JPH06307477A - Energy absorbing member - Google Patents

Energy absorbing member

Info

Publication number
JPH06307477A
JPH06307477A JP11527093A JP11527093A JPH06307477A JP H06307477 A JPH06307477 A JP H06307477A JP 11527093 A JP11527093 A JP 11527093A JP 11527093 A JP11527093 A JP 11527093A JP H06307477 A JPH06307477 A JP H06307477A
Authority
JP
Japan
Prior art keywords
energy absorbing
absorbing member
reinforcing fiber
layers
energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11527093A
Other languages
Japanese (ja)
Other versions
JP3362447B2 (en
Inventor
Yukitane Kimoto
幸胤 木本
Kenji Mitsuyasu
研二 光安
Hiroshi Ochi
寛 越智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP11527093A priority Critical patent/JP3362447B2/en
Publication of JPH06307477A publication Critical patent/JPH06307477A/en
Application granted granted Critical
Publication of JP3362447B2 publication Critical patent/JP3362447B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Vibration Dampers (AREA)

Abstract

PURPOSE:To absorb high energy efficiently with a compound material of resin and reinforced fiber provided with at least three layers of reinforced fiber layers, by disposing the reinforced fiber which is laid on an inner layer in one direction and reinforced fiber fabrics on an outer layer. CONSTITUTION:Compound materials 45a, b provided with reinforced fiber layers 42a, b laid in one direction are disposed at the central side in the thickness direction of a cylindrical energy absorbing member 41, and compound material layers 46a, b provided with reinforced fiber fabrics 43a, b are disposed on the outmost layer in the member thickness direction. When the member 41 tears a compressive load P in a direction along an energy absorbing shaft 44 of the member 41, the member 41 attempts to open so as to tear in the thickness direction at the end part. Tensile strength A works upon the inside surface side of the compound material layers 45a, b, and compression strength works on the outside surface side of the compound material layers 46a, b. Since the compound material layers 45a, b include the reinforced fiber layers 42a, b, the tensile strength in the laid direction is high, so it is possible to absorb a large amount of energy.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、エネルギー吸収部材に
関し、とくに、樹脂と補強繊維との複合材料からなる、
衝撃エネルギー吸収部材の構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an energy absorbing member, and in particular, it is composed of a composite material of resin and reinforcing fibers,
The present invention relates to the structure of an impact energy absorbing member.

【0002】[0002]

【従来の技術】たとえば、航空機の座席周り等や、自動
車の座席周り、バンパー周り、各種構造部材に、衝撃エ
ネルギーを吸収するエネルギー吸収部材が用いられる
(特開昭60−109630号公報、特開昭62−17
438号公報等)。このエネルギー吸収部材には、衝撃
エネルギーを良好に吸収できる性能の他、一般に軽量、
高剛性であることが要求されることから、樹脂と補強繊
維との複合材料、いわゆる繊維強化プラスチック(以
下、FRPと言うこともある。)、中でも炭素繊維強化
プラスチック(以下、CFRPと言うこともある。)が
適しているとされている。このようなエネルギー吸収部
材においては、エネルギー吸収部材のある部位、たとえ
ば部材端部を起点に、局部破壊を生じさせ、その局部破
壊を利用してエネルギーを吸収するエネルギー吸収メカ
ニズムが考えられる。
2. Description of the Related Art For example, an energy absorbing member that absorbs impact energy is used around the seat of an aircraft, around the seat of an automobile, around a bumper, and various structural members (Japanese Patent Laid-Open No. 60-109630). 62-17
No. 438, etc.). In addition to the ability to absorb impact energy well, this energy absorbing member is generally lightweight,
Since high rigidity is required, a composite material of a resin and reinforcing fibers, so-called fiber reinforced plastic (hereinafter sometimes referred to as FRP), especially carbon fiber reinforced plastic (hereinafter also referred to as CFRP) There is) is said to be suitable. In such an energy absorbing member, an energy absorbing mechanism may be considered in which local destruction is caused from a certain portion of the energy absorbing member, for example, a member end portion, and the energy is absorbed by utilizing the local destruction.

【0003】[0003]

【発明が解決しようとする課題】ところが、従来の樹脂
と補強繊維との複合材料からなるエネルギー吸収部材
は、エネルギー吸収能力に未だ不十分な面があるととも
に、たとえば上記のように部材端部に破壊を生じさせて
エネルギーを吸収するような場合、その破壊の動作が安
定せず、目標とするエネルギー吸収性能が安定して得ら
れにくいという問題があり、十分に実用に供されていな
いのが実情である。
However, the conventional energy absorbing member made of the composite material of the resin and the reinforcing fiber has a surface with insufficient energy absorbing ability and, for example, as described above, the end portion of the member is not formed. In the case of causing destruction and absorbing energy, there is a problem that the operation of the destruction is not stable and the target energy absorption performance is difficult to obtain stably, and it has not been put to practical use sufficiently. It's a reality.

【0004】本発明は、エネルギー吸収のための部材破
壊の動作を、予定した所定の動作で円滑に開始、進行さ
せることのできるエネルギー吸収部材の構造を提供し、
高いエネルギーを効率よく吸収できるようにするととも
に、性能の安定した実用性の高いエネルギー吸収部材を
提供することを目的とする。
The present invention provides a structure of an energy absorbing member capable of smoothly starting and advancing a member breaking operation for energy absorption by a predetermined predetermined operation,
An object of the present invention is to provide a highly practical energy-absorbing member with stable performance while efficiently absorbing high energy.

【0005】[0005]

【課題を解決するための手段】この目的に沿う本発明の
エネルギー吸収部材は、少なくとも3層の補強繊維層を
有する、樹脂と補強繊維との複合材料からなり、内層に
は一方向に引き揃えられた補強繊維が、外層には補強繊
維織物が、それぞれ配設されていることを特徴とするも
のからなる。
The energy absorbing member of the present invention for this purpose comprises a composite material of resin and reinforcing fibers having at least three reinforcing fiber layers, and is unidirectionally aligned in the inner layer. The reinforcing fibers thus obtained are characterized in that reinforcing fiber woven fabrics are respectively arranged in the outer layers.

【0006】上記一方向に引き揃えられた補強繊維(以
下、UD補強繊維と言うこともある。)は、エネルギー
吸収部材のエネルギー吸収方向軸に対し、0°±60°
の範囲に配列される。あまり大きな角度の配列では、圧
縮方向に作用する衝撃エネルギーの吸収に対し、補強繊
維が有効に活用されなくなる。
The reinforcing fibers aligned in one direction (hereinafter also referred to as UD reinforcing fibers) are 0 ° ± 60 ° with respect to the energy absorbing direction axis of the energy absorbing member.
It is arranged in the range of. If the angle is too large, the reinforcing fibers are not effectively used for absorbing the impact energy acting in the compression direction.

【0007】また、外層側に配設される補強繊維織物の
形態は、とくに限定されないが、少なくとも織物のたて
糸又はよこ糸が、上記同様、エネルギー吸収方向軸に対
し、0°±60°の範囲に配列されていることが好まし
い。
The form of the reinforcing fiber woven fabric arranged on the outer layer side is not particularly limited, but at least the warp yarn or the weft yarn of the woven fabric is in the range of 0 ° ± 60 ° with respect to the energy absorption direction axis as described above. It is preferably arranged.

【0008】本発明のエネルギー吸収部材においては、
上記のようなUD補強繊維層が部材厚さ方向内層側に配
設され、補強繊維織物が部材厚さ方向外層側に配設され
る。たとえば図1および図2に円筒状のエネルギー吸収
部材41の端部の断面を示すように、部材41の厚さ方
向中心両側にUD補強繊維層42a、42bを有する複
合材料層45a、45bが配設され、部材厚さ方向両最
外層に補強繊維織物43a、43bを有する複合材料層
46a、46bが配設される。各補強繊維層は単層であ
ってもよいし、積層構成をなすものであってもよい。ま
た、複合材料層45aと46aの間、および45bと4
6bとの間に、他の補強繊維(とくに形態を問わない)
を含む層が介在していてもよい。
In the energy absorbing member of the present invention,
The UD reinforcing fiber layer as described above is arranged on the inner layer side in the member thickness direction, and the reinforcing fiber fabric is arranged on the outer layer side in the member thickness direction. For example, as shown in FIGS. 1 and 2 showing the cross section of the end portion of the cylindrical energy absorbing member 41, composite material layers 45a and 45b having UD reinforcing fiber layers 42a and 42b are arranged on both sides in the center of the thickness direction of the member 41. Composite material layers 46a and 46b having reinforcing fiber woven fabrics 43a and 43b are provided on both outermost layers in the member thickness direction. Each reinforcing fiber layer may be a single layer or may have a laminated structure. Also, between the composite layers 45a and 46a, and between 45b and 4a.
Between 6b and other reinforcing fiber (regardless of form)
A layer containing a may be interposed.

【0009】このような構成を有する本発明のエネルギ
ー吸収部材においては、たとえば圧縮方向の衝撃エネル
ギーを吸収する際、図2に拡大して示すように、エネル
ギー吸収軸44(図1)に沿う方向の圧縮荷重Pに対
し、部材41が破壊に至る際には、部材41の端部にお
いて部材41が肉厚方向に関して裂けるように開こうと
する。その際、内層側のUD補強繊維42a、42bを
有する複合材料層45a、45bの内面側には引張応力
Aが作用し、外層側の補強繊維織物43a、43bを有
する複合材料層46a、46bの外面側には圧縮応力B
が作用する。
In the energy absorbing member of the present invention having such a structure, for example, when absorbing impact energy in the compression direction, as shown in an enlarged view in FIG. 2, a direction along the energy absorbing axis 44 (FIG. 1). When the member 41 is destroyed by the compressive load P, the member 41 tries to open at the end of the member 41 so as to tear in the thickness direction. At that time, tensile stress A acts on the inner surface side of the composite material layers 45a, 45b having the inner layer side UD reinforcing fibers 42a, 42b, and the composite material layers 46a, 46b having the outer layer side reinforcing fiber fabrics 43a, 43b Compressive stress B on the outer surface
Works.

【0010】内層側の複合材料層45a、45bは、U
D補強繊維層42a、42bを含むので、とくにその引
き揃え方向の引張強度が極めて高く、部材端部が両側に
拡開しようとするとき大きな抵抗力を発揮する。その結
果、エネルギー吸収部材として大きなエネルギー量を吸
収できるようになる。
The composite material layers 45a, 45b on the inner layer side are U
Since the D reinforcing fiber layers 42a and 42b are included, the tensile strength in the aligning direction is extremely high, and a large resistance force is exhibited when the end portions of the member try to spread to both sides. As a result, the energy absorbing member can absorb a large amount of energy.

【0011】一方、外層側の複合材料層46a、46b
は、補強繊維織物43a、43bを有する。この補強繊
維織物43a、43bは、特殊な形態(いわゆるノンク
リンプ織物)を除き、多かれ少なかれクリンプを有する
ので、構造的に圧縮に対しては弱い。したがって、エネ
ルギー吸収部材41が、図2に示したように、部材端部
において両側に拡開するように破壊する際、その拡開が
円滑に行われるとともに、破壊は必ず外面側、つまり補
強繊維織物43a、43bを含む層46a、46b側か
ら起こり、安定した一定の破壊のメカニズムが得られ
る。
On the other hand, the composite material layers 46a and 46b on the outer layer side
Has reinforcing fiber fabrics 43a, 43b. The reinforcing fiber fabrics 43a and 43b have crimps to a greater or lesser degree, except for a special form (so-called non-crimp fabric), and are structurally weak against compression. Therefore, as shown in FIG. 2, when the energy absorbing member 41 breaks so as to expand to both sides at the member end portion, the expanding is performed smoothly, and the breaking always occurs on the outer surface side, that is, the reinforcing fiber. It occurs from the side of the layers 46a and 46b including the fabrics 43a and 43b, and a stable and constant destruction mechanism is obtained.

【0012】すなわち、本発明に係るエネルギー吸収部
材においては、主として内層側のUD補強繊維層を含む
層によって、部材変形に対して高い抗力、ひいては高い
エネルギー吸収性能が発揮され、外層側の補強繊維織物
を含む層によって、とくに部材破壊の際のメカニズムが
安定し、予定された一定の破壊動作が安定かつ円滑に行
われる。その結果、エネルギー吸収部材の高い吸収エネ
ルギー量と、安定した性能、作動との両方が同時に達成
される。
That is, in the energy absorbing member according to the present invention, a layer mainly including the UD reinforcing fiber layer on the inner layer side exerts a high resistance against deformation of the member, and thus a high energy absorbing performance, and the reinforcing fiber on the outer layer side. The layer containing the woven fabric stabilizes the mechanism particularly when the member is broken, so that a predetermined constant breaking operation is performed stably and smoothly. As a result, both a high absorbed energy amount of the energy absorbing member and stable performance and operation are simultaneously achieved.

【0013】上記のような効率のよいエネルギー吸収を
さらに助長するために、上記部材厚さ方向中心部位の補
強繊維層両側の補強繊維層は、部材厚さ方向中心部位の
補強繊維層に対し対称に積層されることが好ましい。こ
のような対称積層構成とすることにより、部材が厚さ方
向中心から両側に裂けるように破壊する際、該両側部分
のもつ強度がともに最大限に効率よく発揮され、より高
いエネルギー吸収量が得られる。
In order to further promote efficient energy absorption as described above, the reinforcing fiber layers on both sides of the central portion in the member thickness direction are symmetrical with respect to the reinforcing fiber layer in the central portion in the member thickness direction. It is preferable to be laminated on. By adopting such a symmetrical laminated structure, when the member breaks so as to tear from the center in the thickness direction to both sides, the strength possessed by both sides is maximized efficiently and a higher energy absorption amount is obtained. To be

【0014】本発明において、補強繊維の種類は特に限
定されず、たとえば、炭素繊維、ガラス繊維、芳香族ポ
リアミド繊維、アルミナ繊維、炭化珪素繊維、ボロン繊
維などから適当に選ぶことができる。
In the present invention, the kind of the reinforcing fiber is not particularly limited and can be appropriately selected from carbon fiber, glass fiber, aromatic polyamide fiber, alumina fiber, silicon carbide fiber, boron fiber and the like.

【0015】また、本発明の複合材料のマトリクスとな
る樹脂としても、特に限定されず、たとえば、エポキシ
樹脂、不飽和ポリエステル樹脂、ポリビニルエステル樹
脂、フェノール樹脂、グアナミン樹脂、また、ビスマレ
イミド・トリアジン樹脂等のポリイミド樹脂、フラン樹
脂、ポリウレタン樹脂、ポリジアリルフタレート樹脂、
さらにメラニン樹脂やユリア樹脂等のアミノ樹脂等の熱
硬化性樹脂が挙げられる。また、ナイロン6、ナイロン
66、ナイロン11、ナイロン610、ナイロン612
などのポリアミド、またはこれらポリアミドの共重合ポ
リアミド、また、ポリエチレンテレフタレート、ポリブ
チレンテレフタレートなどのポリエステル、またはこれ
らポリエステルの共重合ポリエステル、さらに、ポリカ
ーボネート、ポリアミドイミド、ポリフェニレンスルフ
ァイド、ポリフェニレンオキシド、ポリスルホン、ポリ
エーテルスルホン、ポリエーテルエーテルケトン、ポリ
エーテルイミド、ポリオレフィンなど、さらにまた、ポ
リエステルエラストマー、ポリアミドエラストマーなど
に代表される熱可塑性エラストマー、等が挙げられる。
さらには、上述の範囲を満たす樹脂として、アクリルゴ
ム、アクリロニトリルブタジエンゴム、ウレタンゴム、
シリコーンゴム、スチレンブタジエンゴム、フッ素ゴム
等のゴムを用いることもできる。さらには、上記の熱硬
化性樹脂、熱可塑性樹脂、ゴムから選ばれた複数をブレ
ンドした樹脂を用いることもできる。
The resin which serves as the matrix of the composite material of the present invention is not particularly limited, and examples thereof include epoxy resin, unsaturated polyester resin, polyvinyl ester resin, phenol resin, guanamine resin, and bismaleimide triazine resin. Such as polyimide resin, furan resin, polyurethane resin, polydiallyl phthalate resin,
Further, thermosetting resins such as amino resins such as melanin resin and urea resin may be mentioned. Also, nylon 6, nylon 66, nylon 11, nylon 610, nylon 612
Polyamides such as, or copolyamides of these polyamides, polyesters such as polyethylene terephthalate and polybutylene terephthalate, or copolyesters of these polyesters, and further polycarbonates, polyamide imides, polyphenylene sulfides, polyphenylene oxides, polysulfones, polyethers Examples thereof include sulfone, polyether ether ketone, polyether imide, and polyolefin, and thermoplastic elastomers typified by polyester elastomer and polyamide elastomer.
Furthermore, as the resin satisfying the above range, acrylic rubber, acrylonitrile butadiene rubber, urethane rubber,
Rubber such as silicone rubber, styrene-butadiene rubber, and fluororubber can also be used. Furthermore, it is also possible to use a resin obtained by blending a plurality of the above-mentioned thermosetting resins, thermoplastic resins, and rubber.

【0016】また、補強繊維が炭素繊維からなる場合に
は、補強繊維の表面の酸素(O)と炭素(C)の原子数
比である表面官能基量(O/C)が0.08以上である
ことが好ましい。表面官能基量(O/C)が0.08以
上であると、活性化されたOによって補強繊維表面の接
着性が高められ、樹脂と補強繊維との接着強度が高めら
れてより破壊しにくくなり、複合材料全体として極めて
高い剛性、エネルギー吸収能力を発揮できる。表面官能
基量(O/C)が0.08未満であると、樹脂と補強繊
維との接着性が不十分となり、エネルギー吸収時に樹脂
と補強繊維との界面で剥離、あるいは破壊が生じやすく
なり、その分エネルギー吸収能力が低下する。
When the reinforcing fiber is made of carbon fiber, the surface functional group amount (O / C), which is the atomic number ratio of oxygen (O) and carbon (C) on the surface of the reinforcing fiber, is 0.08 or more. Is preferred. When the amount of surface functional groups (O / C) is 0.08 or more, the activated O enhances the adhesiveness of the surface of the reinforcing fiber, and the adhesive strength between the resin and the reinforcing fiber is increased to make it more difficult to break. Therefore, the composite material as a whole can exhibit extremely high rigidity and energy absorption capability. If the amount of surface functional groups (O / C) is less than 0.08, the adhesiveness between the resin and the reinforcing fiber becomes insufficient, and peeling or breakage easily occurs at the interface between the resin and the reinforcing fiber during energy absorption. , The energy absorption capacity is reduced accordingly.

【0017】また、補強繊維が炭素繊維からなる場合、
補強繊維の結晶サイズが20Å以上であることが好まし
い。この結晶サイズは、とくに引張弾性率に影響し、結
晶サイズが20Å以上であると高い引張弾性率を容易に
達成できるようになる。引張弾性率が高いと、それだけ
エネルギー吸収能力が向上する。
When the reinforcing fiber is made of carbon fiber,
The crystal size of the reinforcing fiber is preferably 20 Å or more. This crystal size particularly affects the tensile elastic modulus, and when the crystal size is 20 Å or more, a high tensile elastic modulus can be easily achieved. The higher the tensile modulus, the better the energy absorption capacity.

【0018】また、本発明の複合材料からなるエネルギ
ー吸収部材の形状は、とくに限定されず、筒状、柱状、
板状等、各種形状を採用可能である。代表的な形状、あ
るいは採用可能な形状を図3ないし図12に例示する。
The shape of the energy absorbing member made of the composite material of the present invention is not particularly limited, and may be cylindrical, columnar, or
Various shapes such as a plate shape can be adopted. Representative shapes or applicable shapes are illustrated in FIGS. 3 to 12.

【0019】エネルギー吸収部材の代表的な形状とし
て、まず、筒状形状を挙げることができる。筒状形状と
して最も代表的な形状は、図3に示すような円筒1であ
る。図における矢印方向が、衝撃エネルギーとしての圧
縮荷重作用方向である。また、図4に示すように、円筒
の頂部を円錐状あるいは球面状に形成した円筒2も適用
できる。さらに、図示は省略するが、角筒、円錐、角
錐、円錐台、角錐台、あるいは、横断面が楕円の筒、さ
らには、図5に示すように、フランジ部3を備えた円筒
(又は角筒)等の筒状形状4も採用できる。
As a typical shape of the energy absorbing member, first, a cylindrical shape can be mentioned. The most typical shape as a cylindrical shape is a cylinder 1 as shown in FIG. The direction of the arrow in the figure is the compressive load acting direction as impact energy. Further, as shown in FIG. 4, a cylinder 2 in which the top of the cylinder is formed in a conical shape or a spherical shape can also be applied. Further, although not shown in the drawings, a prism, a cone, a pyramid, a truncated cone, a truncated pyramid, or a cylinder having an elliptical cross section, and further, as shown in FIG. A tubular shape 4 such as a tube) can also be adopted.

【0020】また、筒状形状に限らず、柱状形状でもよ
い。たとえば、円柱、角柱形状を挙げることができる。
The shape is not limited to the cylindrical shape, but may be a columnar shape. For example, a columnar shape or a prismatic shape can be mentioned.

【0021】さらに、板状形状の採用も可能である。た
とえば、波板形状の部材とすれば、座屈に対して強いの
で、エネルギー吸収部材として使用可能となる。また、
図6に示すように、リブ5を有する、たとえば横断面T
字形の形状6、図7に示すように、横断面コ字状の形状
7とすることもできる。図7に示す横断面コ字状の形状
7では、2点鎖線で示すように蓋部材8を設けることも
できる。さらに、図8に示すように、横断面十字状の形
状9とすることもできる。
Further, it is possible to adopt a plate shape. For example, a corrugated plate-shaped member can be used as an energy absorbing member because it is strong against buckling. Also,
As shown in FIG. 6, for example, a cross section T having a rib 5 is provided.
The shape 6 may be a V shape, or may be a shape 7 having a U-shaped cross section as shown in FIG. 7. In the shape 7 having a U-shaped cross section shown in FIG. 7, the lid member 8 can be provided as shown by a two-dot chain line. Further, as shown in FIG. 8, a cross-shaped cross section 9 may be used.

【0022】さらにまた、各種形状の部材を組み合わせ
た構造とすることも可能である。たとえば、図9、図1
0に示すように、大きい円筒10、大きい円錐台11の
中に、小さい細長形状の円柱12、13を入れ、これら
を複合材料で構成することにより、より座屈しにくいエ
ネルギー吸収部材にすることができる。
Furthermore, it is also possible to adopt a structure in which members of various shapes are combined. For example, FIG. 9 and FIG.
As shown in FIG. 0, small elongated cylinders 12 and 13 are put in a large cylinder 10 and a large truncated cone 11 and are made of a composite material, so that an energy absorbing member that is less likely to buckle can be obtained. it can.

【0023】さらに、エネルギー吸収部材は、1個の部
材から構成されるものの他、複数の部材を重ねて、ある
いは組み合わせて構成してもよい。たとえば、図11、
図12に示すように、同一あるいは同様の形状の複合材
料からなる部材14、15a、15b、15cを縦に積
層してエネルギー吸収部材16、17を構成するように
してもよい。図12の構成にあっては、各部材を中、外
交互に積層してもよい。
Further, the energy absorbing member may be composed of one member, or may be composed of a plurality of members stacked or combined. For example, in FIG.
As shown in FIG. 12, the energy absorbing members 16 and 17 may be configured by vertically stacking members 14, 15a, 15b and 15c made of a composite material having the same or similar shapes. In the configuration of FIG. 12, each member may be alternately laminated inside and outside.

【0024】なお、上記のようなエネルギー吸収部材に
おいては、エネルギー吸収部材を端部から逐次破壊させ
るためのトリガ形状を形成しておくことが望ましく、こ
のトリガは、エネルギー吸収部材を押圧する押圧部材側
に設けてもよい。
In the energy absorbing member as described above, it is desirable to form a trigger shape for sequentially destroying the energy absorbing member from the end, and this trigger is a pressing member for pressing the energy absorbing member. It may be provided on the side.

【0025】〔特性の測定方法および効果の評価方法〕
以下に、上記説明に用いた特性の測定方法について説明
する。 (1)繊維の引張弾性率 JIS−R7601に規定されている樹脂含浸ストラン
ド試験法に準じて測定した。試験に用いた樹脂処方およ
び硬化条件を次に示す。 樹脂処方:“ベークライト”ERL−4221 100部 3−フッ化ホウ素モノエチルアミン(BF3 ・MEA) 3部 アセトン 4部 硬化条件:130℃、30分
[Method of measuring characteristics and method of evaluating effects]
The method of measuring the characteristics used in the above description will be described below. (1) Tensile elastic modulus of fiber It was measured according to the resin-impregnated strand test method defined in JIS-R7601. The resin formulation and curing conditions used in the test are shown below. Resin Formulation: "Bakelite" ERL-4221 100 parts of 3 boron trifluoride monoethylamine (BF 3 · MEA) 3 parts acetone 4 parts Curing conditions: 130 ° C., 30 minutes

【0026】(2)表面官能基量(O/C) X線光電子分光法により、次の手順に従って求めた。先
ず、溶媒でサイジング剤などを除去した炭素繊維(束)
をカットして銅製の試料支持台上に拡げて並べた後、光
電子脱出角度を90°とし、X線源としてMgKα1,
2を用い、試料チャンバー中を1×10-8Torrに保
つ。測定時の帯電に伴うピークの補正としてC1Sの主ピ
ークの運動エネルギー値(K.E.)を969eVに合
わせる。C1Sピーク面積をK.E.として958〜97
2eVの範囲で直線のベースラインを引くことにより求
める。O1Sピーク面積をK.E.として714〜726
eVの範囲で直線のベースラインを引くことにより求め
る。ここで表面官能基量(O/C)とは、上記O1Sピー
ク面積とC1Sピーク面積の比から、装置固有の感度補正
値を用いて原子数比として算出したものである。なお本
発明者らは、島津製作所(株)製モデルESCA−75
0を用いてO1Sピーク面積とC1Sピーク面積の比を測定
し、その比を感度補正値2.85で割ることにより表面
官能基量(O/C)を求めた。
(2) Surface functional group amount (O / C) It was determined by the following procedure by X-ray photoelectron spectroscopy. First, carbon fiber (bundle) from which sizing agents have been removed with a solvent
After cutting and arranging them on a copper sample support, the photoelectron escape angle was set to 90 °, and MgKα1, X-ray source was used.
2 is used and the sample chamber is kept at 1 × 10 −8 Torr. The kinetic energy value (KE) of the main peak of C 1S is set to 969 eV as a correction of the peak associated with charging during measurement. The C 1S peak area was calculated as K. E. As 958-97
It is obtained by drawing a linear baseline in the range of 2 eV. The O 1S peak area was measured by K.K. E. As 714-726
It is determined by drawing a straight baseline in the range of eV. Here, the amount of surface functional groups (O / C) is calculated as an atomic number ratio from the ratio of the O 1S peak area and the C 1S peak area using a sensitivity correction value specific to the apparatus. The inventors of the present invention used a model ESCA-75 manufactured by Shimadzu Corporation.
0 was used to measure the ratio of the O 1S peak area to the C 1S peak area, and the ratio was divided by the sensitivity correction value of 2.85 to obtain the surface functional group amount (O / C).

【0027】(3)結晶サイズ(Lc) 結晶サイズLcとは、広角X線回折により次の手順に従
って求めた値をいう。すなわち、X線源として、Niフ
ィルターで単色化されたCuのKα線を用い、2θ=2
6.0°付近に観察される面指数(002)のピークを
赤道方向にスキャンして得られたピークからその半価幅
を求め、次の式により算出した値を結晶サイズLcとす
る。 Lc=λ/(β0 cosθ) ここで、λ:X線の波長(この場合1.5418オング
ストローム)、θ:回折角、β0 :真の半価幅をいう。
なお、β0 は次式により算出される値を用いる。 β0 =(βA 2 −β1 2 1/2 ここで、βA 2 :見かけの半価幅、β1 2 :装置定数
(理学電気社製4036A2型X線発生装置を出力35
kV、15mAで使用した場合、1.05×10-2ra
d)をいう。
(3) Crystal Size (Lc) The crystal size Lc is a value obtained by wide-angle X-ray diffraction according to the following procedure. That is, as the X-ray source, Cu Kα rays monochromated by the Ni filter are used, and 2θ = 2
The half width of the peak of the plane index (002) observed around 6.0 ° is scanned in the equatorial direction to find the half-value width, and the value calculated by the following formula is defined as the crystal size Lc. Lc = λ / (β 0 cos θ) Here, λ: wavelength of X-ray (1.5418 angstrom in this case), θ: diffraction angle, β 0 : true half width.
Note that β 0 uses a value calculated by the following equation. β 0 = (β A 2 -β 1 2) 1/2 where, β A 2: Apparent half width, beta 1 2: apparatus constant (output Rigaku Denki Co. 4036A2 type X-ray generator 35
1.05 × 10 -2 ra when used at kV, 15 mA
d).

【0028】[0028]

【発明の効果】以上説明したように、本発明のエネルギ
ー吸収部材によるときは、エネルギー吸収部材を、少な
くとも3層の補強繊維層を有する、樹脂と補強繊維との
複合材料から構成するとともに、内層には一方向に引き
揃えられた補強繊維を、外層には補強繊維織物を、それ
ぞれ配設し、UD補強繊維によって部材破壊に対する強
度を高めるとともに、補強繊維織物によってエネルギー
吸収時の部材の破壊が一定のメカニズムで円滑に開始、
進行するようにしたので、エネルギー吸収性能が高く、
かつ、性能の安定した信頼性の高い、各種分野に好適に
使用できる実用性の高いエネルギー吸収部材を実現でき
る。
As described above, according to the energy absorbing member of the present invention, the energy absorbing member is made of a composite material of resin and reinforcing fibers having at least three reinforcing fiber layers, and has an inner layer. The reinforcing fibers arranged in one direction and the reinforcing fiber woven fabric are arranged in the outer layer, respectively. The UD reinforcing fibers increase the strength against member destruction, and the reinforcing fiber fabric prevents destruction of the member during energy absorption. Start smoothly with a certain mechanism,
Since it was made to proceed, energy absorption performance is high,
Further, it is possible to realize a highly practical energy absorbing member having stable performance and high reliability, which can be suitably used in various fields.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るエネルギー吸収部材の部分縦断面
図である。
FIG. 1 is a partial vertical sectional view of an energy absorbing member according to the present invention.

【図2】図1の部材の拡大部分縦断面図である。FIG. 2 is an enlarged partial vertical sectional view of the member of FIG.

【図3】本発明のエネルギー吸収部材の形状の一例を示
す斜視図である。
FIG. 3 is a perspective view showing an example of the shape of the energy absorbing member of the present invention.

【図4】本発明のエネルギー吸収部材の別の形状例を示
す斜視図である。
FIG. 4 is a perspective view showing another example of the shape of the energy absorbing member of the present invention.

【図5】本発明のエネルギー吸収部材のさらに別の形状
例を示す斜視図である。
FIG. 5 is a perspective view showing still another example of the shape of the energy absorbing member of the present invention.

【図6】本発明のエネルギー吸収部材のさらに別の形状
例を示す斜視図である。
FIG. 6 is a perspective view showing still another example of the shape of the energy absorbing member of the present invention.

【図7】本発明のエネルギー吸収部材のさらに別の形状
例を示す斜視図である。
FIG. 7 is a perspective view showing still another example of the shape of the energy absorbing member of the present invention.

【図8】本発明のエネルギー吸収部材のさらに別の形状
例を示す斜視図である。
FIG. 8 is a perspective view showing still another example of the shape of the energy absorbing member of the present invention.

【図9】本発明のエネルギー吸収部材の別の構造例を示
す斜視図である。
FIG. 9 is a perspective view showing another structural example of the energy absorbing member of the present invention.

【図10】本発明のエネルギー吸収部材のさらに別の構
造例を示す斜視図である。
FIG. 10 is a perspective view showing still another structural example of the energy absorbing member of the present invention.

【図11】本発明のエネルギー吸収部材のさらに別の構
造例を示す縦断面図である。
FIG. 11 is a vertical sectional view showing still another structural example of the energy absorbing member of the present invention.

【図12】本発明のエネルギー吸収部材のさらに別の構
造例を示す縦断面図である。
FIG. 12 is a vertical sectional view showing still another structural example of the energy absorbing member of the present invention.

【符号の説明】[Explanation of symbols]

1、2 円筒形状のエネルギー吸収部材 3 フランジ部 4 フランジ部を備えた円筒形状のエネルギー吸収部材 5 リブ 6 横断面T字形のエネルギー吸収部材 7 横断面コ字形のエネルギー吸収部材 8 蓋部材 9 横断面十字状のエネルギー吸収部材 10 円筒形状のエネルギー吸収部材 11 円錐台形状のエネルギー吸収部材 12、13 細長形状の部材 14、15a、15b、15c エネルギー吸収部材を
構成する部材 16、17 組み合わせ構成のエネルギー吸収部材 41 エネルギー吸収部材 42a、42b 一方向に引き揃えられた補強繊維 43a、43b 補強繊維織物 44 エネルギー吸収軸 45a、45b 一方向に引き揃えられた補強繊維を有
する複合材料層 46a、46b 補強繊維織物を有する複合材料層
1, 2 Cylindrical energy absorbing member 3 Flange portion 4 Cylindrical energy absorbing member having a flange portion 5 Rib 6 Energy absorbing member having T-shaped cross section 7 Energy absorbing member having U-shaped cross section 8 Lid member 9 Cross section Cross-shaped energy absorption member 10 Cylindrical energy absorption member 11 Frustum-shaped energy absorption member 12, 13 Elongated members 14, 15a, 15b, 15c Energy absorption member members 16, 17 Energy absorption of combined configuration Member 41 Energy absorbing member 42a, 42b Reinforcing fiber 43a, 43b unidirectionally aligned Reinforcing fiber fabric 44 Energy absorbing shaft 45a, 45b Composite material layer having unidirectionally aligning reinforcing fiber 46a, 46b Reinforcing fiber woven fabric Composite material layer having

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも3層の補強繊維層を有する、
樹脂と補強繊維との複合材料からなり、内層には一方向
に引き揃えられた補強繊維が、外層には補強繊維織物
が、それぞれ配設されていることを特徴とするエネルギ
ー吸収部材。
1. Having at least three reinforcing fiber layers,
An energy absorbing member comprising a composite material of resin and reinforcing fibers, wherein reinforcing fibers arranged in one direction are arranged in an inner layer, and reinforcing fiber fabric is arranged in an outer layer.
【請求項2】 厚さ方向中心両側には一方向に引き揃え
られた補強繊維の層が、両最外側には補強繊維織物の層
が配設されている、請求項1のエネルギー吸収部材。
2. The energy absorbing member according to claim 1, wherein reinforcing fiber layers aligned in one direction are disposed on both sides in the center of the thickness direction, and reinforcing fiber woven layers are disposed on both outermost sides.
【請求項3】 前記厚さ方向中心部位の補強繊維層の両
側に位置する補強繊維層が、厚さ方向中心部位の補強繊
維層に対して対称をなしている、請求項1又は2のエネ
ルギー吸収部材。
3. The energy according to claim 1, wherein the reinforcing fiber layers located on both sides of the reinforcing fiber layer in the central portion in the thickness direction are symmetrical with respect to the reinforcing fiber layer in the central portion in the thickness direction. Absorbing member.
JP11527093A 1993-04-20 1993-04-20 Energy absorbing member Expired - Fee Related JP3362447B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11527093A JP3362447B2 (en) 1993-04-20 1993-04-20 Energy absorbing member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11527093A JP3362447B2 (en) 1993-04-20 1993-04-20 Energy absorbing member

Publications (2)

Publication Number Publication Date
JPH06307477A true JPH06307477A (en) 1994-11-01
JP3362447B2 JP3362447B2 (en) 2003-01-07

Family

ID=14658515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11527093A Expired - Fee Related JP3362447B2 (en) 1993-04-20 1993-04-20 Energy absorbing member

Country Status (1)

Country Link
JP (1) JP3362447B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0908643A3 (en) * 1997-10-08 2000-12-20 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Energy absorbing member
WO2014034585A1 (en) 2012-08-27 2014-03-06 東レ株式会社 Energy-absorbing member and method for producing same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0908643A3 (en) * 1997-10-08 2000-12-20 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Energy absorbing member
WO2014034585A1 (en) 2012-08-27 2014-03-06 東レ株式会社 Energy-absorbing member and method for producing same
CN104395634A (en) * 2012-08-27 2015-03-04 东丽株式会社 Energy-absorbing member and method for producing same
US20150226281A1 (en) * 2012-08-27 2015-08-13 Toray Industries, Inc. Energy-absorbing member and method of producing same
JPWO2014034585A1 (en) * 2012-08-27 2016-08-08 東レ株式会社 Energy absorbing member and manufacturing method thereof
US9644700B2 (en) 2012-08-27 2017-05-09 Toray Industries, Inc. Energy-absorbing member and method of producing same

Also Published As

Publication number Publication date
JP3362447B2 (en) 2003-01-07

Similar Documents

Publication Publication Date Title
EP0322979A2 (en) Composite for the absorption of energy
US5279879A (en) Hybrid prepreg containing carbon fibers and at least one other reinforcing fiber in specific positions within the prepreg
US7842378B2 (en) Energy absorber and method for manufacturing the same
US4732803A (en) Light weight armor
US6416432B1 (en) Composite sports racket
DE3814954C2 (en)
US4178713A (en) Fishing rod made of fiber reinforced synthetic resin
KR19980701932A (en) Pressure vessel and process for producing the same
JPS5940101B2 (en) energy absorber
JP3360871B2 (en) Energy absorbing member
US5552214A (en) Unidirectional prepreg and carbon fiber reinforced composite materials comprising pitch-based carbon fibers and polyacrylonitrile-based carbon fibers
US5503893A (en) Ultra-high performance carbon composites
JP3362442B2 (en) Energy absorbing member
US20070029321A1 (en) Technology for blast containers
JP3362447B2 (en) Energy absorbing member
JP3360872B2 (en) Energy absorbing member
JPS60109630A (en) Energy absorbing tool
EP0580423B1 (en) Laminated molding
JP3362441B2 (en) Energy absorbing member
JPH07217689A (en) Energy absorption member
JP3362445B2 (en) Energy absorbing member
JP3456589B2 (en) Energy absorbing member
JP3362502B2 (en) Energy absorbing member
JP3837818B2 (en) FRP thick energy absorber
JP3456600B2 (en) Energy absorbing member

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071025

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20081025

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091025

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees