JPH0630791A - Quantification of saccharified protein - Google Patents

Quantification of saccharified protein

Info

Publication number
JPH0630791A
JPH0630791A JP13541993A JP13541993A JPH0630791A JP H0630791 A JPH0630791 A JP H0630791A JP 13541993 A JP13541993 A JP 13541993A JP 13541993 A JP13541993 A JP 13541993A JP H0630791 A JPH0630791 A JP H0630791A
Authority
JP
Japan
Prior art keywords
quantification
sample
blood
minutes
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13541993A
Other languages
Japanese (ja)
Inventor
Kunio Kobayashi
邦夫 小林
Koichi Yoshimoto
幸一 吉本
Mitsumasa Hirauchi
三政 平内
Kiyohisa Uchida
清久 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shionogi and Co Ltd
Original Assignee
Shionogi and Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shionogi and Co Ltd filed Critical Shionogi and Co Ltd
Priority to JP13541993A priority Critical patent/JPH0630791A/en
Publication of JPH0630791A publication Critical patent/JPH0630791A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

PURPOSE:To quickly and easily quantify in high accuracy the saccharified proteins in biological tissues (esp. blood). CONSTITUTION:A specimen of biological tissue origin is treated with hydrazine and then made to react with a color developing reagent to carry out colorimetry, thus accomplishing the objective easy and quick determination of the saccharified proteins in the blood or hair. This method is hardly affected by the coexistent substances in the blood, therefore enabling quantification in high accuracy, besides, being good in color reaction and measurement sensitivity. Specimens to be used are those put to oxidative treatment, with e.g. glucosidase, of the glucose coexisting with the saccharified proteins to be determined. For the color developing reagent, phenylhydrazine is used.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、生体組織、特に血液や
毛髪中の糖化蛋白の定量方法に関し、糖尿病の診断に有
用である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for quantifying glycated proteins in living tissues, particularly blood and hair, and is useful for diagnosing diabetes.

【0002】[0002]

【従来技術】従来、糖尿病の治療や診断を目的として、
血糖コントロ−ルの指標となる糖化蛋白濃度を測定する
方法がいくつか知られている。これらの方法は、いずれ
も、グルコ−スにより糖化された蛋白がアマドリ−転位
を経て生成するケトアミン型の糖化蛋白(以下、単に糖
化蛋白という)を直接的または間接的に比色定量する方
法であるが、実施する上で種々の欠点を有している。例
えば、J. Clin. Chem.Clin. Biochem., 19, 81(1981)に
記載のフロシン法、Diabetes,29, 417(1980)に記載のチ
オバルビツ−ル酸法、Diabetes, 29, 1044(1980)に記載
のアフィニィティ− カラム法等では、操作が繁雑な
上、反応温度も高く、反応時間も数10時間と長い。ま
た、血液中の共存物質、例えば、糖化蛋白以外の還元性
物質(グルコ−ス、アスコルビン酸、グルタチオン、尿
酸等)の影響を避けるためには、透析等の繁雑な操作を
行なう必要がある。更に、定量に際してのキャリブレ−
ションとしては、アルブミンまたは総タンパクの定量を
必要とするので、実際上不便である。
2. Description of the Related Art Conventionally, for the purpose of treating and diagnosing diabetes,
There are several known methods for measuring the concentration of glycated protein, which is an index of blood sugar control. Each of these methods is a method for directly or indirectly colorimetrically quantifying a ketoamine-type glycated protein (hereinafter, simply referred to as glycated protein) produced by a protein glycated with glucose through Amadori rearrangement. However, they have various drawbacks in their implementation. For example, the furosine method described in J. Clin. Chem. Clin. Biochem., 19 , 81 (1981), the thiobarbituric acid method described in Diabetes, 29 , 417 (1980), Diabetes, 29 , 1044 (1980) In the affinity column method described in 1), the operation is complicated, the reaction temperature is high, and the reaction time is as long as several tens hours. Further, in order to avoid the influence of coexisting substances in blood, for example, reducing substances other than glycated proteins (glucose, ascorbic acid, glutathione, uric acid, etc.), it is necessary to perform complicated operations such as dialysis. In addition, a calibrator for quantification
This is practically inconvenient because it requires quantification of albumin or total protein.

【0003】特公平1−13062号およびClin. Chi
m. Acta,127,87(1983年)には、発色剤としてニトロブル
−テトラゾリウム塩を使用して定量する方法(以下、N
BT−還元法という)が記載されている。この方法で
は、生成するホルマザンが測定器材に付着しやすく、し
かも除去が困難である上、液体試料中に共存する脂質や
蛋白質によって、ホルマザンのみかけの吸光度が変化す
るので、測定精度が低下する問題がある。また、水溶性
標準液と血清標準液とでは反応性がかなり異なるのでキ
ャリブレ−ションも複雑である。更に、この方法は、ア
ルカリ性条件下における糖化蛋白の還元性を利用してい
るので、前記還元性物質による影響を減少させるかまた
は除くためには、レ−トアッセイ法で定量するか、ある
いはこれらの除去を定量前または定量中に行なう必要が
あった。J. Biol. Chem., 255, 7218(1980)には、フェ
ニルヒドラジンによる比色定量法(以下、単にフェニル
ヒドラジン法という)が記載されているが、呈色度も弱
く、臨床上実用化されるには至っていない。
Japanese Patent Publication No. 1-10662 and Clin. Chi
m. Acta, 127 , 87 (1983), a method for quantification using a nitroblu-tetrazolium salt as a color former (hereinafter referred to as N
BT-reduction method). In this method, the generated formazan is likely to adhere to the measuring instrument, and it is difficult to remove it, and the apparent absorbance of formazan changes due to the lipids and proteins coexisting in the liquid sample. There is. Further, the reactivity is considerably different between the water-soluble standard solution and the serum standard solution, so that the calibration is complicated. Furthermore, since this method utilizes the reducibility of glycated proteins under alkaline conditions, in order to reduce or eliminate the effect of the reducing substance, quantification by a rate assay method or these methods is used. Removal had to be done before or during quantification. J. Biol. Chem., 255 , 7218 (1980) describes a colorimetric assay method using phenylhydrazine (hereinafter simply referred to as the phenylhydrazine method), but it has a weak coloration and has been practically used clinically. Has not reached the end.

【0004】[0004]

【解決すべき課題】本発明は、上記のような欠点および
困難を伴わずに、しかも簡便かつ迅速に血液中の糖化蛋
白を定量する方法を提供するものである。
[PROBLEMS TO BE SOLVED] The present invention provides a method for quantifying glycated proteins in blood simply and rapidly without the above-mentioned drawbacks and difficulties.

【0005】[0005]

【課題を解決するための手段】上記課題に鑑み、本発明
者らは鋭意検討したところ、生体組織由来の検体をヒド
ラジンで処理した後、発色試薬と反応させて比色定量す
れば、血液中の糖化蛋白を定量出来ることを見出し本発
明を完成した。本明細書において検体とは、糖化蛋白を
含有するものであればよいが、好ましくは、血液検体ま
たは毛髪検体である。血液検体とは、血液自体、血漿ま
たは血清等を意味するが、定量に際しては、測定感度、
測定精度等の観点から、血清を使用するのが好ましい。
毛髪検体とは、毛髪自体または測定し易くするために洗
浄等の処理を施した毛髪を意味する。また、該検体とし
ては、糖化蛋白と共存するグルコ−スが本定量方法に及
ぼす影響を除くために、あらかじめ、該グルコ−スを、
グルコ−スオキシダ−ゼ等で酸化処理したものを使用す
る。通常、血液検体を、約5〜20単位のグルコ−スオ
キシダ−ゼ存在下、体温程度で数分から数10分程度イ
ンキュベ−トすればよい。
[Means for Solving the Problems] In view of the above problems, the inventors of the present invention have made diligent studies, and after treating a specimen derived from a biological tissue with hydrazine and then reacting it with a coloring reagent for colorimetric quantification, The present inventors have completed the present invention by finding that the glycated protein of E. coli can be quantified. In the present specification, the sample may be any sample containing a glycated protein, but is preferably a blood sample or a hair sample. The blood sample means blood itself, plasma or serum, etc.
From the viewpoint of measurement accuracy and the like, it is preferable to use serum.
The hair sample means the hair itself or the hair that has been subjected to a treatment such as washing for easy measurement. In addition, as the sample, in order to remove the influence of glucose coexisting with a glycated protein on the present quantification method, the glucose was
The one that has been subjected to an oxidation treatment with glucose oxidase or the like is used. Usually, a blood sample may be incubated in the presence of about 5 to 20 units of glucose oxidase at body temperature for about several minutes to several tens of minutes.

【0006】以下、本定量方法について詳細に説明す
る。 (第1工程)本工程は、前処理した検体をヒドラジンで
処理する工程である。この処理反応には、ヒドラジン
を、蒸留水、アルコ−ル類またはその混合液等に溶解し
たもの(以下、単に、ヒドラジン試薬と言う)を使用す
るが、前もって反応液のpHを調整しておく必要があ
る。反応が進行するpHは、約4.0以上であるが、副
反応を極力制御するためには塩基性条件下で反応を行な
うのが望ましく、好ましいpHの範囲は、約8.0〜約
12.0、更に好ましくは、約9〜10.0である。pH
調整のためには、適宜、公知の酸を使用すればよいが、
好ましくは、酢酸等の弱酸である。ヒドラジンの濃度
は、必ずしも制限されないが好ましくは約3〜10.0
mol/Lである。反応温度は、約30〜130℃、好
ましくは約60〜約110℃、特に好ましくは、約10
0℃である。約30℃以下であれば反応性が低下する
し、また約130℃以上であれば第2工程の比色定量に
悪影響を及ぼすので好ましくない。本工程に要する処理
時間は、約5〜約60分間、更に好ましくは、約10〜
約40分間、特に好ましくは、約30分間程度である。
約5分以下であると、反応が十分に進行しないので、正
確な定量が困難である。一方、約60分間加熱すれば反
応はほぼ完結するので、それ以上の反応は、迅速な定量
を行なう観点からは好ましくない。
The present quantification method will be described in detail below. (First step) This step is a step of treating the pretreated sample with hydrazine. For this treatment reaction, hydrazine dissolved in distilled water, alcohols or a mixed solution thereof (hereinafter simply referred to as hydrazine reagent) is used, but the pH of the reaction solution is adjusted in advance. There is a need. The pH at which the reaction proceeds is about 4.0 or more, but it is desirable to carry out the reaction under basic conditions in order to control side reactions as much as possible, and the preferable pH range is about 8.0 to about 12 0.0, more preferably about 9 to 10.0. pH
For adjustment, appropriately, a known acid may be used,
A weak acid such as acetic acid is preferable. The concentration of hydrazine is not necessarily limited, but is preferably about 3 to 10.0.
It is mol / L. The reaction temperature is about 30 to 130 ° C, preferably about 60 to about 110 ° C, particularly preferably about 10
It is 0 ° C. If it is lower than about 30 ° C., the reactivity is lowered, and if it is higher than about 130 ° C., it adversely affects the colorimetric determination in the second step, which is not preferable. The processing time required for this step is about 5 to about 60 minutes, more preferably about 10.
It is about 40 minutes, particularly preferably about 30 minutes.
If the time is less than about 5 minutes, the reaction does not proceed sufficiently, so that accurate quantification is difficult. On the other hand, since the reaction is almost completed by heating for about 60 minutes, further reaction is not preferable from the viewpoint of rapid quantification.

【0007】(第2工程)本工程は、第1工程終了後、
引き続き発色試薬と反応させることにより生成するグル
コ−ス誘導体の吸光度を測定し、比色定量する工程であ
る。発色試薬としては、一般式、H2N−NH−Rで示
されるヒドラジン誘導体型の公知のカルボニル発色試薬
を幅広く使用出来、フェニルヒドラジン、p−ニトロフ
ェニルヒドラジン、フェニルヒドラジン−p−スルホン
酸、m−トリルヒドラジン、p−トリルヒドラジン、2
−ヒドラジノベンゾチアゾ−ル、2−ヒドラジノピリジ
ン、1−ヒドラジノフタラジン等が例示されるが、好ま
しくはフェニルヒドラジンである。反応温度は、使用す
る発色試薬の種類によっても異なり必ずしも制限されな
いが、例えば、発色試薬にフェニルヒドラジンを使用す
る場合であれば、約30〜80℃、好ましくは、約50
〜70℃、特に好ましくは約60℃である。約80℃以
上であると呈色性が下がり、また約30℃以下であると
反応性が低下するので、いずれにしても好ましくない。
(Second step) After the first step is finished,
In this step, the absorbance of the glucose derivative produced by subsequent reaction with the color-forming reagent is measured and colorimetrically determined. As the coloring reagent, a well-known carbonyl coloring reagent of the general formula, H 2 N—NH—R, of the hydrazine derivative type can be widely used, and phenylhydrazine, p-nitrophenylhydrazine, phenylhydrazine-p-sulfonic acid, m -Tolylhydrazine, p-tolylhydrazine, 2
Examples thereof include hydrazinobenzothiazole, 2-hydrazinopyridine, and 1-hydrazinophthalazine, with phenylhydrazine being preferred. The reaction temperature varies depending on the type of the color-developing reagent used and is not necessarily limited. For example, when phenylhydrazine is used as the color-developing reagent, it is about 30 to 80 ° C., preferably about 50.
˜70 ° C., particularly preferably about 60 ° C. If the temperature is higher than about 80 ° C, the colorability is lowered, and if the temperature is lower than about 30 ° C, the reactivity is lowered.

【0008】比色定量は、一般に行なわれる吸光度測定
法により行うことが出来るが、本発明においては、いわ
ゆるエンドポイント法は勿論、発色試薬の選択次第で
は、レ−トアッセイ法も可能である。第2工程の反応を
完結するために必要な時間は、反応温度、使用する発色
試薬の種類等により異なるので、一概に規定できない
が、好ましい発色試薬を使用すれば、通常、数10分〜
数時間程度である。よって、エンドポイント法による場
合でも、比較的短時間、好ましくは約0.5〜3時間、
第2工程の反応を行なった後に、吸光度を測定すればよ
い。また、反応初期の吸光度が時間依存的に直線性を示
すような発色試薬を使用することにより、第2工程の反
応開始後、数分〜数10分以内でのレ−トアッセイ法に
よる測定も可能である。特に、本定量方法においては、
発色試薬にフェニルヒドラジンを選択すれば、第2工程
の反応が約30分〜60分間でほぼ完結する。よって、
その間の任意の時点でエンドポイント法による定量が可
能であるが、反応生成物であるグルコ−スのフェニルヒ
ドラゾン誘導体(D-Glucose-bis-phenylhydrazone)の
呈色の安定性は極めてよいので、反応終了後、数時間経
過後に測定してもなんら差し支えない。また、発色試薬
添加後、約1〜15分以内、好ましくは、約5〜約10
分以内においては、吸光度のタイムコ−スが急勾配の直
線性を示すので、レ−トアッセイ法による定量が可能で
ある。測定波長は、使用する発色試薬の種類により異な
ることもあり、一概には規定できないが、通常、生成し
た発色物質が最大吸光度を示す波長を採用する。特に、
フェニルヒドラジンを使用する場合には、約390nm
が好ましい。
The colorimetric determination can be carried out by a commonly used absorbance measuring method. In the present invention, not only the so-called end point method but also the rate assay method can be used depending on the selection of the coloring reagent. The time required to complete the reaction of the second step cannot be unconditionally specified because it depends on the reaction temperature, the type of color-developing reagent used, etc., but if a preferred color-developing reagent is used, it is usually several tens of minutes to
It takes about several hours. Therefore, even when using the endpoint method, a relatively short time, preferably about 0.5 to 3 hours,
The absorbance may be measured after the reaction in the second step. Further, by using a coloring reagent whose absorbance at the initial stage of reaction shows linearity in a time-dependent manner, measurement by a rate assay method within a few minutes to a few tens of minutes after starting the reaction in the second step is also possible. Is. In particular, in this quantification method,
If phenylhydrazine is selected as the coloring reagent, the reaction in the second step is almost completed in about 30 to 60 minutes. Therefore,
Quantification by the endpoint method is possible at any point during that time, but the stability of the coloration of the reaction product, the phenylhydrazone derivative of glucose (D-Glucose-bis-phenylhydrazone), is extremely good. There is no problem with measuring after a few hours have passed. Also, within about 1 to 15 minutes after addition of the coloring reagent, preferably about 5 to about 10
Within minutes, the time course of the absorbance shows a steep linearity, which allows quantification by the rate assay method. The measurement wavelength may vary depending on the type of the color-developing reagent used and cannot be specified unconditionally, but the wavelength at which the generated color-developing substance exhibits the maximum absorbance is usually adopted. In particular,
Approximately 390 nm when using phenylhydrazine
Is preferred.

【0009】また、従来、血液中の糖化蛋白の定量にお
いては、血液中の共存物質、特に糖化蛋白以外の還元性
物質(例えば、アスコルビン酸、グルタチオン、尿酸、
ピリルビン、グリセルアルデヒド、還元糖)等の影響が
重要な検討課題であったが、本定量方法においては、こ
れらの妨害物質による影響は極めて低く、通常レベルで
の定量に際しては、特に防御手段を講じるまでもない
が、より一層精密な定量を行なう場合には、公知の防御
手段を取り入れて測定を行なうのが当然望ましい。
Conventionally, in the determination of glycated proteins in blood, coexisting substances in blood, particularly reducing substances other than glycated proteins (eg, ascorbic acid, glutathione, uric acid,
Although the influence of pyrirubin, glyceraldehyde, reducing sugars, etc. was an important issue to be investigated, the influence of these interfering substances was extremely low in this quantification method, and a protective measure should be taken especially at the normal level of quantification. Needless to say, it is naturally desirable to incorporate known protective means for the measurement when performing more precise quantification.

【0010】尚、本定量方法におけるキャリブレ−ショ
ンに際しては、市販の合成糖化化合物、例えば、N-p-to
lyl-D-isoglucosamineを使用して、検量線を作成すれば
よい。ところで、血液中で糖化蛋白を形成し得る蛋白質
は、アルブミン、プロトロンビン、グロブリン等、多種
存在するので、本定量方法において、特定の糖化蛋白を
定量しているかどうかは定かではない。しかし、血液中
の糖化蛋白は、その大部分が糖化アルブミンであり、特
に血清においてはそれが顕著である。よって、本定量方
法により得られた測定値は、血液中の糖化アルブミンの
濃度を十分反映していると考えられる。このことは、後
記の実施例で示されるように、ヒト血清アルブミンから
調製した糖化アルブミン(Glc HSA)溶液を検体として
本定量方法を行った場合にも、十分に満足のいく結果が
得られたことからも示唆される。故に、血液中のアルブ
ミンの半減期を考慮するに、本定量方法は、特に、約2
週間前の血糖コントロ−ル状態を知るのに有用であり、
糖尿病等の治療や診断に役立つと考えられる。また、検
体に毛髪を用いた場合には、文献(糖尿病34,571,
1991)等の報告から、過去の連続した血糖コントロ
−ル状態、長期間の平均血糖値、糖尿病の発症時期等を
知るのにも有用である。以下に、参考例、実施例および
試験例を示すが、これらは何等本発明を限定するもので
はない。
When carrying out the calibration in this quantification method, a commercially available synthetic saccharified compound such as Np-to is used.
A calibration curve may be prepared using lyl-D-isoglucosamine. By the way, since there are various proteins capable of forming glycated proteins in blood, such as albumin, prothrombin, and globulin, it is unclear whether or not a specific glycated protein is quantified in this quantification method. However, most of glycated proteins in blood are glycated albumin, which is remarkable especially in serum. Therefore, it is considered that the measured values obtained by the present quantification method sufficiently reflect the concentration of glycated albumin in blood. As shown in the examples described below, sufficiently satisfactory results were obtained when this quantification method was performed using a glycated albumin (Glc HSA) solution prepared from human serum albumin as a sample. This is also suggested. Therefore, taking into account the half-life of albumin in blood, the present quantification method is particularly suitable for
It is useful to know the blood glucose control status of a week ago,
It is thought to be useful for treatment and diagnosis of diabetes and the like. In the case of using a hair sample, the literature (Diabetes 34, 571,
1991) and the like, it is also useful to know the past continuous blood glucose control status, the long-term average blood glucose level, the onset time of diabetes, and the like. Reference examples, examples and test examples are shown below, but these do not limit the present invention in any way.

【0011】参考例1(Glc HSA溶液の調製) Chem. Pharm. Bull,40, 255(1992)に記載の方法に準じ
て、ヒト血清アルブミン(HSA, human serum albumin,
1g)と D-glucose(2g)をリン酸緩衝液(20mL,0.067mo
l/L, pH 7.4)に溶解して、37℃で2日間インキュベ
−トした。反応液は、透析チュ−ブを用いて4℃で2日
間透析した。透析液である上記リン酸緩衝液は、毎日更
新した。Glc HSA濃度は、NBT−還元法で測定し、Glc
HSA調製液(フルクトサミン値,1480μmol/L;アルブ
ミン,29g/L)は、1.5mLずつ分注し−20℃で凍結
保存した。
Reference Example 1 (Preparation of Glc HSA Solution) In accordance with the method described in Chem. Pharm. Bull, 40 , 255 (1992), human serum albumin (HSA, human serum albumin,
1g) and D-glucose (2g) in phosphate buffer (20mL, 0.067mo)
It was dissolved in 1 / L, pH 7.4) and incubated at 37 ° C for 2 days. The reaction solution was dialyzed for 2 days at 4 ° C using a dialysis tube. The phosphate buffer, which is the dialysate, was updated daily. Glc HSA concentration was measured by NBT-reduction method and
The HSA preparation (fructosamine value, 1480 μmol / L; albumin, 29 g / L) was dispensed in 1.5 mL aliquots and stored frozen at -20 ° C.

【0012】実施例(ヒドラジン試薬の調製) 3mLのヒドラジン・1水和物(H2N-NH2・H2O)を10
mLの蒸留水に溶解し、これに酢酸を加えてpH9.4
に調整した(最終濃度,約4.0mol/L) (フェニルヒドラジン溶液の調製)フェニルヒドラジン
塩酸塩の40%酢酸溶液(最終濃度,0.02mol/
L)を調製した。 (一般的定量方法)試料とヒドラジン試薬(0.1m
L,約4.0mol/L,pH9.4)の混液を100℃
で30分間加熱後、フェニルヒドラジン溶液(0.6m
L,0.02mol/L,40%酢酸含有)を加えて6
0℃で一定時間(最高60分間)加熱後、その反応液を
遠心分離(1400×g 10分)にかけて得られる上
清について、各時間ごとの吸光度を390nmで測定し
た。また、試料にヒト血清を使用する場合には、同量の
グルコ−スオキシダ−ゼ(約5単位)を加えて、37℃
で30分間のインキュベ−ション後、反応に付した。
Example (Preparation of Hydrazine Reagent) 3 mL of hydrazine monohydrate (H 2 N-NH 2 .H 2 O) was added to 10
Dissolve in mL of distilled water, add acetic acid to this and add to pH 9.4.
(Final concentration, about 4.0 mol / L) (Preparation of phenylhydrazine solution) 40% acetic acid solution of phenylhydrazine hydrochloride (final concentration, 0.02 mol / L)
L) was prepared. (General quantification method) Sample and hydrazine reagent (0.1m
L, approx. 4.0 mol / L, pH 9.4) at 100 ° C
After heating for 30 minutes at phenylhydrazine solution (0.6m
L, 0.02 mol / L, containing 40% acetic acid) 6
After heating at 0 ° C. for a fixed time (up to 60 minutes), the reaction solution was centrifuged (1400 × g for 10 minutes), and the absorbance obtained at each time was measured at 390 nm for the supernatant obtained. When human serum is used as the sample, the same amount of glucose-oxidase (about 5 units) is added and the temperature is adjusted to 37 ° C.
After 30 minutes of incubation, the reaction was carried out.

【0013】実施例1(Glc HSAの定量) 前記一般的定量方法に従い、各種濃度のGlc HSA水溶液
(0.1mL)とヒドラジン試薬(0.1mL)の混液を
100℃で10分間加熱後、フェニルヒドラジン溶液
(0.6mL)を加えて50℃で加熱し、各時間ごとの
吸光度を測定した。第2工程の反応を60分間行なった
時の反応生成物を単離したところ、そのUV吸収スペク
トル(λmax(in AcOH)nm(ε):389.8(2.5×10-4))か
ら、D-Glucose-bis-phenylhydrazoneであると確認され
た。
Example 1 (Quantification of Glc HSA) According to the above-mentioned general quantification method, a mixed solution of an aqueous solution of Glc HSA (0.1 mL) of various concentrations and a hydrazine reagent (0.1 mL) was heated at 100 ° C. for 10 minutes and then subjected to phenyl. A hydrazine solution (0.6 mL) was added and heated at 50 ° C., and the absorbance at each time was measured. When the reaction product after the reaction in the second step was carried out for 60 minutes was isolated, its UV absorption spectrum (λ max (in AcOH) nm (ε): 389.8 (2.5 × 10 -4 )) showed that D- It was confirmed to be Glucose-bis-phenylhydrazone.

【0014】第2工程の反応を短時間行なった時の吸光
度の変化を図1に示す。約1ないし5分以内の初期反応
では、吸光度は、時間依存的に直線的な上昇を示したこ
とから、レ−トアッセイ法による測定が可能であると予
想される。またGlc HSA(185μmol/L)を使用
して、第2工程の温度を変える以外は、上記と同様の方
法で吸光度を測定した。結果を図2に示す。加熱温度が
約50〜70℃の条件では、吸光度は、反応開始後約6
0分までほぼ時間依存的に増加した。
FIG. 1 shows the change in the absorbance when the reaction of the second step was carried out for a short time. In the initial reaction within about 1 to 5 minutes, the absorbance showed a linear increase in a time-dependent manner, and therefore it is expected that measurement by the rate assay method is possible. The absorbance was measured in the same manner as above except that Glc HSA (185 μmol / L) was used and the temperature in the second step was changed. The results are shown in Figure 2. When the heating temperature is about 50 to 70 ° C, the absorbance is about 6 after the reaction is started.
It increased almost to 0 minutes in a time-dependent manner.

【0015】実施例2(NBT−還元法との相関性) 臨床試料(血清,n=35)を検体として定量し、同時
に特公平1−13062公報に開示されているNBT−
還元法との相関性を求めた。 (試験方法)本発明 :試料(0.05mL)とグルコ−スオキシダ−
ゼ溶液(5単位,0.05mL)の混液を37℃で30
分間のインキュベ−ション後、前記一般的定量方法に従
い、ヒドラジン試薬(0.1mL)を加え、100℃で
30分間加熱した。更に、フェニルヒドラジン溶液
(0.6mL)を加えて、60℃で60分間加熱後、遠
心分離により得た上清の吸光度を測定した。NBT−還元法 :試料(0.05mL)と発色試薬(塩
化ニトロブル−テトラゾリウム(0.48mmol/L)含有の
0.2mol/L炭酸緩衝液,pH10.3,1mL)の
混液を37℃でインキュベ−ション後、10分および1
5分後に試薬ブランクを対照に546nmの吸光度を測
定した。次式により、蛋白の糖化度(μmol/L)を
求めた。 糖化度=(△ES/△Ec)×標準液の糖化度
(但し、△Es、△Ecは、それぞれ検体、標準液の10
分と15分後の吸光度の差を示す。)結果を図3に示す。
相関係数は、r=0.92(y=1.2x−7.1,SD=
63.9,n=35)となり両結果は良い相関性を示し
た。
Example 2 (Correlation with NBT-reduction method) A clinical sample (serum, n = 35) was quantified as a sample, and at the same time, NBT-disclosed in Japanese Patent Publication No. 1-10662.
The correlation with the reduction method was obtained. (Test method) The present invention : sample (0.05 mL) and glucose oxidase
Zeze solution (5 units, 0.05 mL) at 37 ℃
After the incubation for 1 minute, the hydrazine reagent (0.1 mL) was added according to the general quantification method described above, and the mixture was heated at 100 ° C. for 30 minutes. Further, a phenylhydrazine solution (0.6 mL) was added, the mixture was heated at 60 ° C. for 60 minutes, and the absorbance of the supernatant obtained by centrifugation was measured. NBT-reduction method : A mixture of a sample (0.05 mL) and a coloring reagent (nitromol-tetrazolium chloride (0.48 mmol / L) -containing 0.2 mol / L carbonate buffer, pH 10.3, 1 mL) was incubated at 37 ° C. 10 minutes and 1 after
After 5 minutes, the absorbance at 546 nm was measured using the reagent blank as a control. The glycation degree (μmol / L) of the protein was determined by the following formula. Saccharification degree = (△ E S / △ Ec ) × standard solution glycation degree (although, △ Es, △ Ec is 10 samples, standard solutions, respectively
The difference in absorbance after 15 minutes is shown. ) The results are shown in FIG.
The correlation coefficient is r = 0.92 (y = 1.2x−7.1, SD =
63.9, n = 35), and both results showed good correlation.

【0016】実施例3(糖尿病患者と正常人における血
液中の糖化蛋白の定量) (対象) 正常人:集団健康診断で健康と認定された男女(年齢2
2−52才,n=32) 糖尿病患者:WHO基準に基き糖尿病と判定された患者
(年齢47−75才,n=32) (検体の調製)食前に採取した血液(血液凝固阻止剤は
非添加)が凝固した後、遠心分離(1400×g,10
分)にかけ、その上清である血清を−20℃で保存し
た。 (定量方法)試料(0.05mL)とグルコ−スオキシ
ダ−ゼ溶液(5単位,0.2mol/Lの燐酸緩衝溶液
に溶解,0.05mL)の混液を37℃で30分間のイ
ンキュベ−ション後、前記一般的定量方法に従い、ヒド
ラジン試薬(0.1mL)を加え、100℃で30分間
加熱した。更に、フェニルヒドラジン溶液(0.6m
L)を加えて、60℃で60分間加熱後、遠心分離(1
400×g,10分)により得た上清の吸光度を測定し
た。 (結果)結果を図7に示す。正常人と糖尿病患者におけ
る血中の糖化蛋白濃度の平均値を比較すると、顕著な差
が認められた。実施例4 (糖尿病患者と正常人における毛髪中の糖化蛋
白の定量) (対象) 正常人:集団健康診断で健康と認定された男女(年齢2
2−52才,n=32) 糖尿病患者:WHO基準に基き糖尿病と判定された患者
(年齢47−75才,n=32) (検体の調製)60℃のエタノ−ル及び蒸留水(それぞ
れ1mL)で洗浄した毛髪断片(約10mg,1mm以
下)を蒸留水(0.1mL)に懸濁。 (定量方法)蒸留水懸濁液(0.1mL)に、前記一般
的定量方法に従い、ヒドラジン試薬(0.1mL)を加
え、100℃で30分間加熱した。更に、フェニルヒド
ラジン溶液(0.6mL)を加えて、60℃で60分間
加熱後、遠心分離(1400×g,10分)により得た
上清の吸光度を測定した。 (結果)結果を図8に示す。正常人と糖尿病患者におけ
る毛髪中の糖化蛋白濃度の平均値を比較すると顕著な差
が認められた。よって、本発明定量方法は、検体として
ヒトの毛髪を使用した時にも、糖尿病の診断に有用であ
ることが示唆される。試験例1 (呈色性の比較)呈色性について、前記文献記
載のフェニルヒドラジン法との比較を行なった。 (試料)Glc HSA 溶液(180μmol/L,0.1m
L)(試験方法) 本発明法:前記一般的定量方法に従い、試料とヒドラジ
ン試薬の混液を100℃で30分間加熱後、フエニルヒ
ドラジン溶液を加えて60℃で加熱して、390nmで
吸光度を測定した。 フェニルヒドラジン法:試料と蒸留水(0.1mL)の
混液を、室温下、30分放置後、フエニルヒドラジン溶
液(0.6mL)を加えて60℃で加熱して、390n
mで吸光度を測定した。 結果を図4に示す。本定量方法は、フェニルヒドラジン
法に比べて著しく強い呈色性を示した。
Example 3 (Quantification of Glycated Protein in Blood in Diabetic Patients and Normal Subjects) (Target) Normal subjects: men and women (age 2
2-52 years old, n = 32) Diabetic patient: Patient determined to be diabetic based on WHO standard (age 47-75 years old, n = 32) (Preparation of specimen) Blood collected before meals (blood coagulation inhibitor is not After the addition) solidified, centrifuge (1400 xg, 10
And the supernatant serum was stored at -20 ° C. (Quantitative method) A mixture of a sample (0.05 mL) and a glucose-oxidase solution (5 units, dissolved in a 0.2 mol / L phosphate buffer solution, 0.05 mL) was incubated at 37 ° C for 30 minutes. The hydrazine reagent (0.1 mL) was added according to the above general quantification method, and the mixture was heated at 100 ° C. for 30 minutes. Furthermore, phenylhydrazine solution (0.6m
L) and heated at 60 ° C. for 60 minutes, and then centrifuged (1
The absorbance of the obtained supernatant was measured at 400 xg for 10 minutes. (Results) The results are shown in FIG. 7. A significant difference was observed when comparing the average values of glycated protein concentration in blood between a normal person and a diabetic patient. Example 4 (Quantification of Glycated Protein in Hair in Diabetic Patients and Normal Persons) (Target) Normal persons: men and women who were certified as healthy by a group physical examination (age 2
2-52 years old, n = 32) Diabetic patient: Patients judged to be diabetic based on WHO standard (age 47-75 years old, n = 32) (Preparation of specimen) Ethanol at 60 ° C and distilled water (1 mL each) ) Suspended the hair fragment (about 10 mg, 1 mm or less) washed with distilled water (0.1 mL). (Quantitative method) A hydrazine reagent (0.1 mL) was added to distilled water suspension (0.1 mL) according to the above-mentioned general quantitative method, and heated at 100 ° C for 30 minutes. Further, a phenylhydrazine solution (0.6 mL) was added, the mixture was heated at 60 ° C. for 60 minutes, and then centrifuged (1400 × g, 10 minutes) to measure the absorbance of the obtained supernatant. (Results) The results are shown in FIG. A significant difference was observed when comparing the average values of glycated protein concentration in hair between a normal person and a diabetic patient. Therefore, it is suggested that the quantification method of the present invention is useful for diagnosing diabetes even when human hair is used as a sample. Test Example 1 (Comparison of color developability) The color developability was compared with the phenylhydrazine method described in the above literature. (Sample) Glc HSA solution (180 μmol / L, 0.1 m
L) (Test method) According to the method of the present invention, a mixed solution of a sample and a hydrazine reagent was heated at 100 ° C for 30 minutes, then a phenylhydrazine solution was added and the mixture was heated at 60 ° C to measure the absorbance at 390 nm. It was measured. Phenylhydrazine method: A mixture of a sample and distilled water (0.1 mL) is left at room temperature for 30 minutes, then a phenylhydrazine solution (0.6 mL) is added and heated at 60 ° C. to give 390 n.
Absorbance was measured at m. The results are shown in Fig. 4. This quantitative method showed significantly stronger coloration than the phenylhydrazine method.

【0017】試験例2(呈色安定性) (試料) Glc HSA 溶液(360または720μmol/L, 0.1m
L) (試験方法)前記一般的定量方法に従い、試料とヒドラ
ジン試薬の混液を100℃で30分間加熱後、フェニル
ヒドラジン溶液を加えて60℃で60分間加熱した。反
応液を遠心分離にかけ、その上清を室温(22−23
℃)で放置後、吸光度を測定した。結果を図5に示す。
放置後、10〜60分後の吸光度の変化は、初期値に対
して約0.4〜2.2%であったことから、本定量方法に
おける呈色安定性は極めて高いことが判る。
Test Example 2 (Coloring stability) (Sample) Glc HSA solution (360 or 720 μmol / L, 0.1 m)
L) (Test method) According to the above-mentioned general quantification method, a mixed solution of a sample and a hydrazine reagent was heated at 100 ° C for 30 minutes, and then a phenylhydrazine solution was added and heated at 60 ° C for 60 minutes. The reaction solution was centrifuged, and the supernatant was stored at room temperature (22-23
After standing at (° C.), the absorbance was measured. Results are shown in FIG.
Since the change in absorbance after 10 to 60 minutes after leaving was about 0.4 to 2.2% with respect to the initial value, it can be seen that the coloration stability in this quantitative method is extremely high.

【0018】試験例3(グルコ−スオキシダ−ゼによる
前処理の効果) (試料) 試験検体: グルコ−ス(27.8mmol/L)およ
びグルコ−スオキシダ−ゼ(0〜20.8単位,50μ
L)を含有する Glc HSA溶液(740μmol/L,5
0μL) 対照検体: 試験検体に対してグルコ−スの代わりに蒸
留水を加えたGlc HSA溶液 (試験方法)各検体をそれぞれ37℃で30分間、イン
キュベ−トした後、前記一般的定量方法に従い、試料と
ヒドラジン試薬の混液を100℃で30分間加熱後、フ
エニルヒドラジン溶液を加えて60℃で加熱して、吸光
度を測定した。試験検体の吸光度値をOD(test)、対照
検体の吸光度値をOD(control)として、グルコ−スオ
キシダ−ゼによる前処理の効果を対照比(%)((OD
(test)/OD(control))×100(%),(OD(tes
t):試験検体の吸光度値,OD(control):対照検体の
吸光度値)として図6に示す。グルコ−スオキシダ−ゼ
が約5単位以上では、対照比はほぼ100%を示し、試
料中のグルコ−スが酸化され本呈色系への影響はほとん
ど除かれることが判った。よって、ヒト血清試料の場合
には、グルコ−スオキシダ−ゼ(約5単位以上)による
前処理を行なえばよく、好ましくは、約37℃で約30
分間程度インキュベ−トすればよい。
Test Example 3 (Effect of Pretreatment with Glucose Oxidase) (Sample) Test Sample: Glucose (27.8 mmol / L) and Glucose Oxidase (0 to 20.8 units, 50 μm)
L) containing Glc HSA solution (740 μmol / L, 5
0 μL) Control sample: Glc HSA solution in which distilled water was added to the test sample instead of glucose (Test method) Each sample was incubated at 37 ° C. for 30 minutes, and then according to the general quantification method described above. The mixture of the sample and the hydrazine reagent was heated at 100 ° C. for 30 minutes, then a phenylhydrazine solution was added, and the mixture was heated at 60 ° C. to measure the absorbance. Using the absorbance value of the test sample as OD (test) and the absorbance value of the control sample as OD (control), the effect of pretreatment with glucose oxidase was compared with the control ratio (%) ((OD
(test) / OD (control)) × 100 (%), (OD (tes
t): absorbance value of test sample, OD (control): absorbance value of control sample) are shown in FIG. When glucose oxidase was about 5 units or more, the control ratio was almost 100%, and it was found that the glucose in the sample was oxidized and the influence on the coloration system was almost eliminated. Therefore, in the case of a human serum sample, pretreatment with glucosoxidase (about 5 units or more) may be performed, and preferably about 30 ° C at about 30 ° C.
Incubate for about a minute.

【0019】試験例4(測定精度) 本定量方法による同時および日差再現性を求めた。 (試料)Glc HSA(1440μmol/L)溶液を蒸留
水で希釈した4〜6種類の試料。 (試験方法)いずれの再現性についても、前記一般的定
量方法に従い測定して求めた。ただし、同時再現性につ
いては、冷凍保存しておいた検体(n=10)を、同時
に反応させて測定し、また日差再現性については、冷凍
保存しておいた検体(n=10)を、毎日1本ずつ10
日間、反応させて測定することにより調べた。いずれの
再現性(CV,%)も、各平均値に対する誤差の割合
(%)より算出した。結果を表1に示す。
Test Example 4 (Measurement Accuracy) Simultaneous and day-to-day reproducibility was determined by this quantification method. (Sample) 4 to 6 types of samples obtained by diluting a Glc HSA (1440 μmol / L) solution with distilled water. (Test method) Any reproducibility was measured and determined according to the above-mentioned general quantitative method. However, the simultaneous reproducibility was measured by reacting the frozen sample (n = 10) at the same time, and the daily reproducibility was measured by the frozen sample (n = 10). , One each day 10
It was examined by reacting and measuring for a day. Each reproducibility (CV,%) was calculated from the ratio (%) of the error to each average value. The results are shown in Table 1.

【表1】 同時、日差再現性とも試料濃度が約10μmol/L以
上においては、約10%以下のCV値を示し、高い測定
精度が得られた。
[Table 1] Simultaneously and with respect to reproducibility by day difference, when the sample concentration was about 10 μmol / L or more, the CV value was about 10% or less, and high measurement accuracy was obtained.

【0020】試験例5(正確度) (試料)プ−ルした正常ヒト血清(25μL)に各種濃
度の Glc HSA 溶液25μLを添加した試料。 (試験方法)試料(50μL)およびグルコ−スオキシ
ダ−ゼ(5単位,50μL)の混液を37℃で30分間
インキュベ−トした後、前記一般的定量方法に従って定
量した(ODA)。一方、ブランクとして、プ−ルした
正常ヒト血清に、Glc HSA 溶液の代わりに同量の蒸留水
を添加した試料を用いて、同様に吸光度を求めた(OD
B)。同様にして、ヒト血清の代わりに蒸留水に、Glc H
SA 溶液を添加した試料より求めた吸光度を(ODC)、
蒸留水に、Glc HSA 溶液の代わりに同量の蒸留水を添加
して求めた吸光度を(ODD)とする。回収率を[(O
A−ODB)/(ODC−ODD)]×100(%)とし
て求めた結果を表2に示す。
Test Example 5 (Accuracy) (Sample) A sample prepared by adding 25 μL of Glc HSA solution of various concentrations to the pooled normal human serum (25 μL). (Test method) A mixed solution of the sample (50 μL) and glucosoxidase (5 units, 50 μL) was incubated at 37 ° C. for 30 minutes, and then quantified according to the general quantification method (OD A ). On the other hand, as a blank, a sample obtained by adding the same amount of distilled water to the pulled normal human serum instead of the Glc HSA solution was used to similarly determine the absorbance (OD
B ). Similarly, Glc H was added to distilled water instead of human serum.
The absorbance obtained from the sample to which the SA solution was added (OD C ),
The absorbance obtained by adding the same amount of distilled water to the distilled water instead of the Glc HSA solution is defined as (OD D ). The recovery rate is [(O
D A -OD B) / (OD C -OD D)] results obtained as × 100 (%) shown in Table 2.

【表2】 回収率は、90〜100%に近い値を示したことから、
本定量方法では、選択的かつ定量的に反応が進行し、正
確度の高いことが判る。
[Table 2] Since the recovery rate was close to 90 to 100%,
In this quantification method, it can be seen that the reaction progresses selectively and quantitatively with high accuracy.

【0021】試験例6(共存物質の影響) 血清成分、その他の化学物質の本定量方法に与える影響
を調べた。 (試料)各物質の水溶液(ただし、尿酸の場合は、アル
カリ溶液)0.1mLをプ−ルした正常ヒト血清(1m
L)に加えて試料を調製した。各試料中の添加物質の最
終濃度は、正常濃度の2−10倍である。一方、同量の
蒸留水のみを加えたものを対照とした。 (試験方法)前記一般的定量方法に従い、各試料につい
てそれぞれ3回測定し、各平均値(検体:X1,対照:
2)より求めた対照比(%)[((X1−X2)/X2
×100]を表3に示す。
Test Example 6 (Influence of coexisting substances) The influence of serum components and other chemical substances on the present quantification method was examined. (Sample) Normal human serum (1 m) containing 0.1 mL of an aqueous solution of each substance (however, in the case of uric acid, an alkaline solution)
Samples were prepared in addition to L). The final concentration of added substance in each sample is 2-10 times the normal concentration. On the other hand, the one to which only the same amount of distilled water was added was used as a control. (Test method) Each sample was measured three times according to the above-mentioned general quantification method, and each average value (sample: X 1 , control:
Control ratio (%) obtained from X 2 ) [((X 1 −X 2 ) / X 2 ).
× 100] is shown in Table 3.

【表3】 いずれの物質を添加した場合も、対照比は数%以内であ
り、正常血中濃度の上限の約2〜3倍以内であれば本定
量方法に影響しないと推定される。また、対照だけを測
定した時の同時再現性(CV)が約8%であったことか
ら、対照比が8%に達する時の最高濃度を求めた。結果
を表4に示す。
[Table 3] Regardless of which substance is added, the control ratio is within several%, and it is presumed that this control method will not be affected if it is within about 2-3 times the upper limit of the normal blood concentration. Further, since the simultaneous reproducibility (CV) when measuring only the control was about 8%, the maximum concentration when the control ratio reached 8% was obtained. The results are shown in Table 4.

【表4】 代表的な糖類および蛋白質について、対照比が8%に達
する最高濃度は正常濃度を充分上まわった。よって、通
常レベルでは、これらの共存物質は、本定量方法にほと
んど影響しないと推定される。
[Table 4] For typical sugars and proteins, the highest concentration at which the control ratio reached 8% was well above the normal concentration. Therefore, at the normal level, it is estimated that these coexisting substances have almost no effect on the present quantification method.

【0022】[0022]

【発明の効果】本発明によれば、生体組織、特に血液中
または毛髪中の糖化蛋白を緩和な条件下で、迅速かつ簡
便に定量出来る。本定量方法は、高感度である上、呈色
の安定性もよく、また発色物質の吸着等の問題もない。
また、再現性がよく高精度で正確な定量が可能であり、
レ−トアッセイ法による自動分析にも適した実用性の高
い定量方法である。
INDUSTRIAL APPLICABILITY According to the present invention, glycated proteins in living tissues, particularly blood or hair, can be quantified rapidly and easily under mild conditions. This quantification method has high sensitivity, good color stability, and no problems such as adsorption of coloring substances.
In addition, it is highly reproducible and highly accurate and accurate quantification is possible.
It is a highly practical quantitative method suitable for automatic analysis by the rate assay method.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、各種濃度のGlc HSA を本定量方
法により定量した時の、第2工程の反応時間と吸光度の
関係を表わす。
FIG. 1 shows the relationship between the reaction time in the second step and the absorbance when Glc HSA at various concentrations was quantified by this quantification method.

【図2】図2は、第2工程の反応温度を変えて、Glc
HSAを本定量方法により定量した時の、第2工程の
反応時間と吸光度の関係を表わす。
FIG. 2 is a graph showing that Glc was changed by changing the reaction temperature in the second step.
The relationship between the reaction time and the absorbance in the second step when HSA is quantified by this quantification method is shown.

【図3】図3は、ヒト血清を検体として糖化蛋白を定量
した時の、本定量方法とNBT−還元法との相関性を示
す。
FIG. 3 shows the correlation between the present quantification method and the NBT-reduction method when glycated protein was quantified using human serum as a sample.

【図4】図4は、Glc HSAを定量した時の、本定
量方法とフェニルヒドラジン法における呈色性の相異を
示す。横軸は、第2工程の反応時間を表わす。
FIG. 4 shows the difference in color development between the present quantification method and the phenylhydrazine method when quantifying Glc HSA. The horizontal axis represents the reaction time of the second step.

【図5】図5は、Glc HSAを、本定量方法により
定量した時の呈色安定性を示す。横軸は、第2工程の反
応を60分間行なった後の時間経過を表わす。
FIG. 5 shows the coloration stability of Glc HSA when quantified by this quantification method. The horizontal axis represents the time elapsed after the reaction of the second step was performed for 60 minutes.

【図6】図6は、グルコ−ス存在下、本定量方法により
Glc HSAを定量した時の、グルコ−スオキシダ−
ゼによる前処理の効果を示す。縦軸は、グルコ−スを含
有しないブランクに対する対照比を表わし、横軸は、グ
ルコ−スオキシダ−ゼの単位を表わす。
FIG. 6 is a graph showing glucose oxidase levels when Glc HSA was quantified by this quantification method in the presence of glucose.
The effect of pretreatment with ze is shown. The vertical axis represents the control ratio to the blank containing no glucose, and the horizontal axis represents the units of glucose oxidase.

【図7】図7は、正常人と糖尿病患者を対象に、血中の
糖化蛋白濃度を本定量方法により比較測定した結果を示
す。
FIG. 7 shows results of comparative measurement of blood glycated protein concentrations by the present quantification method in normal subjects and diabetic patients.

【図8】図8は、正常人と糖尿病患者を対象に、毛髪中
の糖化蛋白濃度を本定量方法により比較測定した結果を
示す。
FIG. 8 shows results of comparative measurement of glycated protein concentrations in hair by the present quantification method in normal subjects and diabetic patients.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】糖化蛋白と共存するグルコ−スを酸化処理
した検体を、ヒドラジンで処理した後、発色剤と反応さ
せて比色定量することを特徴とする糖化蛋白の定量方
法。
1. A method for quantifying glycated protein, which comprises subjecting a sample obtained by oxidizing glucose coexisting with glycated protein to hydrazine, and then reacting it with a color former for colorimetric quantification.
【請求項2】該検体が血液検体または毛髪検体である請
求項1記載の定量方法。
2. The quantification method according to claim 1, wherein the sample is a blood sample or a hair sample.
【請求項3】該酸化処理を、グルコ−スオキシダ−ゼで
行なう請求項1記載の定量方法。
3. The quantification method according to claim 1, wherein the oxidation treatment is carried out with glucose-oxidase.
【請求項4】ヒドラジンによる処理を、pH約8.0〜
約12.0 で行なう請求項1記載の定量方法。
4. The treatment with hydrazine has a pH value of about 8.0.
The quantification method according to claim 1, which is carried out at about 12.0.
【請求項5】ヒドラジンによる処理を、約30〜約13
0℃で行なう請求項1記載の定量方法。
5. The treatment with hydrazine comprises about 30 to about 13.
The quantification method according to claim 1, which is performed at 0 ° C.
【請求項6】該発色剤がフェニルヒドラジンである請求
項1記載の定量方法。
6. The method according to claim 1, wherein the color former is phenylhydrazine.
【請求項7】フェニルヒドラジンとの反応を、約30〜
約80℃で行なう請求項6記載の定量方法。
7. The reaction with phenylhydrazine is carried out by about 30 to
The quantification method according to claim 6, which is performed at about 80 ° C.
【請求項8】該比色定量を、レ−トアッセイ法により行
なう請求項1記載の定量方法。
8. The quantification method according to claim 1, wherein the colorimetric quantification is performed by a rate assay method.
JP13541993A 1992-05-20 1993-05-12 Quantification of saccharified protein Pending JPH0630791A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13541993A JPH0630791A (en) 1992-05-20 1993-05-12 Quantification of saccharified protein

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP4-154495 1992-05-20
JP15449592 1992-05-20
JP13541993A JPH0630791A (en) 1992-05-20 1993-05-12 Quantification of saccharified protein

Publications (1)

Publication Number Publication Date
JPH0630791A true JPH0630791A (en) 1994-02-08

Family

ID=26469276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13541993A Pending JPH0630791A (en) 1992-05-20 1993-05-12 Quantification of saccharified protein

Country Status (1)

Country Link
JP (1) JPH0630791A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009145169A (en) * 2007-12-13 2009-07-02 Japan Health Science Foundation Method for phenylhydrazonating saccharides and sugar chain, method for analyzing phenylhydrazonated saccharides and sugar chain by this method, and method for comparing and determining saccharides and sugar chain using this method
JP2010002380A (en) * 2008-06-23 2010-01-07 Shiseido Co Ltd Evaluation method of glycation degree of protein, and evaluation method of glycation suppressing/improving agent of protein
WO2022114031A1 (en) * 2020-11-25 2022-06-02 株式会社Provigate Medium for separating and storing blood plasma or serum, method for producing same, device, kit, and method for measuring glycosylated protein

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009145169A (en) * 2007-12-13 2009-07-02 Japan Health Science Foundation Method for phenylhydrazonating saccharides and sugar chain, method for analyzing phenylhydrazonated saccharides and sugar chain by this method, and method for comparing and determining saccharides and sugar chain using this method
JP2010002380A (en) * 2008-06-23 2010-01-07 Shiseido Co Ltd Evaluation method of glycation degree of protein, and evaluation method of glycation suppressing/improving agent of protein
WO2022114031A1 (en) * 2020-11-25 2022-06-02 株式会社Provigate Medium for separating and storing blood plasma or serum, method for producing same, device, kit, and method for measuring glycosylated protein

Similar Documents

Publication Publication Date Title
JP2003114214A (en) Method and device for use in analyte concentration determing assay
US20050142613A1 (en) Test for the rapid evaluation of ischemic states and kits
JP2008532033A (en) Prognosis determination method for mental disorders such as autism and cerebral palsy
EP0114381B1 (en) Reagent for measuring direct bilirubin by enzymatic method and method for measurement thereof
CA2272746C (en) Measurement of bilirubin albumin binding
CA1319594C (en) Process and reagent for the determination of fructosamine in body fluids
JPS5879163A (en) Method of measuring sugar coupled hemoglobin, reagent for executing said method and reagent for fractionating sugar coupled hemoglobin and nonsugar coupled hemoglobin
Watson Enzymic determination of glucose and easily hydrolyzable glucose esters in blood
GB2250819A (en) Myocardial infarction test
US6207459B1 (en) Method for the analysis of medical samples containing haemoglobin
JPH0630791A (en) Quantification of saccharified protein
US7198905B2 (en) Method of screening methods prediabetic state and screening reagent
JPH0236182B2 (en)
JP3516069B2 (en) How to measure glucose concentration
US5571723A (en) Method of testing for diabetes that reduces the effect of interfering substances
US20030194813A1 (en) Tests for the rapid evaluation of ischemic states and kits
JPH02193071A (en) Kit of reagent for measuring haptoglobin-hemoglobin complex and measuring method of haptoglobin-hemoglobin complex using the same
JPH0772157A (en) Method and kit for determination of saccharified protein
Brunton et al. An assessment of a reflectance meter system for measurement of plasma or blood glucose in the clinic or side ward
US20030180820A1 (en) Tests for the rapid evaluation of ischemic states and kits
JPH02122267A (en) Reagent kit for determining human hemoglobin and method for determining hemoglobin by using this kit
CN111596067B (en) Application of ZC3H8 in early warning, diagnosis and prognosis evaluation of POP (Point of Presence)
JP2002526764A (en) Tests and kits for rapid assessment of ischemic status
JP2001258593A (en) Method for assaying saccharogenic albumin
JPS59222766A (en) Quantitative analysis of hemoglobin in humor