP10146893 A JP 10146893A JP 10146893 A JP10146893 A JP 10146893A JP H06308120 A JPH06308120 A JP H06308120A
Authority
JP
Japan
Prior art keywords
hemoglobin
carbon monoxide
measuring
erythrocyte
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10146893A
Other languages
Japanese (ja)
Other versions
JP3262631B2 (en
Inventor
Masahiro Takechi
昌裕 武智
Kazuhiko Shimada
一彦 嶋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP10146893A priority Critical patent/JP3262631B2/en
Publication of JPH06308120A publication Critical patent/JPH06308120A/en
Application granted granted Critical
Publication of JP3262631B2 publication Critical patent/JP3262631B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To measure with high reliability by using a controlling substance for measuring saccharized hemoglobin obtained by bringing hemoglobin in touch with carbon monoxide. CONSTITUTION:A suitable amount of distilled water is added calmly to erythrocyte which is sufficiently cleansed by physiological saline water, thereby breaking the membrane of erythrocyte. A part of erythrocyte including a solid content such as the membrane or the like is removed by the centrifugal separation at about 2000-10000G. Alternatively, a suitable amount of hemolytic agent may be added to separate the erythrocyte. Then, carbon monoxide gas is calmly blown into a solution containing hemoglobin while it is stirred under the nitrogen atmosphere. The shifting rate of carbon monoxide of the generated carbon monoxide hemoglobin can be confirmed from the shift of the absorbance spectrum. As the value is larger, it is more suitable for use in measuring saccharized hemoglobin. Thereafter, the hemolysate is distributed every predetermined amount into vials which are in turn dipped in liquid nitrogen to freeze the hemolysate. The hemolysate is dried in high vacuum. Accordingly, even when measuring persons, devices or the time are different, reliable measuring values can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、糖尿病検査の指標に用
いられる糖化ヘモグロビン、特にヘモグロビンAlcお
よび/またはヘモグロビンAlの測定に使用する糖化ヘ
モグロビン測定用管理物質に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a glycated hemoglobin used as an index for a diabetes test, and more particularly to a glycated hemoglobin control substance used for measuring hemoglobin Alc and / or hemoglobin Al.

【0002】[0002]

【従来の技術】糖尿病検査の指標の一つとして血液中の
糖化ヘモグロビン、特にヘモグロビンAlc(以下HbAl
c と略記する)およびヘモグロビンAl(以下HbAlと略
記する)が知られ、臨床検査の分野において広く測定さ
れている。これらの糖化ヘモグロビン、特にHbAlc は患
者の約二ケ月前の血糖値とよく相関することから、糖尿
病病態の重要な指標の一つとしてその臨床的意義が高ま
ってきている。
2. Description of the Related Art Glycated hemoglobin in blood, particularly hemoglobin Alc (hereinafter referred to as HbAl), is one of the indicators of diabetes test.
abbreviated as c) and hemoglobin Al (hereinafter abbreviated as HbAl) are known and widely measured in the field of clinical examination. Since these glycated hemoglobins, especially HbAlc, correlate well with the blood glucose level of patients about two months ago, their clinical significance is increasing as one of the important indicators of diabetic condition.

【0003】これらの糖化ヘモグロビンの測定方法とし
て、種々の方法が知られており、特にミニカラム、高速
液体クロマトグラフィー(HPLC)等の各種クロマト
グラフィー技術を応用した方法が、臨床検査分野に広く
普及している。また一方では、同一の試料を測定する場
合、測定者、装置、測定時期等が異なっても信頼性のあ
る測定値が得られるように精度管理を行い、測定結果の
恒常的な一貫性を確保する必要がある。
Various methods are known as methods for measuring these glycated hemoglobins, and in particular, methods applying various chromatographic techniques such as mini-column and high performance liquid chromatography (HPLC) have been widely spread in the clinical laboratory field. ing. On the other hand, when measuring the same sample, quality control is performed so that reliable measurement values can be obtained even if the measurer, device, measurement time, etc. differ, ensuring consistent measurement results. There is a need to.

【0004】一般に制度管理は、得られる測定値の水準
が一定であることを示す標準物質、すなわち測定系の基
準となるべき糖化ヘモグロビン測定用管理物質を用いて
行なわれる。この物質を測定試料と同様に測定すること
により、測定装置間の差や測定方法の種々の条件の違
い、日差再現性、日内再現性等により生じる誤差を補正
することができる。また糖化ヘモグロビン測定用管理物
質の特性値、例えばHbAlc 値が、何らかの基準となる測
定方法により確定かつ保証される場合、当該糖化ヘモグ
ロビン測定用管理物質を標準物質として規定することが
でき、HbAlc 測定の標準化、キャリブレーション等の目
的でこれを用いることも可能である。
In general, institutional control is carried out using a standard substance showing that the level of the obtained measured value is constant, that is, a glycated hemoglobin measuring controlled substance which should serve as a standard of the measuring system. By measuring this substance in the same manner as the measurement sample, it is possible to correct the error caused by the difference between the measuring devices, the difference in various conditions of the measuring method, the reproducibility of the day difference, the reproducibility of the day, and the like. In addition, when the characteristic value of the glycated hemoglobin measurement controlled substance, for example, the HbAlc value, is confirmed and guaranteed by a measurement method that serves as a reference, the glycated hemoglobin measurement controlled substance can be specified as a standard substance, and the HbAlc measurement It is also possible to use this for the purpose of standardization, calibration and the like.

【0005】しかし、基準となるべき糖化ヘモグロビン
測定用管理物質が経時的に不安定で、得られるHbAlc 値
またはHbAl値に信頼性が得られない場合、このような管
理物質を用いて精度管理を行なっても意味の無いものと
なってしまう。またこの場合、測定されたHbAl値の信頼
性が乏しいならば、これを糖尿病の指標に用いていると
いう社会的な役割に大きな問題を生じさせることにもな
り得る。
However, when the HbAlc value or HbAl value obtained is not reliable because the controlled substance for measuring glycated hemoglobin, which is to be the standard, is unstable over time, quality control is performed using such a controlled substance. Even if you do it, it will be meaningless. Further, in this case, if the reliability of the measured HbAl value is poor, it may cause a big problem in the social role of using it as an index of diabetes.

【0006】以上のようなことから、測定系の基準とな
るべき経時安定性の優れた糖化ヘモグロビン測定用管理
物質を、精度管理用として用いることが広く望まれてい
る。臨床検査室では糖化ヘモグロビン測定用管理物質を
得るため、従来から慣習的に溶血液を凍結もしくは凍結
乾燥させて自家調製する場合が多いが、経時的安定性と
いう性能の点で完全であるものは少なかった。
From the above, it has been widely desired to use the controlled substance for measuring glycated hemoglobin, which has excellent stability over time and should serve as a standard for the measuring system, for quality control. In clinical laboratories, in order to obtain a controlled substance for measuring glycated hemoglobin, it is customary to freeze or lyophilize hemolyzed blood and prepare it in-house in the past. There were few.

【0007】特開昭59−183370号公報にヘモグ
ロビン標準物質の製造方法に関する発明が開示されてい
る。これは優れた標準物質を製造する方法であるが、酸
化剤であるフェリシアン化カリウム等を添加して、ヘモ
グロビンをメト化(ヘム鉄[II]を鉄[III]に酸化)す
る工程が含まれている。この場合、条件によってはヘモ
グロビンに対し、メト化に伴う変性を生じさせる危険性
がある。このような変性を生じたヘモグロビン成分は各
種クロマトグラム分析上で変性ピークとして出現し、測
定値に悪影響を与える場合がある。
JP-A-59-183370 discloses an invention relating to a method for producing a hemoglobin standard substance. This is a method for producing an excellent standard substance, but it includes a step of adding hemoglobin to methoxide (oxidizing heme iron [II] to iron [III]) by adding potassium ferricyanide, which is an oxidant. There is. In this case, depending on the conditions, there is a risk that hemoglobin will undergo denaturation associated with methemoglobin formation. The hemoglobin component that has undergone such denaturation may appear as a denaturation peak on various chromatogram analyzes and may adversely affect the measured value.

【0008】[0008]

【発明が解決しようとする課題】本発明の目的とすると
ころは、測定値の恒常的な一貫性と信頼性のある測定値
を得るために行なわれる精度管理をより信頼性の高いも
のにすることにあり、糖化ヘモグロビンを糖尿病検査の
指標に用いるという社会的な役割を支えることにある。
SUMMARY OF THE INVENTION It is an object of the invention to make the accuracy control carried out in order to obtain consistent measurement values and reliable measurement values more reliable. In particular, it supports the social role of using glycated hemoglobin as an index for diabetes tests.

【0009】このためには、上記のような精度管理を行
う上で必要となる、測定系の基準となるべき経時的安定
性の優れた糖化ヘモグロビン測定用管理物質、特にHbAl
c 値および/またはHbAlの測定に使用する糖化ヘモグロ
ビン測定用管理物質を提供することが必要であり、この
課題を解決することができれば、同一の試料を測定者、
装置、測定時期等が異なっても信頼性の高い測定値を得
ることが可能となる。
For this purpose, a controlled substance for measuring glycated hemoglobin, particularly HbAl, which is necessary for performing the above-mentioned quality control and has excellent stability over time, which is a standard of the measuring system.
It is necessary to provide a controlled substance for measuring glycated hemoglobin used for the measurement of c value and / or HbAl. If this problem can be solved, the same sample can be measured by
It is possible to obtain highly reliable measurement values even if the device, measurement time, etc. are different.

【0010】また、糖化ヘモグロビン測定用管理物質の
特性値、例えばHbAlc 値が、何らかの基準となる測定方
法により確定かつ保証される場合、当該糖化ヘモグロビ
ン測定用管理物質を標準物質として規定することによ
り、HbAlc 測定の標準化の目的で使用することも可能で
ある。
Further, when the characteristic value of the controlled substance for measuring glycated hemoglobin, for example, the HbAlc value is confirmed and guaranteed by a measuring method which is a standard, by defining the controlled substance for measuring glycated hemoglobin as a standard substance, It can also be used for the purpose of standardizing HbAlc measurements.

【0011】[0011]

【課題を解決するための手段】本発明は、測定系の基準
となるべき経時的安定性の優れた糖化ヘモグロビン測定
用管理物質を得るために工夫されたものであり、その特
徴とするところはヘモグロビンを一酸化炭素と接触させ
ることにより一酸化炭素化ヘモグロビンとし、これを糖
化ヘモグロビン測定の管理物質として使用することにあ
る。
The present invention has been devised in order to obtain a controlled substance for measuring glycated hemoglobin, which is excellent in stability over time and should serve as a standard for a measuring system. The features of the present invention are as follows. The purpose is to bring hemoglobin into contact with carbon monoxide to form carbon monoxide hemoglobin, and use this as a control substance for measurement of glycated hemoglobin.

【0012】空気雰囲気下において、通常、ヘモグロビ
ンは酸素と結合し、オキシヘモグロビンとして存在す
る。しかしヘモグロビンが一酸化炭素と接触すると、速
やかにこれと結合し、一酸化炭素化ヘモグロビンとな
る。この時、一酸化炭素のヘモグロビンに対する親和性
は、酸素のそれと比べて極めて強いため、ヘモグロビン
に結合した一酸化炭素は容易には脱離されない。このた
め、一酸化炭素化ヘモグロビンはオキシヘモグロビンよ
りも、メト化やそれに引き続き起こり得るヘモグロビン
の変性が生じにくいと考えられる。
[0012] In an air atmosphere, hemoglobin usually combines with oxygen and exists as oxyhemoglobin. However, when hemoglobin comes into contact with carbon monoxide, it quickly binds to carbon monoxide and becomes carbon monoxide hemoglobin. At this time, since the affinity of carbon monoxide for hemoglobin is much stronger than that of oxygen, carbon monoxide bound to hemoglobin is not easily desorbed. For this reason, it is considered that carbon monoxide hemoglobin is less likely to undergo methification and subsequent denaturation of hemoglobin than oxyhemoglobin.

【0013】本発明者らはヘモグロビンのこのような特
性に着眼し、種々検討を繰り返した結果、この一酸化炭
素化ヘモグロビンが、糖化ヘモグロビン、特にHbAlc お
よび/またはHbAl測定において優れた経時的安定性を有
する糖化ヘモグロビン測定用管理物質になりうることを
見いだした。
The present inventors have focused their attention on such characteristics of hemoglobin and repeated various investigations. As a result, this carbon monoxide hemoglobin has excellent stability over time in measuring glycated hemoglobin, particularly HbAlc and / or HbAl. It has been found that it can be used as a controlled substance for measuring glycated hemoglobin.

【0014】以下に、本発明をさらに詳細に説明する。The present invention will be described in more detail below.

【0015】本発明の糖化ヘモグロビン測定用管理物質
を製造する方法は、 血液もしくは赤血球からヘモグロビンを溶血精製させ
る工程、 ヘモグロビンを一酸化炭素化する工程、 凍結もしくは凍結乾燥を行う工程、 の3工程からなる。このうち、およびの工程は特に
限定されるものではなく、これら工程の目的が達成され
得る方法であれば、既知の各種の方法が使用できる。
The method for producing a controlled substance for measuring glycated hemoglobin according to the present invention comprises three steps: a step of hemolyzing and purifying hemoglobin from blood or red blood cells, a step of carbonizing hemoglobin to carbon monoxide, and a step of freezing or lyophilizing. Become. Of these, steps and are not particularly limited, and various known methods can be used as long as the purpose of these steps can be achieved.

【0016】の工程との工程の順番は特に限定され
るものではなく、ヘモグロビンを溶血精製させてから一
酸化炭素化してもよく、一酸化炭素化処理後にヘモグロ
ビンを溶血精製しても構わない。の工程は、および
の二つの工程が終了したあと行われる。
The order of the step and the step is not particularly limited, and hemoglobin may be hemolyzed and purified and then carbon monoxide may be obtained, or hemoglobin may be hemolyzed and purified after the carbon monoxide treatment. The process (1) is performed after the two processes (1) and (2) are completed.

【0017】の工程の例としては、生理食塩水で充分
に洗浄した赤血球に対し、適量の蒸留水を穏やかに加え
て赤血球膜を破裂(溶血)させ、そののち2000〜1
0000Gで遠心分離することにより赤血球膜等の有固
形分を除去する方法等が挙げられる。赤血球を溶血させ
る方法としては、上記蒸留水添加法以外に、赤血球に溶
血剤を適量添加する方法もある。溶血剤としては種々の
界面活性剤が使用可能であるが、好ましくはアルキルア
リールポリエーテルアルコール、ソルビット脂肪酸エス
テルのポリオキシエチレン付加体等が用いられる。ま
た、水と混和しない有機溶剤で洗浄した後、遠心分離す
ると膜成分等の脂質がより効率よく除去できる。該有機
溶剤としては、ベンゼン、トルエン、キシレン、ヘキサ
ン、石油エーテル等が好ましい。この場合、有機溶剤が
残存すると好ましくないので、得られたヘモグロビン溶
液をリン酸緩衝液等の適当なバッファーで透析すること
がより好ましい。
As an example of the step (1), erythrocytes thoroughly washed with physiological saline are gently added with an appropriate amount of distilled water to rupture (hemolyze) the erythrocyte membrane, and then 2000-1.
Examples include a method of removing solid matter such as red blood cell membrane by centrifuging at 0000 G. As a method of hemolyzing red blood cells, there is a method of adding an appropriate amount of hemolytic agent to red blood cells in addition to the above-mentioned distilled water addition method. Although various surfactants can be used as the hemolytic agent, alkylaryl polyether alcohols, sorbit fatty acid ester polyoxyethylene adducts and the like are preferably used. In addition, lipids such as membrane components can be more efficiently removed by centrifugation after washing with an organic solvent immiscible with water. As the organic solvent, benzene, toluene, xylene, hexane, petroleum ether and the like are preferable. In this case, since it is not preferable that the organic solvent remains, it is more preferable to dialyz the obtained hemoglobin solution with an appropriate buffer such as a phosphate buffer.

【0018】また、の工程の例としては、溶血液を1
〜数mlずつバイアル瓶に分注し、液体窒素に浸漬し凍
結させる方法、−40℃にて凍結させたものを高真空下
に数時間から数日置き、凍結乾燥させる方法等が挙げら
れる。この時、必要に応じて凍害保護剤を添加する。凍
害保護剤としては、ポリヒドロキシ化合物が好んで用い
られるが、例えばイノシトール、ソルビトール、サッカ
ロース、グリセロール、アルキレングリコール、単糖
類、多糖類等が挙げられる。凍害保護剤の使用量はその
種類等によっても異なるが、通常ヘモグロビン溶液に対
し2〜20w/v%の割合で添加させる。凍結乾燥の場
合、バイアル瓶内の空間を高純度窒素やアルゴン等の不
活性ガスで置換したのち瓶を容器を密栓することがより
好ましい。
Further, as an example of the process of 1,
Examples include a method of dispensing a few ml each into a vial bottle, immersing in liquid nitrogen and freezing, a method of freezing at -40 ° C. under high vacuum for several hours to several days, and freeze-drying. At this time, a frost damage protector is added if necessary. A polyhydroxy compound is preferably used as the frost damage protector, and examples thereof include inositol, sorbitol, saccharose, glycerol, alkylene glycol, monosaccharides and polysaccharides. Although the amount of the frost damage protector used varies depending on the type and the like, it is usually added at a ratio of 2 to 20 w / v% to the hemoglobin solution. In the case of freeze-drying, it is more preferable to replace the space in the vial bottle with an inert gas such as high-purity nitrogen or argon and then tightly stopper the bottle.

【0019】の方法としては、結果的に一般化炭素化
ヘモグロビンが生成する方法であれば特に限定されない
が、最も一般的でかつ簡単な方法は、一酸化炭素ガスを
血液や、赤血球分散液およびヘモグロビン溶液等のヘモ
グロビンを含有する溶液に直接吹き込む方法である。例
えば、ヘモグロビン溶液を窒素雰囲気下にて、マグネチ
ックスタラーで穏やかに攪拌させながら、これにパスツ
ールピペット等を用いて一酸化炭素ガスを10ml〜1
000ml/minで吹き込む方法がある。
The method of (1) is not particularly limited as long as it results in the production of generalized carbonized hemoglobin, but the most general and simple method is to use carbon monoxide gas in blood, red blood cell dispersion and This is a method of directly blowing into a hemoglobin-containing solution such as a hemoglobin solution. For example, while the hemoglobin solution is gently stirred with a magnetic stirrer under a nitrogen atmosphere, 10 ml to 1 carbon monoxide gas is added to the hemoglobin solution using a Pasteur pipette or the like.
There is a method of blowing at 000 ml / min.

【0020】生成した一酸化炭素化ヘモグロビンは、そ
の吸光度スペクトルがシフトするので、これを測定する
ことによりその存在および一酸化炭素化率を確認でき
る。例えば、通常の空気雰囲気下において、ヘモグロビ
ンはふつう酸素と結合しオキシヘモグロビンとして存在
するが、これを完全に一酸化炭素化したとすると、41
5nm,541nm,576nmの吸収極大が、それぞ
れ419nm,540nm,569nmにシフトする。
The carbon monoxide hemoglobin produced has a shift in its absorbance spectrum, and its presence and the carbon monoxide ratio can be confirmed by measuring this. For example, in a normal air atmosphere, hemoglobin normally exists as oxyhemoglobin by combining with oxygen. If it is completely carbon monoxide,
The absorption maxima of 5 nm, 541 nm, and 576 nm shift to 419 nm, 540 nm, and 569 nm, respectively.

【0021】一酸化炭素化ヘモグロビンの含有率をより
正確に測定する方法として、松原の報告としている方法
(蛋白質、核酸、酵素、32,6,671−674,1
987)が挙げられる。これらの方法を利用して、得ら
れた糖化ヘモグロビン測定用管理物質の品質をチェック
することができる。
As a method for more accurately measuring the content of carbon monoxide hemoglobin, the method reported by Matsubara (protein, nucleic acid, enzyme, 32,6,671-674,1) is reported.
987). Using these methods, the quality of the obtained controlled substance for measuring glycated hemoglobin can be checked.

【0022】例えば、血液10mlを窒素雰囲気下でマ
グネチックスタラーで穏やかに攪拌させながら、これに
パスツールピベット等を用いて一酸化炭素ガスを100
ml〜1000ml/minで吹き込む場合、ヘモグロ
ビンの濃度等、その他の実験条件にも左右されるが、一
酸化炭素化の反応速度は非常に速く、20〜30秒で約
30〜80%のヘモグロビンが、1〜2分で90%以上
のヘモグロビンが一酸化炭素化される。一酸化炭素ガス
を数分以上吹き込むと一酸化炭素化ヘモグロビンの生成
は完結し、その含有量は約98〜99.5%でプラトー
に達する。このあと、一酸化炭素ガスをこれ以上吹き込
んでも一酸化炭素化ヘモグロビンの含有量はほとんど変
化しない。これは健常人の新鮮血であっても、その血液
中には最初から0.5〜2.0%のメトヘモグロビンが
含まれ、このメトヘモグロビンが一酸化炭素と結合せず
に残存するためである。
For example, while stirring 10 ml of blood gently with a magnetic stirrer under a nitrogen atmosphere, 100 ml of carbon monoxide gas was added to this with a Pasteur pipette or the like.
When it is blown at a rate of ml to 1000 ml / min, the reaction rate of carbon monoxide is very fast, although it depends on other experimental conditions such as the concentration of hemoglobin, and about 30 to 80% of hemoglobin can be obtained in 20 to 30 seconds. In 1 to 2 minutes, 90% or more of hemoglobin is converted into carbon monoxide. When carbon monoxide gas is blown for several minutes or longer, the production of carbon monoxide hemoglobin is completed, and the content reaches a plateau at about 98 to 99.5%. After that, even if the carbon monoxide gas is further blown in, the content of the carbon monoxide hemoglobin hardly changes. This is because even fresh blood of a healthy person contains 0.5 to 2.0% of methemoglobin from the beginning, and this methemoglobin remains without binding to carbon monoxide. is there.

【0023】一酸化炭素化ヘモグロビンの含有率が高い
ほど、すなわち、一酸化炭素化率が高いほど、その一酸
化炭素化ヘモグロビンは糖化ヘモグロビン測定用管理物
質として好ましい。例えば、一酸化炭素化率が50%以
上であれば、その一酸化炭素化ヘモグロビンは管理物質
として使用可能である。一酸化炭素化率が高いほどその
経時的安定性は向上する。好ましくは90%以上、最も
好ましくは生成量がプラトーに達するまで一酸化炭素化
を行うのがよい。
The higher the content of carbon monoxide hemoglobin, that is, the higher the rate of carbon monoxide, the more preferable the carbon monoxide hemoglobin as the control substance for measuring glycated hemoglobin. For example, if the carbon monoxide conversion rate is 50% or more, the carbon monoxide hemoglobin can be used as a controlled substance. The higher the carbon monoxide rate, the higher the stability over time. It is preferable to carry out carbon monoxide conversion to reach 90% or more, and most preferably to reach a plateau.

【0024】前述した特開昭59−183370号公報
のヘモグロビン標準物質の製造方法では、まず酸化剤で
あるフェリシアン化カリウム等を添加し、ヘモグロビン
をメト化(ヘム鉄[II]を鉄[III] に酸化)する必要があ
る。この時、条件によってはヘモグロビンに対し、メト
化以外の重大な変性を生じさせる危険性がある。すなわ
ち、余剰の酸化剤が残存することにより、ヘモグロビン
に不必要な酸化反応を誘発し、これが各種クロマトグラ
ム上で変性ピークの出現を引き起こしてしまう。例え
ば、HbAla およびHbAlb の溶出分画を異常に増加させ、
目的とするHbAlcの分離を不十分にし、これが測定値に
悪影響を及ぼし、信頼性の高いデータが得られにくくな
る。
In the method for producing a hemoglobin standard substance disclosed in JP-A-59-183370, first, an oxidizing agent such as potassium ferricyanide is added to methemoglobin (heme iron [II] to iron [III]. Oxidation). At this time, depending on the conditions, there is a risk of causing serious denaturation of hemoglobin other than methemoglobin formation. That is, the remaining excess oxidizing agent induces an unnecessary oxidation reaction in hemoglobin, which causes the appearance of a denaturation peak on various chromatograms. For example, abnormally increasing the elution fractions of HbAla and HbAlb,
The target HbAlc separation is insufficient, which adversely affects the measured values, making it difficult to obtain reliable data.

【0025】しかし、本発明では酸化剤を一切使用する
必要はなく、余剰の酸化剤によるヘモグロビンの変性も
引き起こされる恐れがない。また、余剰の酸化剤を除去
するための透析等の処理を行う必要もなく、製造工程を
簡略化できる。
However, in the present invention, it is not necessary to use an oxidizing agent at all, and there is no fear that the denaturation of hemoglobin by an excessive oxidizing agent is caused. Further, it is not necessary to perform a treatment such as dialysis for removing the excess oxidizing agent, and the manufacturing process can be simplified.

【0026】[0026]

【実施例】本発明を以下の実施例につき説明する。The present invention will be described with reference to the following examples.

【0027】測定方法 以下の実施例において、HbAlc 値およびHbAl値の測定
は、(株)京都第一科学社製のAuto Alc HA-8121を用い
て溶血モードにより行った。
Measurement Method In the following examples, the HbAlc value and the HbAl value were measured in the hemolysis mode using Auto Alc HA-8121 manufactured by Kyoto Daiichi Kagaku Co., Ltd.

【0028】このAuto Alc HA-8121はHPLCによる糖化ヘ
モグロビン測定専用装置であり、本装置専用の陽イオン
交換樹脂を充填した分離カラムにより、各ヘモグロビン
成分を4分間で分離して溶出する。溶出用緩衝液には本
装置専用の溶離液(リン酸緩衝液)を使用した。溶血に
は本装置専用の溶血用処理液(溶血剤を含有する)を用
いた。その他の使用方法の詳細は本測定装置の取扱い説
明書に従った。この装置を用いたヘモグロビンの溶出パ
ターン例を図1示す。図1において、P1およびP2はHbAl
a およびHbAlb に起因するピーク、ハッチング部のP3は
HbAlc 、そしてP4はその他のヘモグロビン(HbAo)に起
因するピークである。P5は胎児ヘモグロビン(HbF )と
呼ばれる成分で、通常糖化ヘモグロビンには含まれな
い。
This Auto Alc HA-8121 is a device exclusively for measuring glycated hemoglobin by HPLC, and each hemoglobin component is separated and eluted in 4 minutes by a separation column packed with a cation exchange resin dedicated for this device. As the elution buffer, an eluent (phosphate buffer) exclusively for this device was used. For hemolysis, a processing solution for hemolysis (containing a hemolytic agent) dedicated to this apparatus was used. The details of other usages were in accordance with the instruction manual of this measuring device. An example of hemoglobin elution pattern using this apparatus is shown in FIG. In FIG. 1, P1 and P2 are HbAl
The peaks due to a and HbAlb, P3 in the hatched area are
HbAlc and P4 are peaks due to other hemoglobin (HbAo). P5 is a component called fetal hemoglobin (HbF), which is not normally contained in glycated hemoglobin.

【0029】ここで、HbAlc %およびHbAl%は次式で算
出され、測定値は小数点1桁の%値として自動的にプリ
ントアウトされる。
Here, HbAlc% and HbAl% are calculated by the following equations, and the measured value is automatically printed out as a% value with one decimal place.

【0030】[0030]

【数1】 [Equation 1]

【数2】 本実施例においては同一人(健常人)の血液を使用し、
採血後直ちに適量のヘパリンを添加したものを新鮮血液
として用いた。
[Equation 2] In this embodiment, blood of the same person (healthy person) is used,
Immediately after blood collection, an appropriate amount of heparin was added and used as fresh blood.

【0031】一酸化炭素化ヘモグロビンの定量方法 一酸化炭素化ヘモグロビンの定量方法の詳細は、松原の
文献(蛋白質、核酸、酵素、32,6,671−67
4,1987)に従った。
Method for Quantifying Carbon Monoxide Hemoglobin For details of the method for quantifying carbon monoxide hemoglobin, see Matsubara's reference (protein, nucleic acid, enzyme, 32, 6, 671-67).
4, 1987).

【0032】凍結乾燥直前の溶血液0.1mlを0.1
%アンモニア水に溶かし、ハイドロサルファイト(Na
2 2 4 )を20mg加え、538nmおよび578
nmの2波長の吸光度を測定した。この時の吸光度をE
S 538、ES 578とし、吸光度比QS =ES 538
/ES 578を算出した。
0.1 ml of hemolyzed blood just before freeze-drying
% Dissolved in ammonia water, hydrosulfite (Na
2 S 2 O 4 ), 20 mg, added at 538 nm and 578
The absorbance at two wavelengths of nm was measured. The absorbance at this time is E
S 538, ES 578, and absorbance ratio QS = ES 538
/ ES 578 was calculated.

【0033】次に、下記の要領で一酸化炭素化ヘモグロ
ビンの含有量が0%と100%の吸光度比を測定し、検
量線を作成した。
Then, the absorbance ratios of the carbon monoxide hemoglobin contents of 0% and 100% were measured in the following manner to prepare a calibration curve.

【0034】一酸化炭素を吹き込む直前の溶血液を1m
l取り、該溶出血液中に当初から微量存在するかも知れ
ない一酸化炭素化ヘモグロビンを除去するため、パスツ
ールピペットで酸素ガスを100ml/minで5分間
吹き込んだ。次にこの血液0.25mlを0.1%アン
モニア水50.0mlに溶かし、試験管AおよびBに2
0.0mlずつ分注した。
Immediately before blowing carbon monoxide, 1m of hemolyzed blood
In order to remove carbon monoxide hemoglobin which may be present in the eluted blood in a trace amount from the beginning, oxygen gas was blown with a Pasteur pipette at 100 ml / min for 5 minutes. Next, 0.25 ml of this blood was dissolved in 50.0 ml of 0.1% ammonia water, and 2
Dispensed in 0.0 ml increments.

【0035】まず、試験管AにNa2 2 4 を20m
g加え、同様に538nmと578nmの2波長の吸光
度を測定した。
First, 20 m of Na 2 S 2 O 4 was added to the test tube A.
In the same manner, the absorbance at two wavelengths of 538 nm and 578 nm was measured.

【0036】この時の吸光度をEA 538、EA 578
とし、吸光度比QA =EA 538/EA 578を算出し
た(QA は一酸化炭素化ヘモグロビン0%の吸光度比に
相当する。) 一方、試験管BにもNa2 2 4 を20mg加えたの
ち、一酸化炭素ガスが100ml/minの速度で5分
間吹き込み、同様に538nmと578nmの2波長の
吸光度を測定した。この時の吸光度をEB 538、EB
578とし、吸光度比QB =EB 538/EB 578を
算出した(QB は一酸化炭素化ヘモグロビン100%の
吸光度比に相当する。) この時の検体中の一酸化炭素化ヘモグロビンの含有量は
次の式で算出される。
The absorbance at this time was measured with EA 538 and EA 578.
Then, the absorbance ratio QA = EA 538 / EA 578 was calculated (QA corresponds to the absorbance ratio of carbon monoxide hemoglobin 0%.) On the other hand, after adding 20 mg of Na 2 S 2 O 4 to the test tube B, Then, carbon monoxide gas was blown in at a rate of 100 ml / min for 5 minutes, and the absorbance at two wavelengths of 538 nm and 578 nm was similarly measured. Absorbance at this time is EB 538, EB
Then, the absorbance ratio QB = EB538 / EB578 was calculated (QB corresponds to the absorbance ratio of 100% carbon monoxide hemoglobin.) The content of carbon monoxide hemoglobin in the sample at this time was as follows. It is calculated by the formula.

【数3】 実施例1 新鮮血液10mlを冷却遠心機で1500g×10mi
nにて遠心し、血球を沈殿させ上層の血漿を除去した。
この赤血球層に5mlの生理食塩水を加え十分に転倒混
和させた後、再び同様に遠心し上清を除去した。この操
作を3回繰り返し赤血球層を洗浄した。このようにして
得た約5mlの洗浄赤血球層に蒸留水5mlを加えて溶
血させた。この溶血液に2mlのトルエンを添加し、分
液ロートで10分振盪した。これをしばらく静置したあ
と、上層のトルエン層を除去し、該溶出血液を冷却遠心
機で5000g×20minにて遠心して有固形分を除
去した。その後、該溶出血液を冷蔵下にて1000ml
の50nMリン酸緩衝液(pH6.8)で一夜透析し
た。この溶血液にパスツールピペットを用い一酸化炭素
ガスを100ml/minのスピードで10分間吹き込
んだ。
[Equation 3] Example 1 10 ml of fresh blood was 1500 g × 10 mi in a cooling centrifuge.
Centrifuge at n to precipitate blood cells and remove upper plasma.
To this red blood cell layer, 5 ml of physiological saline was added and mixed by inversion thoroughly, and then centrifuged again to remove the supernatant. This operation was repeated 3 times to wash the red blood cell layer. 5 ml of distilled water was added to about 5 ml of the washed red blood cell layer thus obtained to cause hemolysis. To this hemolyzed blood, 2 ml of toluene was added and shaken in a separating funnel for 10 minutes. After allowing this to stand for a while, the upper toluene layer was removed, and the eluted blood was centrifuged with a cooling centrifuge at 5000 g × 20 min to remove solid matters. Then, 1000 ml of the eluted blood under refrigeration
It was dialyzed overnight against 50 nM phosphate buffer (pH 6.8). Carbon monoxide gas was blown into the hemolyzed blood at a speed of 100 ml / min for 10 minutes using a Pasteur pipette.

【0037】つぎに、この溶血液10μlを蒸留水4m
lにて希釈し、セル長1cmのガラスセルに入れ、日立
分光光度計(U−3200型)で350〜600nmの
吸収スペクトルを測定した。その結果、419,54
0,569nmに吸収極大が確認された。また、上記定
量方法に基づき溶血液中の一酸化炭素ヘモグロビンの含
有量を測定したところ99.3%であった。このことか
ら、ほとんどのヘモグロビンが一酸化炭素化されている
ことがわかる。
Next, 10 μl of this hemolyzed blood was added to 4 m of distilled water.
It was diluted with 1 and put in a glass cell having a cell length of 1 cm, and an absorption spectrum at 350 to 600 nm was measured with a Hitachi spectrophotometer (U-3200 type). As a result, 419,54
An absorption maximum was confirmed at 0,569 nm. Further, the content of carbon monoxide hemoglobin in the hemolyzed blood was measured based on the above-mentioned quantification method, and was 99.3%. From this, it can be seen that most hemoglobin is carbon monoxide.

【0038】この溶血液に対し、サッカロースを最終濃
度が2.5%(w/v)となるように添加し、溶血液を
よく攪拌した後1mlずつ凍結乾燥用バイアル瓶に分注
した。これを高真空下で−40℃ついで4℃で、1昼夜
凍結乾燥した。凍結乾燥終了後、バイアル瓶内を高純度
窒素で置換してから瓶を密栓した。
Sucrose was added to the hemolyzed blood so that the final concentration was 2.5% (w / v), and the hemolyzed blood was thoroughly stirred and then dispensed in 1 ml aliquots into freeze-drying vials. This was freeze-dried under high vacuum at -40 ° C and then 4 ° C for one day. After the freeze-drying was completed, the inside of the vial was replaced with high-purity nitrogen, and then the bottle was sealed.

【0039】この様にして製造した糖化ヘモグロビン測
定用管理物質に対し、長期保存安定性の試験をするた
め、10バイアルを無作為に抜き取り、この内の5バイ
アルを、蒸留水1mlを加えて再溶解し、直ちに専用の
溶血用処理液で測定に適した濃度になるよう希釈したあ
と、先に記した測定方法に準じてその糖化ヘモグロビン
値を測定した。残りの5バイアルについては、密栓した
まま暗所で4℃にて6カ月間保存したあと、蒸留水1m
lを加えてこれらを再溶解し、同様に糖化ヘモグロビン
値を測定した。長期保存前に測定した糖化ヘモグロビン
測定用管理物質のHbAlc値およびHbAl値と、長
期保存後に測定した測定値では、大きな変化は見られな
かった。この測定値を表1に示す。このことから本発明
により製造した糖化ヘモグロビン測定用管理物質は、溶
解前に4℃で少なくとも6カ月間保存しても十分安定で
あることがわかる。
In order to carry out a long-term storage stability test on the glycated hemoglobin-controlled substance thus produced, 10 vials were randomly withdrawn, and 5 vials were re-added with 1 ml of distilled water. After dissolving and immediately diluting with a dedicated hemolysis treatment solution to a concentration suitable for measurement, the glycated hemoglobin value was measured according to the measurement method described above. For the remaining 5 vials, store them in a dark place at 4 ° C for 6 months while keeping them tightly closed.
1 was added thereto to redissolve them, and the glycated hemoglobin value was similarly measured. No significant change was observed between the HbAlc value and HbAl value of the controlled substance for measuring glycated hemoglobin before long-term storage and the measurement value measured after long-term storage. The measured values are shown in Table 1. From this, it is understood that the controlled substance for measuring glycated hemoglobin produced by the present invention is sufficiently stable even if stored at 4 ° C. for at least 6 months before dissolution.

【0040】実施例2 実施例1と同様の製造方法で糖化ヘモグロビン測定用管
理物質を製造した。
Example 2 A controlled substance for measuring glycated hemoglobin was produced by the same production method as in Example 1.

【0041】この溶血液10μlを蒸留水4mlにて希
釈し、実施例1と同様に350〜600nmの吸収スペ
クトルを測定した。その結果、419,540,569
nmに吸収極大が確認された。また、上記定量方法に基
づき溶血液中の一酸化炭素化ヘモグロビンの含有量を測
定したところ、99.1%であった。この管理物質を再
溶解後の保存安定性試験のため無作為に10バイアル抜
き取り、蒸留水1mlを加えて同物質を再溶解した。
10 μl of this hemolyzed blood was diluted with 4 ml of distilled water, and the absorption spectrum at 350 to 600 nm was measured in the same manner as in Example 1. As a result, 419, 540, 569
Absorption maximum was confirmed at nm. Further, the content of carbon monoxide hemoglobin in the hemolyzed blood was measured based on the above-mentioned quantification method, and was 99.1%. For controlled storage stability test after re-dissolving this controlled substance, 10 vials were randomly withdrawn, and 1 ml of distilled water was added to re-dissolve the controlled substance.

【0042】このうちの5バイアルを、直ちに専用の溶
血用処理液で実施例1と同様に希釈し、先に記した測定
方法に準じてその糖化ヘモグロビン値を測定した。残り
の5バイアルについては、このまま暗所で4℃にて7日
間保存したあと、測定の直前に、専用の溶血用処理液で
同様に希釈し、同様に糖化ヘモグロビン値を測定した。
蒸留水で再溶解した直後に測定したHbAlc値および
HbAl値と、4℃で7日間保存後に測定した測定値で
は、測定値に大きな変化は見られなかった。この測定値
を表2に示す。このことから本発明により製造した糖化
ヘモグロビン測定用管理物質は、再溶解後であっても、
4℃で少なくとも7日間保存しても十分安定であること
がわかる。
Of these, 5 vials were immediately diluted with a dedicated hemolyzing treatment solution in the same manner as in Example 1, and the glycated hemoglobin value thereof was measured according to the measuring method described above. The remaining 5 vials were stored in the dark place at 4 ° C. for 7 days as they were, and then similarly diluted with a dedicated hemolyzing treatment solution just before the measurement, and the glycated hemoglobin value was measured in the same manner.
The HbAlc value and HbAl value measured immediately after re-dissolving in distilled water and the measurement value measured after storage at 4 ° C. for 7 days showed no significant change in the measured value. The measured values are shown in Table 2. From this, the glycated hemoglobin measurement control substance produced by the present invention, even after re-dissolution,
It can be seen that it is sufficiently stable even when stored at 4 ° C for at least 7 days.

【0043】比較例1 実施例1において一酸化炭素を吹き込む工程のみを省略
して糖化ヘモグロビン測定用管理物質を製造した。
Comparative Example 1 A controlled substance for measuring glycated hemoglobin was produced by omitting only the step of blowing carbon monoxide in Example 1.

【0044】この溶血液を10μlを蒸留水4mlにて
希釈し、実施例1と同様に350〜600nmの吸収ス
ペクトルを測定した。その結果、415,541,57
6nmの吸収極大が確認された。また、上記定量方法に
基づき溶血液中の一酸化炭素化ヘモグロビンの含有量を
測定したところ、0.0%であった。このことにより、
本溶血液には一酸化炭素ヘモグロビンが含有されていな
いことがわかる。
10 μl of this hemolyzed blood was diluted with 4 ml of distilled water, and the absorption spectrum at 350 to 600 nm was measured in the same manner as in Example 1. As a result, 415, 541, 57
An absorption maximum of 6 nm was confirmed. Further, the content of carbon monoxide hemoglobin in the hemolyzed blood was measured based on the above-mentioned quantification method and was found to be 0.0%. By this,
It can be seen that the main hemolyzed blood does not contain carbon monoxide hemoglobin.

【0045】実施例1と同様に長期保存安定性の試験を
するため、10バイアルを無作為に抜き取り、この内5
バイアルは直ちに、残りの5バイアルは密栓したまま暗
所で4℃にて6カ月間保存し、実施例1に準じ糖化ヘモ
グロビン値を測定した。長期保存前と長期保存後のHb
Alc値およびHbAl値を表1に示す。この場合、実
施例1の結果と比較して、HbAlc値およびHbAl
値が大きく変化していることがわかる。
In order to carry out a long-term storage stability test in the same manner as in Example 1, 10 vials were randomly withdrawn, and 5 of them were
The vials were immediately stored, and the remaining 5 vials were stored in a dark place at 4 ° C. for 6 months with the stopper tightly closed, and the glycated hemoglobin value was measured according to Example 1. Hb before long-term storage and after long-term storage
Table 1 shows the Alc value and the HbAl value. In this case, compared with the results of Example 1, the HbAlc value and HbAl
It can be seen that the values have changed significantly.

【0046】比較例2 比較例1と同様に、実施例1の一酸化炭素を吹き込む工
程のみを省略して糖化ヘモグロビン測定用管理物質を製
造した。
Comparative Example 2 As in Comparative Example 1, a controlled substance for measuring glycated hemoglobin was produced by omitting only the step of blowing carbon monoxide in Example 1.

【0047】この溶血液を10μlを蒸留水4mlにて
希釈し、実施例1と同様に350〜600nmの吸収ス
ペクトルを測定した。その結果、415,541,57
6nmの吸収極大が確認された。また、上記定量方法に
基づき溶血液中の一酸化炭素化ヘモグロビンの含有量を
測定したところ、0.0%であった。
10 μl of this hemolyzed blood was diluted with 4 ml of distilled water, and the absorption spectrum at 350 to 600 nm was measured in the same manner as in Example 1. As a result, 415, 541, 57
An absorption maximum of 6 nm was confirmed. Further, the content of carbon monoxide hemoglobin in the hemolyzed blood was measured based on the above-mentioned quantification method and was found to be 0.0%.

【0048】実施例2と同様に再溶解後の保存安定性試
験を行うため無作為に10バイアルを抜き取り、蒸留水
1mlで再溶解した後、5バイアルについては直ちに、
残りの5バイアルについては4℃にて7日間保存したあ
と、実施例2に準じ、再度溶解直後と4℃で7日間保存
後のHbAlc値およびHbAl値を測定した。この時
の測定値は表2に示す。この場合、実施例2の結果と比
較して、HbAlc値とHbAl値が大きく変化してい
ることがわかる。
In order to conduct a storage stability test after reconstitution in the same manner as in Example 2, 10 vials were randomly withdrawn, reconstituted with 1 ml of distilled water, and immediately after 5 reconstitutes with 5 vials.
The remaining 5 vials were stored at 4 ° C for 7 days, and then the HbAlc value and the HbAl value were measured again immediately after dissolution and after being stored at 4 ° C for 7 days according to Example 2. The measured values at this time are shown in Table 2. In this case, it can be seen that the HbAlc value and the HbAl value are significantly different from the results of Example 2.

【0049】[0049]

【表1】 [Table 1]

【表2】 [Table 2]

【0050】[0050]

【発明の効果】本発明により、測定系の基準となるべき
経時的安定性の優れた糖化ヘモグロビン測定用管理物
質、特にHbAlc および/またはHbAlの測定に使用する糖
化ヘモグロビン測定用管理物質を供給することができ
る。このことにより、測定値の恒常的な一貫性を確保す
ることができ、同一の試料を測定する場合、測定者、装
置、測定時期等が異なっても信頼性のある測定値を得る
ことが可能となり、ひいては、糖化ヘモグロビンを糖尿
病検査の指標に用いるという社会的な役割を支えること
ができる。
INDUSTRIAL APPLICABILITY According to the present invention, a controlled substance for measuring glycated hemoglobin having excellent stability over time, which serves as a reference for a measuring system, particularly a controlled substance for measuring glycated hemoglobin used for measuring HbAlc and / or HbAl is supplied. be able to. As a result, it is possible to ensure constant consistency of measured values, and when measuring the same sample, it is possible to obtain reliable measured values even if the measurer, device, measurement time, etc. are different. Consequently, it can support the social role of using glycated hemoglobin as an index for diabetes testing.

【0051】また、糖化ヘモグロビン測定用管理物質の
特性値、例えばHbAlc 値が、何らかの基準となる測定方
法により確定かつ保証される場合、この物質を標準物質
として規定することにより、HbAlc 測定の標準化のため
に使用することも可能となる。
When the characteristic value of the controlled substance for measuring glycated hemoglobin, for example, the HbAlc value is confirmed and guaranteed by a measurement method which is a standard, by defining this substance as a standard substance, the standardization of HbAlc measurement can be performed. It can also be used for

【図面の簡単な説明】[Brief description of drawings]

【図1】ヘモグロビンの溶出パターンを示すグラフであ
る。
FIG. 1 is a graph showing an elution pattern of hemoglobin.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 一酸化炭素化ヘモグロビンを含むことを
特徴とする糖化ヘモグロビン測定用管理物質。
1. A controlled substance for measuring glycated hemoglobin, which comprises carbon monoxide hemoglobin.
【請求項2】 ヘモグロビンを一酸化炭素に接触させる
工程を含むことを特徴とする糖化ヘモグロビン測定用管
理物質の製造法。
2. A method for producing a controlled substance for measuring glycated hemoglobin, comprising the step of bringing hemoglobin into contact with carbon monoxide.
JP10146893A 1993-04-27 1993-04-27 Standard substance for measuring glycated hemoglobin and its production method Expired - Fee Related JP3262631B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10146893A JP3262631B2 (en) 1993-04-27 1993-04-27 Standard substance for measuring glycated hemoglobin and its production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10146893A JP3262631B2 (en) 1993-04-27 1993-04-27 Standard substance for measuring glycated hemoglobin and its production method

Publications (2)

Publication Number Publication Date
JPH06308120A true JPH06308120A (en) 1994-11-04
JP3262631B2 JP3262631B2 (en) 2002-03-04

Family

ID=14301556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10146893A Expired - Fee Related JP3262631B2 (en) 1993-04-27 1993-04-27 Standard substance for measuring glycated hemoglobin and its production method

Country Status (1)

Country Link
JP (1) JP3262631B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1029999A (en) * 1996-07-15 1998-02-03 Kdk Corp Production of saccharified amino compound
EP2012111A1 (en) * 2006-03-24 2009-01-07 Arkray, Inc. Method of measuring glycohemoglobin concentration and apparatus for concentration measurement
JPWO2007111283A1 (en) * 2006-03-24 2009-08-13 アークレイ株式会社 Glycohemoglobin concentration measuring method and concentration measuring apparatus
EP2352020A2 (en) 2010-01-19 2011-08-03 Arkray, Inc. Method for analyzing sample by electrophoresis and use of the same
JP2016075504A (en) * 2014-10-03 2016-05-12 株式会社ビー・エム・エル Management sample of hemoglobin F
WO2018008447A1 (en) * 2016-07-08 2018-01-11 東ソー株式会社 Hemoglobin liquid preparation and liquid chromatography method for measuring hemoglobin component
CN110567780A (en) * 2019-10-10 2019-12-13 无锡博慧斯生物医药科技有限公司 Glycosylated hemoglobin quality control product and preparation method thereof
CN111024959A (en) * 2019-12-20 2020-04-17 深圳市蔚景生物科技有限公司 Stable protein solution, preparation method thereof and detection kit
CN117717334A (en) * 2024-02-07 2024-03-19 荣耀终端有限公司 Data acquisition method and electronic equipment

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1029999A (en) * 1996-07-15 1998-02-03 Kdk Corp Production of saccharified amino compound
EP2012111A1 (en) * 2006-03-24 2009-01-07 Arkray, Inc. Method of measuring glycohemoglobin concentration and apparatus for concentration measurement
EP2012111A4 (en) * 2006-03-24 2009-07-15 Arkray Inc Method of measuring glycohemoglobin concentration and apparatus for concentration measurement
JPWO2007111283A1 (en) * 2006-03-24 2009-08-13 アークレイ株式会社 Glycohemoglobin concentration measuring method and concentration measuring apparatus
JP4989628B2 (en) * 2006-03-24 2012-08-01 アークレイ株式会社 Glycohemoglobin concentration measuring method and concentration measuring apparatus
US8268625B2 (en) 2006-03-24 2012-09-18 Arkray, Inc. Method of measuring glycated hemoglobin concentration and concentration measuring apparatus
EP2352020A2 (en) 2010-01-19 2011-08-03 Arkray, Inc. Method for analyzing sample by electrophoresis and use of the same
JP2016075504A (en) * 2014-10-03 2016-05-12 株式会社ビー・エム・エル Management sample of hemoglobin F
WO2018008447A1 (en) * 2016-07-08 2018-01-11 東ソー株式会社 Hemoglobin liquid preparation and liquid chromatography method for measuring hemoglobin component
CN110567780A (en) * 2019-10-10 2019-12-13 无锡博慧斯生物医药科技有限公司 Glycosylated hemoglobin quality control product and preparation method thereof
CN111024959A (en) * 2019-12-20 2020-04-17 深圳市蔚景生物科技有限公司 Stable protein solution, preparation method thereof and detection kit
CN117717334A (en) * 2024-02-07 2024-03-19 荣耀终端有限公司 Data acquisition method and electronic equipment

Also Published As

Publication number Publication date
JP3262631B2 (en) 2002-03-04

Similar Documents

Publication Publication Date Title
Spicer et al. A simplified assay of hemoglobin AIc in diabetic patients by use of isoelectric focusing and quantitative microdensitometry
Ueda et al. Brief Report: Rapid Differentiation of Polypeptide Chains of Hemoglobin by Cellulose Acetate Electrophoresis of Hemolylsates
Ellis et al. An automated" high-pressure" liquid-chromatographic assay for hemoglobin A1c.
EP0072440A1 (en) Standard or control material for glycosylated or total hemoglobin determination
JPH0559380B2 (en)
CN109269858B (en) Preparation method of liquid glycated hemoglobin quality control product
JPH06308120A (en) Controlling substance for measurement of saccharized hemoglobin and its manufacture
CN110567780A (en) Glycosylated hemoglobin quality control product and preparation method thereof
Bernini Rapid estimation of hemoglobin A 2 by DEAE chromatography
JP2018004606A (en) Hemoglobin preparation and liquid chromatographic method for measuring hemoglobins
Ambler et al. Measurement of glycosylated hemoglobin on cellulose acetate membranes by mobile affinity electrophoresis.
Adams III et al. Hemoglobin Rush [β101 (G3) glutamine]: a new unstable hemoglobin causing mild hemolytic anemia
CA1210694A (en) Process for the preparation of a glucose-free hemoglobin standard
Saibene et al. Chromatographic and colorimetric detection of glycosylated hemoglobins: A comparative analysis of two different methods
Davies et al. The micro estimation of serum iron and iron-binding capacity in normals and in disease
JP3686482B2 (en) Control sample of hemoglobin A1C
Suen et al. Comparison of lactate, bilirubin and hemoglobin F concentrations obtained by the ABL 700 series blood gas analyzers with laboratory methods
Edwards et al. The effect of in vivo aging of normal human erythrocytes and erythrocyte macromolecules upon oxyhemoglobin dissociation
CA1146769A (en) Process for the determination of diabetes
JP2000346848A (en) Method and device for measuring glucose
JP5425062B2 (en) Method for measuring glycoalbumin and the like using a control sample containing D-mannitol
EP0579246A1 (en) Method for removing unstable type saccharified hemoglobin
Papassotiriou et al. Association of unstable hemoglobin variants and heterozygous β‐thalassemia: Example of a new variant Hb acharnes or [β53 (D4) Ala→ Thr]
Shih et al. Functional Properties of Hb Pasadena, α2β2 75 (E 19) LeuArg
Larsen Evaluation of a new capillary blood collection system for laboratory assay of glycated haemoglobin

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees