JPH06307865A - Inclination sensor - Google Patents

Inclination sensor

Info

Publication number
JPH06307865A
JPH06307865A JP12310893A JP12310893A JPH06307865A JP H06307865 A JPH06307865 A JP H06307865A JP 12310893 A JP12310893 A JP 12310893A JP 12310893 A JP12310893 A JP 12310893A JP H06307865 A JPH06307865 A JP H06307865A
Authority
JP
Japan
Prior art keywords
coefficient
ball
change
air
linear expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12310893A
Other languages
Japanese (ja)
Inventor
Hajime Matsumura
一 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bosch Corp
Original Assignee
Zexel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zexel Corp filed Critical Zexel Corp
Priority to JP12310893A priority Critical patent/JPH06307865A/en
Publication of JPH06307865A publication Critical patent/JPH06307865A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide an air damper type inclination sensor, which can restrict a change of the detecting characteristic generated by a change of coefficient of viscosity of the air due to the temperature change. CONSTITUTION:In an air damper type inclination sensor 1, a ball 3 is sealed inside of a cylindrical case 2 with air, and the movement condition of the ball 3 is detected by magnetic sensors 5, 6, 7 provided outside of the cylindrical case 2. In this inclination sensor, a relative difference between the coefficient of linear expansion of the cylindrical case 2 and the coefficient of linear expansion of the ball 3 is set at a value, which can restrict a change of the operation characteristic of the inclination sensor generated by the change of the coefficient of viscosity of the air due to the temperature change.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、エアダンパを用いたボ
ール方式の傾斜センサの改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement of a ball type tilt sensor using an air damper.

【0002】[0002]

【従来の技術】従来から、筒状のケーシング内にその内
径より僅かに小さい径のスチール球を封入し、その時々
の傾斜に応じたスチール球の動きをケーシングの外側に
設けられたセンサで磁気的に検出することによりその傾
斜の度合を検知するようにした傾斜センサが公知であ
る。ところで、この種の傾斜センサにあっては、スチー
ル球の運動に適度のダンパ力を与え、傾斜の発生時にス
チール球が適度の速度で下方に移動することが望まれ
る。このため、ケーシング内に油等の如き粘性の高い媒
体を充填しておく構成が公知である。
2. Description of the Related Art Conventionally, a steel ball having a diameter slightly smaller than its inner diameter is enclosed in a cylindrical casing, and the movement of the steel ball depending on the occasional inclination is magnetically detected by a sensor provided outside the casing. There is known a tilt sensor that detects the degree of the tilt by performing a positive detection. By the way, in this type of inclination sensor, it is desired that a proper damper force be applied to the movement of the steel ball so that the steel ball moves downward at an appropriate speed when the inclination occurs. Therefore, there is known a configuration in which a highly viscous medium such as oil is filled in the casing.

【0003】[0003]

【発明が解決しようとする課題】しかし、ケーシング内
に油等の媒体を充填する構成を採用する場合には、ケー
シングを液密構造とする必要があり、コストの増大を招
くという問題を生じる。この問題を解決するため、ケー
シング内に空気を密封したエアダンパを用いることが考
えられるが、エアダンパ方式によると空気の粘性係数の
温度変化により特性が大きく変化してしまうという問題
点を有している。本発明の目的は、したがって、空気の
粘性係数が温度により変化しても検出特性に不具合が生
じないようにした、改善されたエアダンパ式の傾斜セン
サを提供することにある。
However, in the case of adopting a structure in which the casing is filled with a medium such as oil, the casing needs to have a liquid-tight structure, which causes a problem of increasing cost. In order to solve this problem, it is conceivable to use an air damper in which air is sealed in the casing, but the air damper method has a problem that the characteristics change greatly due to the temperature change of the viscosity coefficient of air. . Therefore, an object of the present invention is to provide an improved air damper type inclination sensor in which the detection characteristic does not become defective even if the viscosity coefficient of air changes with temperature.

【0004】[0004]

【課題を解決するための手段】上記課題を解決するため
の本発明の特徴は、筒状ケース内に磁性材料から成り前
記筒状ケースの内径よりも僅かに小さい外径のボールを
空気と共に封入し、傾斜に応じて生じる前記ボールの運
動状態を前記筒状ケースの外側に設けた磁気的センサに
より検出するように構成されたエアダンパ式の傾斜セン
サにおいて、前記筒状ケースの線膨張係数と前記ボール
の線膨張係数との相対差が空気の粘性係数の温度変化に
より生じる前記傾斜センサの動作特性の変化を抑えるこ
とができる値となっている点にある。
A feature of the present invention for solving the above-mentioned problems is that a ball made of a magnetic material and having an outer diameter slightly smaller than the inner diameter of the cylindrical case is enclosed together with air in the cylindrical case. However, in the air damper type inclination sensor configured to detect the movement state of the ball generated according to the inclination by the magnetic sensor provided outside the cylindrical case, the linear expansion coefficient of the cylindrical case and the The relative difference between the coefficient of linear expansion of the ball and the coefficient of linear expansion of the ball is a value capable of suppressing the change in the operating characteristics of the tilt sensor caused by the temperature change of the viscosity coefficient of air.

【0005】[0005]

【作用】空気の粘性係数の温度特性は正であり、温度が
上昇するほどその粘性減衰係数は大きくなる。一方、ボ
ールと筒状ケースとの間の間隙長の温度による変化は、
両者の線膨張係数の相対差で決定され、この間隙長の大
きさが空気の粘性の変化による影響を打ち消すように変
化する。このため、温度変化時に、傾斜センサの動作特
性の温度変化が抑えられる。
The temperature characteristic of the viscosity coefficient of air is positive, and the viscosity damping coefficient increases as the temperature rises. On the other hand, the change in the gap length between the ball and the cylindrical case due to temperature is
It is determined by the relative difference between the linear expansion coefficients of the two, and the size of the gap length changes so as to cancel the influence of the change in the viscosity of the air. Therefore, when the temperature changes, the change in the operating characteristics of the tilt sensor with temperature can be suppressed.

【0006】[0006]

【実施例】以下、図面を参照して本発明の一実施例につ
き詳細に説明する。図1及び図2を参照すると、本発明
による傾斜センサ1は、内径D1の有底円筒体であるケ
ース2と、内径D1より僅かに小さい外径D2を有しケ
ース2内の室2aに運動自在に収納されているスチール
のボール3とを有している。ケース2の一端間口部2b
には栓体4が気密に嵌合されており、ボール3にダンパ
作用を与えるための媒体として室2a内に空気が封入さ
れ、これによりエアダンパ式のボール方式傾斜センサ1
の主要部が構成されている。一方、ケース2の外周面に
設けられた環状溝2c、2d内には一組の検出コイル
5、6が配設されており、これらのコイル5、6及びボ
ール3に対して、リング状のマグネット7により静磁界
が与えられている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in detail below with reference to the drawings. Referring to FIGS. 1 and 2, an inclination sensor 1 according to the present invention has a case 2 which is a bottomed cylindrical body having an inner diameter D1 and an outer diameter D2 which is slightly smaller than the inner diameter D1 and moves in a chamber 2a in the case 2. It has a steel ball 3 stored freely. Front end 2b of case 2
A plug 4 is airtightly fitted in the chamber 2a, and air is enclosed in the chamber 2a as a medium for giving a damper effect to the ball 3, whereby an air damper type ball-type inclination sensor 1 is provided.
The main part of is composed. On the other hand, a pair of detection coils 5 and 6 is disposed in the annular grooves 2c and 2d provided on the outer peripheral surface of the case 2, and these coil 5 and 6 and the ball 3 have a ring shape. A static magnetic field is given by the magnet 7.

【0007】このように構成された傾斜センサ1におい
て、傾斜に応じてボール3が運動し、これにより生じた
磁界の変化を一組の検出コイル5、6により検出し、そ
の時の傾斜状態を示す検出信号を取り出すための動作自
体は公知であるから、この点についての詳細な説明は省
略する。
In the tilt sensor 1 thus constructed, the ball 3 moves in accordance with the tilt, and a change in the magnetic field generated by the ball 3 is detected by the pair of detection coils 5 and 6, and the tilt state at that time is shown. Since the operation itself for extracting the detection signal is known, a detailed description thereof will be omitted.

【0008】本発明による上述の傾斜センサ1におい
て、室2a内に封入された空気の粘性係数が温度変化に
より変化してもボール3に作用するダンパ力の変化を最
小にするため、ボール3と室2aとの間の間隙長X(=
D1−D2)の温度による変化状態が粘性係数の温度変
化を補償するような値となるように、ケース2とボール
3との間のの線膨張係数の相対差が定められている。
In the above inclination sensor 1 according to the present invention, in order to minimize the change of the damper force acting on the ball 3 even if the viscosity coefficient of the air enclosed in the chamber 2a changes due to the temperature change, Gap length between chamber 2a X (=
The relative difference in the coefficient of linear expansion between the case 2 and the ball 3 is set so that the change state of D1-D2) due to the temperature has a value that compensates for the temperature change of the viscosity coefficient.

【0009】このような線膨張係数の値は次のようにし
て定めることができる。すなわち、図2の場合におい
て、ダンパ係数C(X)と間隙長Xとの間には C(X)=0.0001986×X-2.5+0.00645 ・・・ (1) なる関係があることが、実験により確認された。この実
験式(1)を導く根拠となった実験結果が図3に示され
ている。この実験は雰囲気温度一定で行なったものであ
る。
The value of such a linear expansion coefficient can be determined as follows. That is, in the case of FIG. 2, there may be a relationship between the damper coefficient C (X) and the gap length X such that C (X) = 0.0001986 × X −2.5 +0.00645 (1) , Confirmed by experiment. FIG. 3 shows the experimental result which was the basis for deriving the empirical formula (1). This experiment was conducted at a constant ambient temperature.

【0010】ところで、空気の粘性係数の温度特性を表
す式は、t( °C)における空気の粘性係数をη(t)
とすると、 η(t)=0.0466t+16.93 ・・・ (2) となる。
By the way, the equation expressing the temperature characteristic of the viscosity coefficient of air is expressed by η (t) as the viscosity coefficient of air at t (° C).
Then, η (t) = 0.0466t + 16.93 (2)

【0011】t(°c)における間隙長の値xに対する
粘性減衰係数をC(x)tとすると、間隙の大きさと共
振点ゲインG(x)tとの間には下式(3)で示す関係
が成立する。 G(x)=20log[2mk/{C(x)t(4mk−C(x)t2 -0.5 }] ・・・ (3) ここで、ボール3の線膨張係数とケースの線膨張係数と
の差をα、25(°C)おけるボール3の直径(D2)
の値をBφとすると、C(x)tは下式(4)で示され
る通りとなる。 C(x)t=η(t)/18.1〔0.0001986/{X+α(t−25 )(Bφ+x/2)}2.5 −0.00645〕 ・・・ (4)
Letting C (x) t be the viscous damping coefficient for the value x of the gap length at t (° c), the following formula (3) is used between the size of the gap and the resonance point gain G (x) t. The relationship shown is established. G (x) = 20log [2mk / {C (x) t (4mk-C (x) t 2) -0.5}] ··· (3) where, coefficient of linear expansion and the case of the ball 3 The diameter of the ball 3 (D2) at a difference of α, 25 (° C)
If the value of B is φ, then C (x) t is given by the following equation (4). C (x) t = η ( t) /18.1 [0.0001986 / {X + α (t -25) (Bφ + x / 2)} 2.5 -0.00645 ] (4)

【0012】このように、雰囲気温度可変のクリアラン
スと粘性減衰係数C(x)の関係式が得られるので、温
度特性の良好なエアダンパ効果を得るためのαの値を得
るため、図4に示す線図を用いた。
As described above, since the relational expression between the clearance in which the ambient temperature is variable and the viscous damping coefficient C (x) is obtained, the value of α for obtaining the air damper effect with good temperature characteristics is shown in FIG. A diagram was used.

【0013】すなわち、雰囲気温度を−40(°C)か
ら25(°C)に変えた場合のαの各値に対するC
(x)の値(特性線( イ) )と、雰囲気温度を80(°
C)から25(°C)まで変えた場合のαの各値に対する
C(x)の値(特性線(ロ))とを第(4)式を用いて
得、この両曲線の変わった点におけるαの値6.4×1
-6を理想の相対差として得た。
That is, C for each value of α when the atmospheric temperature is changed from -40 (° C) to 25 (° C)
Set the value of (x) (characteristic line (a)) and the ambient temperature to 80 (°
The value of C (x) (characteristic line (b)) for each value of α in the case of changing from C) to 25 (° C) is obtained by using the equation (4), and the changing points of these two curves The value of α at 6.4 × 1
0 -6 was obtained as a relative difference of the ideal.

【0014】この場合、図2 から判るように、ケース2
の線膨張係数の値がボール3 のそれより大きくなっては
ならないから、ケース2 の材料として、線膨張係数がス
チールのボール3 の線膨張係数1.18×10-5よりも
0.64×10-5だけ大きい、1.82×10-5の材料
を使用すればよいことが判る。
In this case, as can be seen from FIG.
Since the value of the coefficient of linear expansion of the ball must not be larger than that of the ball 3, the material of Case 2 has a coefficient of linear expansion of 0.64 × more than the coefficient of linear expansion of the ball 3 of steel, 1.18 × 10 -5. only 10 -5 large, it is understood that it is sufficient to use a material of 1.82 × 10 -5.

【0015】しかし、実際には、計算通りの線膨張係数
の値を有する材料を入手するのが容易でない場合もあ
り、本実施例では、これに最も近い値として、線膨張係
数が1.13×10-5のエポキシ樹脂をケース2の材料
として用いている。
However, in practice, it may not be easy to obtain a material having a linear expansion coefficient value as calculated, and in this embodiment, the linear expansion coefficient of 1.13 is the closest value. An epoxy resin of × 10 -5 is used as a material for the case 2.

【0016】図5には、この場合における、−40(°
C)、25(°C)、80(°C)の各温度における傾
斜センサのステップ応答の様子が横軸に経過時tをと
り、縦軸に変位δをとって示されている。αの理想値
0.64×10-5に対して0.12×10-5を用いてい
るため、温度に応じた特性の変化が現れているが、その
変化は実用の範囲内である。
FIG. 5 shows that -40 (°
C), 25 (° C), and 80 (° C) at each temperature, the step response of the inclination sensor is shown with the elapsed time t on the horizontal axis and the displacement δ on the vertical axis. Since 0.12 × 10 −5 is used with respect to the ideal value of α of 0.64 × 10 −5 , a change in the characteristics depending on the temperature appears, but the change is within the practical range.

【0017】以上、本発明の一実施例について説明した
が、本発明は上記一実施例の構成に限定されず、傾斜セ
ンサの動作特性、すなわちそのダンパ係数が温度変化に
より変化するのを極力抑えるべく、ボールとケースとの
間と間隙長Xが空気の粘性係数の温度変化に応じて変化
するように両者の線膨張係数差が定められていればよ
い。
Although one embodiment of the present invention has been described above, the present invention is not limited to the structure of the above-mentioned one embodiment, and the change in the operating characteristics of the tilt sensor, that is, its damper coefficient due to temperature change is suppressed as much as possible. Therefore, the difference in linear expansion coefficient between the ball and the case may be set so that the gap length X changes depending on the temperature change of the viscosity coefficient of air.

【0018】[0018]

【発明の効果】本発明によれば、上述の如く、エアダン
パ式の傾斜センサにおいて、筒状ケースの線膨張係数と
ボールの線膨張係数との差が空気の粘性係数の温度変化
により生じる前記傾斜センサの動作特性の変化を抑える
ことができる値となっているので、温度特性の優れた動
作特性を得ることができ、その検出精度を著しく改善す
ることができる。
According to the present invention, as described above, in the air damper type inclination sensor, the difference between the linear expansion coefficient of the cylindrical case and the linear expansion coefficient of the ball is caused by the temperature change of the viscosity coefficient of air. Since the value is such that the change in the operating characteristic of the sensor can be suppressed, the operating characteristic having excellent temperature characteristics can be obtained, and the detection accuracy thereof can be remarkably improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明によるエアダンパ式傾斜センサの一実施
例を示す断面図。
FIG. 1 is a sectional view showing an embodiment of an air damper type inclination sensor according to the present invention.

【図2】図1のA−A線断面図。FIG. 2 is a sectional view taken along line AA of FIG.

【図3】図1に示す傾斜センサのダンパ係数と間隙長と
の間の関係を示す実験結果を示すグラフ。
FIG. 3 is a graph showing an experimental result showing a relationship between a damper coefficient and a gap length of the tilt sensor shown in FIG.

【図4】温度特性を最良とするために必要なボールとケ
ースとの線膨張係数の相対差を決定するための、所定の
温度差が生じた場合における線膨張係数の相対差と粘性
減衰係数との間の関係を示すグラフ。
FIG. 4 is a relative difference in linear expansion coefficient and a viscous damping coefficient when a predetermined temperature difference occurs in order to determine a relative difference in linear expansion coefficient between a ball and a case, which is necessary for obtaining the best temperature characteristics. A graph showing the relationship between and.

【図5】図1に示す傾斜センサの実施例の場合のステッ
プ応答特性の温度特性を示すグラフ。
5 is a graph showing temperature characteristics of step response characteristics in the case of the embodiment of the tilt sensor shown in FIG.

【符号の説明】[Explanation of symbols]

1 傾斜センサ 2 筒状ケース 3 ボール 5、6 センサコイル 7 マグネット X 間隙長 1 Inclination sensor 2 Cylindrical case 3 Ball 5, 6 Sensor coil 7 Magnet X Gap length

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 筒状ケース内に磁性材料から成り前記筒
状ケースの内径よりも僅かに小さい外径のボールを空気
と共に封入し、傾斜に応じて生じる前記ボールの運動状
態を前記筒状ケースの外側に設けた磁気的センサにより
検出するように構成されたエアダンパ式の傾斜センサに
おいて、前記筒状ケースの線膨張係数と前記ボールの線
膨張係数との相対差が空気の粘性係数の温度変化により
生じる前記傾斜センサの動作特性の変化を抑えることが
できる値となっていることを特徴とする傾斜センサ。
1. A cylindrical case made of a magnetic material and having an outer diameter slightly smaller than the inner diameter of the cylindrical case is enclosed together with air, and the state of motion of the ball generated according to the inclination is regulated by the cylindrical case. In an air damper type inclination sensor configured to be detected by a magnetic sensor provided outside, the relative difference between the linear expansion coefficient of the cylindrical case and the linear expansion coefficient of the ball is the temperature change of the viscosity coefficient of air. A tilt sensor having a value capable of suppressing a change in the operating characteristics of the tilt sensor caused by the above.
JP12310893A 1993-04-28 1993-04-28 Inclination sensor Pending JPH06307865A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12310893A JPH06307865A (en) 1993-04-28 1993-04-28 Inclination sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12310893A JPH06307865A (en) 1993-04-28 1993-04-28 Inclination sensor

Publications (1)

Publication Number Publication Date
JPH06307865A true JPH06307865A (en) 1994-11-04

Family

ID=14852379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12310893A Pending JPH06307865A (en) 1993-04-28 1993-04-28 Inclination sensor

Country Status (1)

Country Link
JP (1) JPH06307865A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7286178B2 (en) * 2001-09-28 2007-10-23 Sanyo Electric Co., Ltd. Digital camera having inclination sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7286178B2 (en) * 2001-09-28 2007-10-23 Sanyo Electric Co., Ltd. Digital camera having inclination sensor

Similar Documents

Publication Publication Date Title
JPH02138875A (en) Acceleration sensor
JP6705914B2 (en) Athermal hang mass accelerometer with reduced sensitivity to longitudinal temperature gradients
US4843877A (en) Acceleration sensor
JP6503142B2 (en) Thermally Insensitive Open Loop Hang Mass Accelerometer Using Differential Eddy Current Sensing
US6591688B2 (en) Load sensing by partial magnetic saturation
US20020073564A1 (en) Tilt detector
JPH06307865A (en) Inclination sensor
JPH04272528A (en) Buffering mechanism having vibration buffering device
US5451870A (en) Sensor for measuring the difference between the velocity of a cylinder and a piston in a dashpot
US4462259A (en) Pressure transducer
US5856772A (en) Low stress magnet interface
JPH0632626Y2 (en) Sensor
KR100848447B1 (en) Pressure sensor
US2966802A (en) Piston-type capacitance accelerometer
JPH10332733A (en) Acceleration sensor
US3602049A (en) Fluid accelerometer
JPH05309551A (en) Displacement detecting device
US3507158A (en) Accelerometer
US3109310A (en) Autolubricated fluid bearing force measuring instrument
JPS63109374A (en) Sensor
JPH03259783A (en) Proximity sensor
KR960011396B1 (en) Acceleration detector
JP3137158B2 (en) Shock vibrometer attenuator
JP3063502B2 (en) Relative displacement detection sensor
JPH0666830A (en) Electrodymanic acceleration sensor