JPH06307811A - Dislocation and gap sensing method - Google Patents

Dislocation and gap sensing method

Info

Publication number
JPH06307811A
JPH06307811A JP5123271A JP12327193A JPH06307811A JP H06307811 A JPH06307811 A JP H06307811A JP 5123271 A JP5123271 A JP 5123271A JP 12327193 A JP12327193 A JP 12327193A JP H06307811 A JPH06307811 A JP H06307811A
Authority
JP
Japan
Prior art keywords
order
light
diffracted light
diffraction
sets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5123271A
Other languages
Japanese (ja)
Inventor
Katsuhiro Kato
勝弘 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Soltec Co Ltd
Original Assignee
Soltec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Soltec Co Ltd filed Critical Soltec Co Ltd
Priority to JP5123271A priority Critical patent/JPH06307811A/en
Priority to PCT/JP1994/000178 priority patent/WO1994018522A1/en
Publication of JPH06307811A publication Critical patent/JPH06307811A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enhance the S/N ratio of a signal by making close the intensity of each diffracted light which is to be interfered with and which has a different order, heightening the interferential striation contrast of the diffracted light, and widening the amplitude of the beat signal. CONSTITUTION:Two sets of monochromatic light fluxes having slightly differing two wavelengths in frequencies f1 and f2 are used as an incident illumination light to be cast onto each diffraction lattice, and +1'th order and 0'th order diffracted lights and 0'th and -1'th order diffracted lights in each set are interfered so that two beat signals per set are sensed, and also the beat signal phase difference in each set is determined. The X-direction dislocation and Z-direction gap of two objects are sensed from the sum and difference of the beat signal phase difference between the sets, wherein the duty ratio (x) of the diffraction lattice should be no less than 0.5.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、半導体超微細加工装
置[SORアライナ・ステッパ、液晶ステッパ等のプロ
キシミティ(近接)]等の露光装置や感光基板に露光さ
れたパターンの重ね合せ精度を測定するレジストレーシ
ョン精密測定等において、回折格子を用いた光ヘテロダ
イン干渉法を利用する位置ずれ及びギャップ検出方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention measures the overlay accuracy of patterns exposed on an exposure device such as a semiconductor ultra-fine processing device [proximity (proximity) of SOR aligner stepper, liquid crystal stepper, etc.] and a photosensitive substrate. The present invention relates to a method for detecting a position shift and a gap using an optical heterodyne interferometry method using a diffraction grating in registration precision measurement and the like.

【0002】[0002]

【従来の技術】シンクロトロン放射光リソグラフィ用ア
ライナやフォトステッパ等の超精密位置合せにあっては
位置合せすべき2つの物体の位置ずれ検出を高精度に行
なう必要があり、そのために例えば特開昭62−261
003号や特開昭64−89323号等では、光ヘテロ
ダイン干渉光を利用した位置ずれ検出方法が提案されて
いる。
2. Description of the Related Art In ultra-precision alignment of aligners for synchrotron radiation lithography, photosteppers and the like, it is necessary to detect the positional deviation between two objects to be aligned with high accuracy. 62-261
No. 003 and Japanese Patent Laid-Open No. 64-89323 propose a position shift detection method using optical heterodyne interference light.

【0003】これらはいずれも2つの物体の各回折格子
から取り出された−1次、−1次回折光を干渉させ、こ
れらの両物体の夫々において生成されたビート信号の位
相差を検出することで両物体の位置ずれ量を測るもので
あり、ギャップ変動による強度変化の影響を受けないの
で、位置ずれ検出精度と分解能が飛躍的に向上するとし
て期待されている。
In both of these, the -1st and -1st order diffracted lights extracted from the diffraction gratings of the two objects are made to interfere with each other, and the phase difference of the beat signals generated in each of these two objects is detected. Since it measures the amount of positional deviation between both objects and is not affected by the intensity change due to the gap change, it is expected that the positional deviation detection accuracy and resolution will be dramatically improved.

【0004】事実、分解能については、ステージ制御分
解能以上の5ナノ程度の高分解能が得られた。しかし、
実用に際しては、大気の揺らぎの影響を受け位相がふら
つき、検出精度は一桁弱劣化するのが普通であった。そ
のため2光束、4光束を用いて、左右対称な光学系配置
にしてレーザ光路を光軸に近づけ、大気の揺らぎ、機械
振動や熱振動の影響を極力削減する措置が取られてい
る。
In fact, with regard to the resolution, a high resolution of about 5 nanometers, which is higher than the stage control resolution, was obtained. But,
In practical use, the phase fluctuates under the influence of atmospheric fluctuations, and detection accuracy is usually degraded by a little less than an order of magnitude. For this reason, two light fluxes and four light fluxes are used to make a symmetrical optical system arrangement so that the laser optical path is close to the optical axis, and measures to reduce the influence of atmospheric fluctuations, mechanical vibrations, and thermal vibrations are taken as much as possible.

【0005】一方X線リソグラフィ露光に関しては、実
用的なギャップ量は30μm程度と推測されているが、
より微細なパターンを転写するため、マスクとウエハを
より近接させた10μm前後のギャップによる解像度評
価が行われ超微細パターンが得られつつある。このた
め、位置合わせと共にZ方向の精密ギャップ制御が要求
され、微細加工達成のための重要なキーポイントになっ
ている。
On the other hand, regarding X-ray lithography exposure, the practical gap amount is estimated to be about 30 μm.
In order to transfer a finer pattern, resolution evaluation is performed by a gap of about 10 μm that brings a mask and a wafer closer to each other, and an ultrafine pattern is being obtained. For this reason, precise gap control in the Z direction is required together with alignment, which is an important key point for achieving fine processing.

【0006】このため、本発明者等はX方向位置ずれと
Z方向ギャップを検出できる方法の提案について行って
いる。即ち周波数のわずかに異なる(例えばf1とf2
2波長の単色2光束の組を2組、2つの物体(マスクと
ウェハ)の各回折格子に当てる入射照明光として用い、
これらの各組内の回折次数の異なる回折光(例えば周波
数f1の0次回折光と周波数f2の−1次回折光、及び周
波数f1の+1次回折光と周波数f2の0次回折光)を干
渉せしめて各組2つのビート信号を検出すると共に、こ
れらの組内におけるビート信号位相差φxz、φxz′を求
めて、これら組間のビート信号位相差の和及び/又は差
から2つの物体のX方向位置ずれ及びZ方向ギャップを
検出するというものである。
Therefore, the inventors of the present invention have proposed a method capable of detecting a positional deviation in the X direction and a gap in the Z direction. Ie slightly different frequencies (eg f 1 and f 2 )
Two sets of two monochromatic light beams of two wavelengths are used as incident illumination light that is applied to each diffraction grating of two objects (mask and wafer),
Interference of these diffraction orders of different diffracted light in each set (e.g. 0-order diffracted light of the frequency f 1 and -1-order diffracted light of the frequency f 2, and the frequency f 1 of the + 1st-order diffracted light and 0-order diffracted light of the frequency f 2) At least two beat signals in each set are detected, and beat signal phase differences φ xz and φ xz ′ within these sets are obtained, and two objects are obtained from the sum and / or difference of the beat signal phase differences between these sets. The X-direction positional deviation and the Z-direction gap are detected.

【0007】[0007]

【発明が解決しようとする課題】しかし回折次数の絶対
値が大きくなると、該回折光の強度が低下し、上記のよ
うに異なる次数の回折光を干渉せしめた場合、得られる
回折光の干渉縞コントラストが小さくなり、ビート信号
の振幅も小さくなるため、信号S/N比が低くなる。
However, when the absolute value of the diffracted order becomes large, the intensity of the diffracted light decreases, and when the diffracted lights of different orders are made to interfere with each other as described above, the interference fringes of the diffracted light obtained. Since the contrast becomes smaller and the amplitude of the beat signal also becomes smaller, the signal S / N ratio becomes lower.

【0008】本発明は従来技術の以上のような問題に鑑
み創案されたもので、干渉せしめられることになる異な
る次数の回折光の強度を接近させ、該回折光の干渉縞コ
ントラストを高め、ビート信号の振幅を広げて、信号S
/N比を向上せんとするものである。
The present invention has been made in view of the above problems of the prior art, and makes the intensities of diffracted lights of different orders to be interfered close to each other to increase the interference fringe contrast of the diffracted lights, Expand the amplitude of the signal to increase the signal S
It is intended to improve the / N ratio.

【0009】[0009]

【課題を解決するための手段】ここで本発明の構成を説
明する前に、本願における回折格子から得られる回折光
の回折次数につき予め定義しておく。
Before describing the structure of the present invention, the diffraction order of the diffracted light obtained from the diffraction grating of the present application will be defined in advance.

【0010】図1及び図2は反射回折格子の入射角・回
折角の符合の状態を示している。まず周波数fの単色光
が格子ピッチPの反射回折格子36に対し、光軸から入
射角θiの傾きを持って入射した場合、正反射となる回
折次数m、n=0の回折光を中心にそれより光軸側に回
折するものはm、n=−1、−2、−3……というよう
にマイナス次数又その反対側に回折するものはm、n=
+1、+2、+3……というようにプラス次数(これら
の回折次数に対応する回折角をθm、θnとする)にな
る。この時の入射角θiと回折角θm、θnとの関係は、
回折格子の基礎公式により、次式数1及び数2の様にな
る。
FIGS. 1 and 2 show the state of coincidence of the incident angle and the diffraction angle of the reflection diffraction grating. First, when the monochromatic light of the frequency f is incident on the reflection diffraction grating 36 having the grating pitch P with an inclination of the incident angle θi from the optical axis, the diffracted light of the diffraction order m, n = 0, which is specular reflection, is centered Those diffracting toward the optical axis side are m, n = -1, -2, -3, and so on, and those diffracting to the minus order or the opposite side are m and n =
+1, +2, +3, etc. are positive orders (the diffraction angles corresponding to these diffraction orders are θm and θn). The relationship between the incident angle θi and the diffraction angles θm and θn at this time is
According to the basic formula of the diffraction grating, the following equations 1 and 2 are obtained.

【0011】[0011]

【数1】 sinθm−sinθi=m・λ/P[Equation 1] sin θ m −sin θ i = m · λ / P

【0012】[0012]

【数2】 sinθn−sinθi=n・λ/P[Equation 2] sin θ n −sin θ i = n · λ / P

【0013】以上の定義を基に説明すると、本発明は、
周波数のわずかに異なる2波長の単色2光束の組を2
組、2つの物体の各回折格子に当てる入射照明光として
用い、これらの各組内の回折次数の異なる回折光を干渉
せしめて各組2つのビート信号を検出すると共に、これ
らの組内におけるビート信号位相差を求めて、これら組
間のビート信号位相差の和及び/又は差から2つの物体
のX方向位置ずれ及びZ方向ギャップを検出する位置ず
れ及びギャップ検出方法において、前記回折格子のデュ
ーティ比x[回折格子のピッチがP、格子間の開口幅が
sの場合に、(P−s)/Pで得られる値]につき、干
渉せしめられることになる異なる回折次数の回折光の強
度を接近せしめ、得られる回折光の干渉縞コントラスト
を高めることができる比xに調整することを基本的特徴
としている。
Explaining on the basis of the above definitions, the present invention is
Two sets of two monochromatic two light fluxes with slightly different frequencies
The two sets of two objects are used as incident illumination light that strikes each diffraction grating, and the diffracted lights of different diffraction orders in each set interfere with each other to detect the beat signals of the two sets and beats in these sets. In the position shift / gap detection method for detecting the signal phase difference and detecting the X direction position shift and the Z direction gap of the two objects from the sum and / or difference of the beat signal phase differences between the sets, the duty of the diffraction grating is used. For the ratio x [value obtained by (P−s) / P when the pitch of the diffraction grating is P and the aperture width between the gratings is s], the intensity of diffracted light of different diffraction orders to be interfered is calculated. The basic feature is to bring them closer to each other and adjust to a ratio x that can enhance the interference fringe contrast of the obtained diffracted light.

【0014】以上の方法で、各組内の干渉せしめる回折
光が、+1次と0次、及び0次と−1次である場合に、
前記回折格子のデューティ比xは0.5以上とするのが
良い。
By the above method, when the diffracted lights causing interference in each set are the + 1st and 0th orders and the 0th and -1st orders,
The duty ratio x of the diffraction grating is preferably 0.5 or more.

【0015】また前記回折格子のデューティ比につき、
0.5以上であって、回折光次数における絶対値で3次
又は4次が欠如次数となる比を選択することも後述の実
験の結果から望ましいものと言える。
With respect to the duty ratio of the diffraction grating,
It can be said that it is also desirable from the results of the experiments described later to select a ratio that is 0.5 or more and the absolute value in the diffracted light order is the third order or the fourth order that is the missing order.

【0016】[0016]

【作用】2つの物体(例えばウェハとマスク)上に等間
隔P(ピッチ)で隣合って並びその間に開口部sを持つ
複数の回折格子に、波長λの平面波を入射する。ここで
入射光、回折光の方向余弦を夫々l0、lとし、Nを回
折格子数とすると、回折光の強度I(l−l0)は、次
式数3で表されるようになり、Pとsによって決定され
ることになる。
A plane wave having a wavelength λ is incident on a plurality of diffraction gratings arranged adjacent to each other on two objects (for example, a wafer and a mask) at equal intervals P (pitch) and having an opening s therebetween. Here, if the direction cosines of the incident light and the diffracted light are l 0 and l, respectively, and N is the number of diffraction gratings, the intensity I (l−l 0 ) of the diffracted light is expressed by the following equation 3. , P and s.

【0017】[0017]

【数3】 [Equation 3]

【0018】ここで上式の各項の意味を具体的に説明す
る。図3乃至図5の各(c)には上式から得られるデュ
ーティ比xが0.5、0.66、0.75の3種類の回
折光強度分布が示されている。ここでピッチ長Pを固定
したまま、開口部sを狭くして行くとm=0、m=1次
の強度差が接近することが解る。上式の各項の内容は以
下のようになる。
Here, the meaning of each term in the above equation will be specifically described. Each of (c) in FIGS. 3 to 5 shows three types of diffracted light intensity distributions in which the duty ratio x obtained from the above equation is 0.5, 0.66, and 0.75. Here, it is understood that when the pitch length P is fixed and the opening s is narrowed, the intensity differences of m = 0 and m = 1 are close to each other. The contents of each term in the above equation are as follows.

【0019】右辺第2項目は、図3乃至図5の各(a)
で示す関数となり、N個(この例では、N=10)の開
口からの複数の回折光が干渉した結果生じた干渉項であ
る。ここで回折格子数Nを増やすと主極大の強度がN2
で高まり、強度の広がりを示す半値幅は狭まり、サイド
にある副極大は、Nを増やすと無視できる程度になる。
回折光主極大の方向余弦lはP(ピッチ)のみで決定さ
れる。ここでは規格化のためNで割った。この関数は±
mπに主極大が来る。
The second item on the right side is (a) in each of FIGS. 3 to 5.
And is an interference term generated as a result of interference of a plurality of diffracted lights from N (N = 10 in this example) apertures. If the number of diffraction gratings N is increased, the intensity of the main maximum becomes N 2
, The half width showing the spread of strength becomes narrower, and the submaximum on the side becomes negligible when N is increased.
The direction cosine 1 of the main maximum of the diffracted light is determined only by P (pitch). Here, it is divided by N for standardization. This function is ±
The main maximum comes at mπ.

【0020】これに対して右辺第3項目は図3乃至図5
の各(b)で示すような関数となり、主極大と副極大か
らなる極めて緩やかな干渉曲線を示す。この項はデュー
ティ比xで決まる開口部sの単一回折格子による強度分
布を示し、単位開口部に依って決定される。つまり各次
数の回折光の強度の配分はこの項で決定する。
On the other hand, the third item on the right side is shown in FIGS.
(B), and shows an extremely gentle interference curve having a main maximum and a sub-maximum. This term represents the intensity distribution of a single diffraction grating of the opening s determined by the duty ratio x, and is determined by the unit opening. In other words, the distribution of the intensity of diffracted light of each order is determined by this term.

【0021】更にこれらの各図(c)で示される各次数
の回折強度分布は上式から(a)と(b)の積で表さ
れ、(b)により回折次数方向の強度配分が決まる。こ
こでmは回折次数を示し、方向余弦lの主極大の方向は
次式数4のようになる。
Furthermore, the diffraction intensity distribution of each order shown in each of these figures (c) is expressed by the product of (a) and (b) from the above equation, and the intensity distribution in the diffraction order direction is determined by (b). Here, m represents the diffraction order, and the direction of the main maximum of the direction cosine 1 is as shown in the following expression 4.

【0022】[0022]

【数4】 [Equation 4]

【0023】入射角をθi、回折角をθmとするとl=s
inθm、l0=sinθiと置けるので上式は見慣れた
回折基礎公式になる。
When the incident angle is θ i and the diffraction angle is θ m , l = s
Since in θ m and l 0 = sin θ i can be set, the above formula becomes a familiar diffraction basic formula.

【0024】このように開口幅sを狭くしていく(即ち
デューティ比xを大きくしていく)と、図3乃至図5か
ら明らかなように、m=0、m=±1の強度差が接近
し、得られる回折光のコントラストが大きくなる。
As the opening width s is made narrower (that is, the duty ratio x is made larger) in this way, as is apparent from FIGS. 3 to 5, the intensity difference of m = 0 and m = ± 1 becomes large. As they approach each other, the contrast of the obtained diffracted light increases.

【0025】[0025]

【実施例】以下本発明の一実施例を説明する。本発明者
等はピッチPは一定であるが開口幅sが夫々に異なって
おり、デューティ比xが相違している回折格子の設けら
れたマスクM及びウェハWを用意し、周波数がわずかに
異なる単色2光束(周波数f1とf2)を図6に示すよう
な配置構成にしてこれらの回折格子に入射照明させ、そ
れによって発生する回折光を干渉せしめてビート信号を
検出した時の回折光強度の比較実験を行った。尚、同図
において回折格子36から後面焦点距離Fの位置にある
前記対物レンズ35により回折格子36の回折格子像が
得られる面を瞳面EP70と呼ぶ(この面は回折格子3
6のフーリエ変換像を得た面なのでフーリエ面とも呼ば
れる)。そしてこの瞳面EP70は対物レンズ35の前
面焦点距離Fの位置にある。
EXAMPLE An example of the present invention will be described below. The present inventors prepared a mask M and a wafer W provided with diffraction gratings having a constant pitch P but different aperture widths s, and different duty ratios x, and the frequencies are slightly different. Diffraction light when a beat signal is detected by illuminating these diffraction gratings by arranging monochromatic two light fluxes (frequency f 1 and f 2 ) as shown in FIG. A strength comparison experiment was conducted. In the figure, the surface on which the diffraction grating image of the diffraction grating 36 is obtained by the objective lens 35 located at the rear focal length F from the diffraction grating 36 is called a pupil plane EP70 (this surface is the diffraction grating 3).
It is also called the Fourier plane because it is the plane on which the Fourier transform image of 6 was obtained). The pupil plane EP70 is located at the front focal length F of the objective lens 35.

【0026】まず図6における回折格子のデューティ比
xが0.66の場合における検出原理を説明する。即ち
光軸方向からθ1内側入射角、θ2外側入射角の角度差を
もたせ、2光束を光軸に対して左右対称位置に2組とし
た入射配置とする。θ=(θ12)の角度差は、±1次
の回折角度と等しい角度である。まず光軸方向から左シ
フトした2光束f1、f2の組は、この図では光軸に対し
て左側にF・sinθ1、F・sinθ2離れた位置で、
2光束の間隔は(−1、−2)次、(0、−1)次、
(+1、0)次、(+2、+1)次光ヘテロダイン干渉
が得られる間隔に調整されている。
First, the detection principle when the duty ratio x of the diffraction grating in FIG. 6 is 0.66 will be described. That is, there is an angle difference between the θ 1 inner incident angle and the θ 2 outer incident angle with respect to the optical axis direction, and the two light fluxes are arranged in two sets symmetrically with respect to the optical axis. The angle difference of θ = (θ 1 −θ 2 ) is an angle equal to the ± first-order diffraction angle. First, a pair of two light fluxes f 1 and f 2 left-shifted from the optical axis direction is at a position apart from the optical axis by F · sin θ 1 and F · sin θ 2 on the left side in this figure,
The intervals of the two light fluxes are (-1, -2) order, (0, -1) order,
The intervals are adjusted to obtain the (+1, 0) order and (+2, +1) order optical heterodyne interference.

【0027】瞳面EP70では一度集光(ビームウエス
ト)された状態となって入射され、対物レンズ35によ
り回折格子36に照射される。この入射照明光には強度
分布の広がりがあるが、その強度分布の中心がビームウ
エスト位置になる。その結果図6の光軸に対し入射方向
に対称な位置、即ちもう一方(斜線)の2光束入射位置
に、それぞれ正反射(0次)回折光が取り出されること
になる。その回折光の像は対物レンズ35の瞳面EP7
0上でフーリエ変換像に変換される。このf1、f2の周
波数成分の瞳面上の回折光の強度分布を図6(b)の下段
に示す。同図に示される様に3次が欠除次数となり、0
次と±1次、±2次の強度分布が光軸から右にシフトし
た位置に並んでいる。
At the pupil plane EP70, the light is once converged (beam waist) and is incident, and the objective lens 35 irradiates the diffraction grating 36. Although the incident illumination light has a broadened intensity distribution, the center of the intensity distribution is the beam waist position. As a result, specularly reflected (0th-order) diffracted light is extracted at a position symmetrical with respect to the optical axis of FIG. 6 in the incident direction, that is, at the other (shaded) two-beam incident position. The image of the diffracted light is the pupil plane EP7 of the objective lens 35.
It is converted into a Fourier transform image on 0. The intensity distribution of the diffracted light on the pupil plane of the frequency components of f 1 and f 2 is shown in the lower part of FIG. 6 (b). As shown in the figure, the third order is the missing order, and
The next, ± 1st, and ± 2nd-order intensity distributions are arranged at positions shifted to the right from the optical axis.

【0028】同様に斜線で示す右方向からのf1、f2
波数成分の2つのレーザ光は同図では光軸右側にF・s
inθ1、F・sinθ2離れた位置にある瞳面EP70
で一度集光され、対物レンズ35により回折格子36に
照射される。その結果光軸に対しこの入射方向に対称な
位置に、f1、f2周波数成分の正反射(0次)回折光が
取り出されることになり、瞳面EP70上でフーリエ変
換像に変換される。この強度分布を図6(b)の上段に示
す。同図に示される様に、0次と±1次、±2次の強度
分布が光軸から左にシフトした位置に並んでいる。
Similarly, two laser beams of f 1 and f 2 frequency components from the right direction shown by the diagonal lines are F · s on the right side of the optical axis in FIG.
pupil surface EP70 at a position separated by inθ 1 and F · sin θ 2
Then, the light is condensed once and is irradiated onto the diffraction grating 36 by the objective lens 35. As a result, the regular reflection (0th order) diffracted light of the f 1 and f 2 frequency components is extracted at a position symmetrical with respect to the optical axis in this incident direction, and is converted into a Fourier transform image on the pupil plane EP70. . This intensity distribution is shown in the upper part of FIG. As shown in the figure, the 0th order, ± 1st order, and ± 2nd order intensity distributions are arranged at positions shifted left from the optical axis.

【0029】前述の場合と同様、図6(c)に各回折光
の干渉ビート光を視覚化して○と斜線○で示す。かくし
て1組のf1、f2周波数成分の回折次数m=+1、n=
−1の回折光とf2、f1周波数成分の回折次数n、m=
0の回折光との光ヘテロダイン干渉縞と、もう1組のf
1、f2周波数成分の回折次数m、n=0の回折光と
2、f1周波数成分の回折次数n=−1、m=+1の回
折光との光ヘテロダイン干渉縞が同時に、しかも光軸に
対して左右対称な位置に結合混入することなく得られ
る。尚ここでは、(−1、−2)次の干渉光は強度が弱
いので受光しないことにした。
As in the case described above, the interference beat light of each diffracted light is visualized in FIG. 6 (c) and is indicated by a circle and a shaded circle. Thus, a set of diffraction orders of f 1 , f 2 frequency components m = + 1, n =
−1 diffracted light and diffraction orders of frequency components of f 2 and f 1 n, m =
Optical heterodyne interference fringe with diffracted light of 0 and another set of f
1, f 2 diffraction order m of the frequency components, n = 0 of the diffracted light and f 2, f 1 diffraction order n = -1 frequency components, optical heterodyne interference fringes of the diffracted light of m = + 1 at the same time, yet light It can be obtained without being mixed in the position symmetrical with respect to the axis. Note that here, the interference light of the (-1, -2) th order is not received because it has low intensity.

【0030】更に上記両回折光の干渉で得られる|f1
−f2|の光ヘテロダインビート信号の干渉縞が得られ
る位置を図6(c)に同様に示す。
Further, | f 1 obtained by the interference of the above-mentioned diffracted lights
The position where the interference fringes of the optical heterodyne beat signal of −f 2 | are obtained is also shown in FIG. 6 (c).

【0031】以上のような実験を繰り返し、開口幅sが
回折強度に及ぼす影響を調べた。図7は複数回折格子の
開口部sの割合による回折光強度変化を示した図であ
る。図上、強度比を示す縦軸は対数で表示し、横軸はデ
ューティ比x[x=(P−s)/P]とした。回折光の
強度は、m≠0、m=0に対しては次式数5及び数6の
ようになる。
The above experiment was repeated to examine the influence of the opening width s on the diffraction intensity. FIG. 7 is a diagram showing changes in the diffracted light intensity depending on the ratio of the openings s of the plurality of diffraction gratings. In the figure, the vertical axis indicating the intensity ratio is logarithmic, and the horizontal axis is the duty ratio x [x = (P−s) / P]. The intensity of the diffracted light is expressed by the following equations 5 and 6 for m ≠ 0 and m = 0.

【0032】[0032]

【数5】 [Equation 5]

【0033】[0033]

【数6】 [Equation 6]

【0034】同図にそれぞれ次数絶対値m=0、1、
2、3、4の場合の回折光の強度につき各デューティ比
xにおける変化を示した。m=0は(1−x)2で減少
する。m=1ではデューティ比xが0.5で最大とな
る。またデューティ比x=0.66では、m=3が欠如
次数となる。同じくデューティ比x=0.75は、4次
が欠如次数となり、共に開口部sが狭くなることにより
0次と1次の回折光強度差が狭まる。また実際のプロセ
スでデューティ比xが変化すると干渉光のコントラスト
変化が起こる。
In the figure, the absolute value of the order m = 0, 1,
The change in each duty ratio x regarding the intensity of the diffracted light in the cases of 2, 3, and 4 is shown. m = 0 decreases with (1-x) 2 . When m = 1, the maximum duty ratio x is 0.5. Further, when the duty ratio is x = 0.66, m = 3 is the missing order. Similarly, when the duty ratio is x = 0.75, the fourth order is an absent order, and the opening s is narrowed, so that the diffracted light intensity difference between the 0th order and the 1st order is narrowed. Further, when the duty ratio x changes in the actual process, the contrast of the interference light changes.

【0035】[0035]

【発明の効果】以上詳述した本発明の位置ずれ及びギャ
ップ検出方法によれば、アライメント時に検出される干
渉回折光のコントラストが上がり、アライメント精度を
高めることが可能となる。また光ヘテロダインは、位相
を検出するので強度変調に強いが、振幅変調があるとギ
ャップ方向の高精度な位相検出は困難になる。しかし開
口部sを狭くした回折格子を用いる本発明では、第1の
物体を透過する光束の光量が少なくなり2つの物体間に
発生する多重干渉の影響が低減できるので、ギャップ検
出についても有利である。
According to the position shift and gap detection method of the present invention described in detail above, the contrast of the interference diffracted light detected at the time of alignment is increased, and the alignment accuracy can be improved. Further, the optical heterodyne is strong in intensity modulation because it detects the phase, but amplitude modulation makes it difficult to detect the phase in the gap direction with high accuracy. However, in the present invention using the diffraction grating with the narrowed opening s, the light amount of the light flux passing through the first object is reduced and the effect of multiple interference generated between the two objects can be reduced, which is also advantageous for gap detection. is there.

【図面の簡単な説明】[Brief description of drawings]

【図1】光軸左側入射時の回折光回折次数の説明図であ
る。
FIG. 1 is an explanatory diagram of diffraction orders of diffracted light when incident on the left side of the optical axis.

【図2】同じく光軸右側入射時の回折光回折次数の説明
図である。
FIG. 2 is an explanatory diagram of a diffraction order of diffracted light when the light is incident on the right side of the optical axis.

【図3】デューティ比xが0.5の時の回折光強度分布
を示すグラフである。
FIG. 3 is a graph showing a diffracted light intensity distribution when the duty ratio x is 0.5.

【図4】デューティ比xが0.66の時の回折光強度分
布を示すグラフである。
FIG. 4 is a graph showing a diffracted light intensity distribution when the duty ratio x is 0.66.

【図5】デューティ比xが0.75の時の回折光強度分
布を示すグラフである。
FIG. 5 is a graph showing a diffracted light intensity distribution when the duty ratio x is 0.75.

【図6】デューティ比xが0.66の瞳面光軸両側にF
・sinθ離れた間隔のアライメント2光束光を入射さ
せ、対物レンズにより回折格子に該光の照射を行なった
時の光ヘテロダイン干渉モデルを示す検出原理説明図で
ある。
FIG. 6 shows F on both sides of the pupil plane optical axis with a duty ratio x of 0.66.
FIG. 5 is an explanatory diagram of a detection principle showing an optical heterodyne interference model when alignment two-flux light beams spaced apart by sin θ are incident and the diffraction grating is irradiated with the light by an objective lens.

【図7】複数の回折格子の開口部sの割合による回折光
強度変化を示すグラフである。
FIG. 7 is a graph showing changes in diffracted light intensity depending on the ratio of openings s of a plurality of diffraction gratings.

【符号の説明】[Explanation of symbols]

35 対物レンズ 36 回折格子 70 瞳面EP M マスク W ウェハ 35 Objective Lens 36 Diffraction Grating 70 Pupillary EPM Mask W Wafer

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成6年4月20日[Submission date] April 20, 1994

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0006[Correction target item name] 0006

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0006】このため、本発明者等はX方向位置ずれと
Z方向ギャップを検出できる方法の提案について行って
いる。即ち周波数のわずかに異なる(例えばf1とf2
2波長の単色2光束の組を2組、2つの物体(マスクと
ウェハ)の各回折格子に当てる入射照明光として用い、
これらの各組内の回折次数の異なる回折光(例えば周波
数f1の0次回折光と周波数f2の−1次回折光、及び周
波数f1の+1次回折光と周波数f2の0次回折光)を干
渉せしめて各組2つのビート信号を検出すると共に、こ
れらの組内におけるビート信号位相変動量Δφxz、Δφ
xzを求めて、これら組間のビート信号位相変動量の和
及び/又は差から2つの物体のX方向位置ずれ及びZ方
向ギャップを検出するというものである。
Therefore, the inventors of the present invention have proposed a method capable of detecting a positional deviation in the X direction and a gap in the Z direction. Ie slightly different frequencies (eg f 1 and f 2 )
Two sets of two monochromatic light beams of two wavelengths are used as incident illumination light that is applied to each diffraction grating of two objects (mask and wafer),
Interference of these diffraction orders of different diffracted light in each set (e.g. 0-order diffracted light of the frequency f 1 and -1-order diffracted light of the frequency f 2, and the frequency f 1 of the + 1st-order diffracted light and 0-order diffracted light of the frequency f 2) At least two beat signals in each set are detected, and the beat signal phase variations Δφ xz and Δφ in these sets are detected.
xz ' is obtained, and the X-direction positional shift and the Z-direction gap of the two objects are detected from the sum and / or difference of the beat signal phase fluctuation amounts between these sets.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0013[Correction target item name] 0013

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0013】以上の定義を基に説明すると、本発明は、
周波数のわずかに異なる2波長の単色2光束の組を2
組、2つの物体の各回折格子に当てる入射照明光として
用い、これらの各組内の回折次数の異なる回折光を干渉
せしめて各組2つのビート信号を検出すると共に、これ
らの組内におけるビート信号位相変動量を求めて、これ
ら組間のビート信号位相変動量の和及び/又は差から2
つの物体のX方向位置ずれ及びZ方向ギャップを検出す
る位置ずれ及びギャップ検出方法において、前記回折格
子のデューティ比x[回折格子のピッチがP、格子間の
開口幅がsの場合に、(P−s)/Pで得られる値]に
つき、干渉せしめられることになる異なる回折次数の回
折光の強度を接近せしめ、得られる回折光の干渉縞コン
トラストを高めることができる比xに調整することを基
本的特徴としている。
Explaining on the basis of the above definitions, the present invention is
Two sets of two monochromatic two light fluxes with slightly different frequencies
The two sets of two objects are used as incident illumination light that strikes each diffraction grating, and the diffracted lights of different diffraction orders in each set interfere with each other to detect the beat signals of the two sets and beats in these sets. The signal phase fluctuation amount is obtained, and 2 is calculated from the sum and / or difference of the beat signal phase fluctuation amounts between these pairs.
In a positional shift and gap detection method for detecting a positional shift in the X direction and a gap in the Z direction of two objects, when the duty ratio x of the diffraction grating is [Pitch of diffraction grating is P and aperture width between gratings is s, (P -S) / P]], the intensities of diffracted lights of different diffraction orders to be caused to interfere are brought close to each other and adjusted to a ratio x capable of enhancing the interference fringe contrast of the obtained diffracted lights. It is a basic feature.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 周波数のわずかに異なる2波長の単色2
光束の組を2組、2つの物体の各回折格子に当てる入射
照明光として用い、これらの各組内の回折次数の異なる
回折光を干渉せしめて各組2つのビート信号を検出する
と共に、これらの組内におけるビート信号位相差を求め
て、これら組間のビート信号位相差の和及び/又は差か
ら2つの物体のX方向位置ずれ及びZ方向ギャップを検
出する位置ずれ及びギャップ検出方法において、前記回
折格子のデューティ比につき、干渉せしめられることに
なる異なる回折次数の回折光の強度を接近せしめ、得ら
れる回折光の干渉縞コントラストを高めることができる
比に調整することを特徴とする位置ずれ及びギャップ検
出方法。
1. A monochromatic 2 of two wavelengths having slightly different frequencies.
Two sets of light fluxes are used as incident illumination light that strikes the diffraction gratings of the two objects, and diffracted lights of different diffraction orders in these sets are made to interfere with each other to detect the beat signals of the two sets. In the position deviation and gap detection method, the beat signal phase difference in the set of the two objects is obtained, and the X direction position deviation and the Z direction gap of the two objects are detected from the sum and / or the difference of the beat signal phase differences between the groups. Positional deviation characterized by adjusting the duty ratio of the diffraction grating so that the intensities of diffracted lights of different diffraction orders to be interfered are made close to each other and the interference fringe contrast of the obtained diffracted light is enhanced. And a gap detection method.
【請求項2】 請求項第1項記載の位置ずれ及びギャッ
プ検出方法において、各組内の干渉せしめる回折光が、
+1次と0次、及び0次と−1次である場合に、前記回
折格子のデューティ比を0.5以上とすることを特徴と
する請求項第1項記載の位置ずれ及びギャップ検出方
法。
2. The position shift and gap detection method according to claim 1, wherein the diffracted light causing interference in each set is:
The position shift and gap detection method according to claim 1, wherein the duty ratio of the diffraction grating is set to 0.5 or more when the order is + 1st order and 0th order, and 0th order and -1st order.
【請求項3】 請求項第1項記載の位置ずれ及びギャッ
プ検出方法において、前記回折格子のデューティ比につ
き、0.5以上であって、回折光次数における絶対値で
3次又は4次が欠如次数となる比を選択することを特徴
とする請求項第1項記載の位置ずれ及びギャップ検出方
法。
3. The position shift and gap detection method according to claim 1, wherein the duty ratio of the diffraction grating is 0.5 or more, and the absolute value of the diffracted light order lacks the third or fourth order. The position shift and gap detection method according to claim 1, wherein a ratio that is an order is selected.
JP5123271A 1993-02-15 1993-04-28 Dislocation and gap sensing method Pending JPH06307811A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP5123271A JPH06307811A (en) 1993-04-28 1993-04-28 Dislocation and gap sensing method
PCT/JP1994/000178 WO1994018522A1 (en) 1993-02-15 1994-02-07 Method for detecting positional shift and gap

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5123271A JPH06307811A (en) 1993-04-28 1993-04-28 Dislocation and gap sensing method

Publications (1)

Publication Number Publication Date
JPH06307811A true JPH06307811A (en) 1994-11-04

Family

ID=14856438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5123271A Pending JPH06307811A (en) 1993-02-15 1993-04-28 Dislocation and gap sensing method

Country Status (1)

Country Link
JP (1) JPH06307811A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007292735A (en) * 2006-03-21 2007-11-08 Asml Netherlands Bv Displacement measuring system, lithographic apparatus, and device manufacturing method
US9595447B2 (en) 2014-02-18 2017-03-14 Canon Kabushiki Kaisha Detection apparatus, imprint apparatus, and method of manufacturing products
US9910363B2 (en) 2015-09-09 2018-03-06 Toshiba Memory Corporation Measurement apparatus, exposure apparatus, measurement method, and recording medium

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007292735A (en) * 2006-03-21 2007-11-08 Asml Netherlands Bv Displacement measuring system, lithographic apparatus, and device manufacturing method
US8390820B2 (en) 2006-03-21 2013-03-05 Asml Netherlands B.V. Displacement measurement system having a prism, for displacement measurement between two or more gratings
US9595447B2 (en) 2014-02-18 2017-03-14 Canon Kabushiki Kaisha Detection apparatus, imprint apparatus, and method of manufacturing products
US9910363B2 (en) 2015-09-09 2018-03-06 Toshiba Memory Corporation Measurement apparatus, exposure apparatus, measurement method, and recording medium

Similar Documents

Publication Publication Date Title
EP0449582B1 (en) Measuring method and apparatus
JP3187093B2 (en) Position shift measuring device
US5576829A (en) Method and apparatus for inspecting a phase-shifted mask
US5184196A (en) Projection exposure apparatus
JPH039403B2 (en)
JPH0642448B2 (en) Alignment method
EP0652487A1 (en) Rotational deviation detecting method and system using a periodic pattern
JP3395798B2 (en) Position detection method and apparatus, and exposure method and apparatus
JP3029133B2 (en) Measurement method and device
JPH06307811A (en) Dislocation and gap sensing method
JP2808619B2 (en) Positioning apparatus, exposure apparatus, and element manufacturing method
JPH04361103A (en) Method and apparatus for detecting relative position
JP3270206B2 (en) Position shift and gap detection method
US5796114A (en) Exposure apparatus and method for positioning with a high accuracy
JPH083404B2 (en) Alignment method
JPH01107102A (en) Optical automatic positioning apparatus
JPH06241728A (en) Detection method for position deviation and gap
JP2548068B2 (en) Position shift and gap detection method
JP2691298B2 (en) Positioning device and exposure apparatus including the same
JPH06147827A (en) Positional shift detecting method
JP2677662B2 (en) Relative alignment method and device
JPS6378004A (en) Positioning method and exposing device
JPH083408B2 (en) Gap setting method
JP2883385B2 (en) Alignment method and their devices
JP2610300B2 (en) Positioning method

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020205