JPH06307259A - Fuel controlling method for two stage combustion type gas turbine combustor - Google Patents

Fuel controlling method for two stage combustion type gas turbine combustor

Info

Publication number
JPH06307259A
JPH06307259A JP9410293A JP9410293A JPH06307259A JP H06307259 A JPH06307259 A JP H06307259A JP 9410293 A JP9410293 A JP 9410293A JP 9410293 A JP9410293 A JP 9410293A JP H06307259 A JPH06307259 A JP H06307259A
Authority
JP
Japan
Prior art keywords
stage
combustion
fuel
flow rate
gas turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9410293A
Other languages
Japanese (ja)
Inventor
Yoji Ishibashi
洋二 石橋
Kazumi Iwai
一躬 岩井
Hiroshi Inoue
洋 井上
Shohei Yoshida
正平 吉田
Shigeyuki Akatsu
茂行 赤津
Tomoki Koganezawa
知己 小金沢
Noriyuki Hayashi
則行 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9410293A priority Critical patent/JPH06307259A/en
Publication of JPH06307259A publication Critical patent/JPH06307259A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To switch a combustion mode smoothly and surely by determining each stable combustion condition for both of the first stage combustion and the second stage combustion on the basis of humidity of the atmosphere, a discharge temperature and a discharge air flow rate of a compressor, and the nature of fuel and feeding fuel after correcting the predetermined fuel flow rate. CONSTITUTION:In a gas turbine, intake air 100 is compressed by a compressor 1, the compressed air 101 is burnt in a combustor 2, and the burnt high temperature gas 104 works in a turbine 3 so as to drive a generator 6, and then, an exhaust gas is exhausted from a chimney 5 via an exhaust heat recovery boiler 4. In this case, a humidity sensor 20, an air flow meter 21, and an air temperature sensor 22 are arranged in the compressor 1. On the other hand, a fuel nature measuring device 23, the first stage fuel flow meter 25, and the second stage fuel flow meter 27 are arranged in a fuel system. Each of output signals from each of meters 20-23, 25, 27 is inputted to a fuel flow rate setting device 35 respectively, and then, the openings of both of the first stage fuel flow rate regulating valve 24 and the second stage fuel flow rate regulating valve 26 are controlled so as to switch a combustion mode.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はガスタービン燃焼器に係
り、特に、NOx(窒素酸化物)の発生が少ない二段燃
焼型ガスタービン燃焼器の燃料制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas turbine combustor, and more particularly to a fuel control method for a two-stage combustion type gas turbine combustor which produces less NOx (nitrogen oxide).

【0002】[0002]

【従来の技術】ガスタービンの排気中のNOxを低減す
るために、予混合燃焼と拡散燃焼を組み合わせた二段燃
焼器が開発されている。これらの燃焼器構造はガスター
ビン製造会社やNOx達成レベルでさまざまに異なる
が、一例として特公平1−40246号公報に缶型の二段燃焼
器が示されている。ここでは、燃焼器上流側に副室構造
の第一段目燃焼の拡散バーナを備え、その下流端外周側
には第二段目燃焼の環状予混合器を有する予混合バーナ
を備えており、ガスタービンの起動から部分負荷帯まで
は第一段目燃焼で運転し、部分負荷帯から定格負荷まで
は第一段目と第二段目燃焼で運転することが示されてい
る。更に、ここでは、第一段目から第二段目への燃焼モ
ードの切換えに関し、第二段目への燃料供給は一定量を
ステップ状に投入し、同時に第一段目への燃料供給量を
同量ステップ状に減じるようにして行うことが示されて
いる。このような二段燃焼器では、燃焼モードの切換え
後、即ち、第二段目の予混合燃焼によって低NOx化さ
れるものであり、切換え可能なガスタービン負荷を出来
るだけ小さくすることが要求されており、また、燃焼モ
ードの切換を確実にして、かつ、切換え途中においてガ
スタービン出力変化がない円滑な切換えが大切である。
ところが、拡散燃焼及び予混合燃焼の火炎の安定性がガ
スタービンの作動条件や大気環境などによって影響を受
けるため、従来技術では信頼性の高い燃焼モードの切換
えに問題があった。
2. Description of the Related Art In order to reduce NOx in exhaust gas of a gas turbine, a two-stage combustor combining premixed combustion and diffusion combustion has been developed. Although these combustor structures are different depending on the gas turbine manufacturing company and the NOx achievement level, Japanese Patent Publication No. 1-40246 discloses a can type two-stage combustor. Here, the first stage combustion diffusion burner of the sub-chamber structure is provided on the upstream side of the combustor, and the premix burner having the annular premixer of the second stage combustion is provided on the outer peripheral side of the downstream end thereof. It is shown that the first-stage combustion operates from the start of the gas turbine to the partial load zone, and the first-stage and second-stage combustion operates from the partial load zone to the rated load. Furthermore, here, regarding the switching of the combustion mode from the first stage to the second stage, a certain amount of fuel is supplied to the second stage in steps, and at the same time, the fuel supply amount to the first stage is increased. Is performed in the same amount stepwise. In such a two-stage combustor, the NOx is reduced after the combustion mode is changed, that is, by the second-stage premixed combustion, and it is required to reduce the gas turbine load that can be changed as much as possible. In addition, it is important to ensure that the combustion mode is switched and that the gas turbine output does not change during the switching.
However, since the flame stability of diffusion combustion and premixed combustion is affected by the operating conditions of the gas turbine, the atmospheric environment, etc., there is a problem in switching the combustion mode with high reliability in the conventional technology.

【0003】[0003]

【発明が解決しようとする課題】従来の二段燃焼型のガ
スタービン燃焼器では、前述したように一段目から二段
目への燃焼モードの切換えが確実かつ円滑に行えないと
いう問題があった。
As described above, the conventional two-stage combustion type gas turbine combustor has a problem that the combustion mode cannot be reliably and smoothly switched from the first stage to the second stage. .

【0004】本発明の目的は、確実、かつ、円滑を燃焼
モード切換えが行える燃料の制御方法の提供にある。
An object of the present invention is to provide a fuel control method capable of reliably and smoothly switching combustion modes.

【0005】[0005]

【課題を解決するための手段】燃焼モードの確実、か
つ、円滑な切換えを行うのには、第二段目燃料の供給に
よって第二段目火炎が確実に着火し、安定燃焼すること
と、第二段目燃料量に相当する分だけ燃料流量が減じら
れた第一段目火炎が安定燃焼を接続することが必要であ
る。従って、燃焼モード切換えでは、燃焼モード切換え
完了後のそれぞれ第一段目及び第二段目の燃料流量はそ
れぞれの火炎の安定燃焼範囲内に設定されなければなら
ない。特に第二段目の予混合火炎では、安定燃焼範囲が
狭く、かつ、種々の燃焼条件の影響を強く受ける。この
ため、火炎の着火及び安定燃焼に特に強く影響する大気
湿度,圧縮機吐出空気温度,圧縮機吐出空気流量および
燃料性状の情報を取り込み、これらの火炎への影響度合
を評価し、予め定められた計画燃料流量を必要に応じて
修正を加えて供給し、第二段目火炎の確実な着火と安定
燃焼を可能とし、かつ、第一段目火炎の安定燃焼範囲に
保つものである。
[Means for Solving the Problems] In order to reliably and smoothly switch the combustion modes, the second-stage flame must be ignited reliably by the supply of the second-stage fuel, and stable combustion, It is necessary that the first-stage flame whose fuel flow rate is reduced by the amount corresponding to the second-stage fuel amount be connected for stable combustion. Therefore, in the combustion mode switching, the fuel flow rates of the first stage and the second stage after the completion of the combustion mode switching must be set within the stable combustion range of each flame. In particular, the second-stage premixed flame has a narrow stable combustion range and is strongly affected by various combustion conditions. Therefore, information on atmospheric humidity, compressor discharge air temperature, compressor discharge air flow rate, and fuel properties, which have a particularly strong effect on flame ignition and stable combustion, are taken in, and the degree of influence on these flames is evaluated and determined in advance. The planned fuel flow rate is corrected and supplied as necessary to enable reliable ignition and stable combustion of the second-stage flame and to maintain the stable combustion range of the first-stage flame.

【0006】[0006]

【作用】第一段目火炎ならびに第二段目火炎ともバーナ
特性と燃焼条件によって決る安定燃焼範囲がある。即
ち、所定の作動条件において燃料流量がある量以下にな
ると火炎は吹消え、又、ある量以上になるとバーナの赤
熱や焼損が起こる。特に、予混合燃焼の第二段目火炎で
は逆火が発生する。このため安定燃焼を持続させるに
は、バーナ特性や燃焼条件によって定まる燃料流量範囲
内に設定する必要がある。特に、二段燃焼の燃焼モード
切換え時には、第二段目火炎は第一段目火炎によって着
火され、第二段目バーナによって安定化されるので、第
一段目と第二段目の相互作用を考慮に入れた燃料制御が
要求され、燃焼への影響因子の影響度合を評価し、これ
を燃料制御に反映させることにより、一層確実、かつ、
円滑な切換えが可能となる。
[Function] Both the first-stage flame and the second-stage flame have a stable combustion range determined by the burner characteristics and combustion conditions. That is, when the fuel flow rate is below a certain amount under a predetermined operating condition, the flame blows off, and above a certain amount, the burner becomes red hot and burns. In particular, flashback occurs in the second-stage flame of premixed combustion. Therefore, in order to maintain stable combustion, it is necessary to set the fuel flow rate within the range determined by the burner characteristics and combustion conditions. Especially, when switching the combustion mode of the second stage combustion, the second stage flame is ignited by the first stage flame and stabilized by the second stage burner, so the interaction between the first stage and the second stage The fuel control that takes into account the above is required, and the degree of influence of the influencing factors on combustion is evaluated, and by reflecting this in the fuel control, more reliable and
Smooth switching is possible.

【0007】ガスタービン燃焼器における影響因子のう
ち作用の大きいものは大気湿度、圧縮機吐出空気温
度、圧縮機吐出空気流量、燃料性状がある。このう
ち、大気湿度の影響はこれが高くなるほど着火燃料流量
ならび安定燃焼燃料流量は増加する。圧縮機吐出空気温
度はこれが低いと着火燃料流量ならびに安定燃焼燃料流
量は増加する。圧縮機吐出空気流量はこれが多いと着火
燃料流量ならび安定燃焼燃料流量は増加する。さらに燃
料性状であるが、液化天然ガスの増合について見ると、
メタン成分が多くなるほど着火しにくくかつ、安定燃焼
するのに必要な燃料流量は多くなる。従って、これらの
影響因子の着火及び安定燃焼への影響度合を予め実験的
に評価し、これをデータ化するとともに、ガスタービン
運転時にこれらの諸量を測定し、これらを比較演算し、
予め定められた燃料制御流量に対し必要に応じて修正を
加えることにより、第二段目火炎の確実な着火と安定燃
焼が行える。
Among the influential factors in the gas turbine combustor, those having a large effect are atmospheric humidity, compressor discharge air temperature, compressor discharge air flow rate, and fuel property. Of these, as the influence of atmospheric humidity becomes higher, the flow rate of ignition fuel and the flow rate of stable combustion fuel increase. When the compressor discharge air temperature is low, the ignition fuel flow rate and the stable combustion fuel flow rate increase. When the flow rate of air discharged from the compressor is large, the flow rate of ignition fuel and the flow rate of stable combustion fuel increase. Regarding the fuel properties, looking at the addition of liquefied natural gas,
As the methane component increases, it becomes difficult to ignite, and the fuel flow rate required for stable combustion increases. Therefore, the degree of influence of these influencing factors on ignition and stable combustion is experimentally evaluated in advance, and while this is converted into data, these quantities are measured during gas turbine operation, and these are compared and calculated.
By correcting the predetermined fuel control flow rate as necessary, reliable ignition and stable combustion of the second stage flame can be performed.

【0008】[0008]

【実施例】図1に本発明の一実施例を示す。ガスタービ
ンは圧縮機1と燃焼器2及びタービン3から構成され、
大気吸込み空気100は圧縮機1で昇圧され、圧縮機吐
出空気101として燃焼器へ供給され、燃料200
(本実施例では天然ガス)と燃焼して高温作動ガス10
4を発生し、タービンで仕事をし、排気は排熱回収ボイ
ラ4を経て煙突より放出される。なお、タービン出力は
発電機6にて電気に変換される。
FIG. 1 shows an embodiment of the present invention. The gas turbine comprises a compressor 1, a combustor 2 and a turbine 3,
Atmospheric intake air 100 is boosted by the compressor 1 and supplied to the combustor 2 as compressor discharge air 101, and fuel 200
The high temperature working gas 10 is burned with (natural gas in this embodiment).
4 is generated, the turbine works, and the exhaust gas is discharged from the chimney through the exhaust heat recovery boiler 4. The turbine output is converted into electricity by the generator 6.

【0009】燃焼器は圧縮機の吐出ケーシング7とター
ビンケーシング8の間に配置され、燃焼器外筒9と燃焼
器カバー10によって格納されている。燃焼器は上流側
の中心部に第一段目燃焼ノズル13を持ちその下流端部
の外周に旋回器15を持つ第一段目燃焼流路が開口して
おりこれから供給される第一段目燃焼空気103は第一
段目燃料ノズル13の端部に開孔する燃料噴孔14より
噴出する第一段目燃料201燃焼室内で混合しながら燃
焼する第一段バーナが配置され、更に、ひの外周側に環
状の空気流路と燃料供給ノズルからなる予混合器16が
配置され、その下流端は第一段バーナの外周側において
燃焼器内へ開口している。予混合器16の上流側より第
二段目燃焼空気102が流入し、この空気と第二段目燃
焼供給フランジ17に取付けられた第二段目燃料ノズル
18から噴射される第二段目燃料202は予混合内で混
合し、可燃混合気として燃焼室内へ供給される。燃焼室
内で発生した燃焼ガス104は燃焼器尾筒12を経てタ
ービン3へ供給される。
The combustor is arranged between the compressor discharge casing 7 and the turbine casing 8 and is housed by the combustor casing 9 and the combustor cover 10. The combustor has a first-stage combustion nozzle 13 in the center on the upstream side, and a first-stage combustion flow path having a swirler 15 at the outer periphery of the downstream end of the combustor. The combustion air 103 is provided with a first-stage burner that burns while mixing in the combustion chamber of the first-stage fuel 201 that is ejected from the fuel injection hole 14 that is opened at the end of the first-stage fuel nozzle 13. A premixer 16 composed of an annular air flow path and a fuel supply nozzle is arranged on the outer peripheral side of, and its downstream end opens into the combustor on the outer peripheral side of the first stage burner. The second stage combustion air 102 flows in from the upstream side of the premixer 16, and the second stage fuel is injected from this air and the second stage fuel nozzle 18 attached to the second stage combustion supply flange 17. 202 is mixed in the premix and supplied as a combustible mixture into the combustion chamber. The combustion gas 104 generated in the combustion chamber is supplied to the turbine 3 via the combustor transition piece 12.

【0010】この構成のガスタービン燃焼器において、
ガスタービンの起動から部分負荷は第一段目バーナのみ
によって運転され、部分負荷から定格負荷帯は第一段目
バーナと第二段目バーナを作動させて運転される。ここ
で各バーナの燃料流量と燃焼空気流量の比、即ち、燃空
比を理論燃空比より小さく設定することにより火炎温度
は低く抑えられるのでNOxの発生の小さい燃焼とな
る。この場合、火炎の温度を均一に低下できる二段目の
予混合バーナのNOx低減効果が大きい。従って低NO
x燃焼器としては、予混合バーナの燃焼量を大きく、か
つ、安定燃焼限界に近づけた薄い混合気を燃焼させるこ
とが大切となる。
In the gas turbine combustor having this structure,
From the start of the gas turbine, the partial load is operated only by the first stage burner, and the partial load to the rated load zone is operated by operating the first stage burner and the second stage burner. Here, by setting the ratio of the fuel flow rate to the combustion air flow rate of each burner, that is, the fuel-air ratio to be smaller than the theoretical fuel-air ratio, the flame temperature can be suppressed to a low level, so that combustion with less NOx generation is achieved. In this case, the NOx reducing effect of the second-stage premixing burner, which can uniformly reduce the flame temperature, is great. Therefore low NO
As the x-combustor, it is important to burn a thin air-fuel mixture that has a large combustion amount of the premix burner and is close to the stable combustion limit.

【0011】ガスタービンの運転において第一段目バー
ナから第二段目バーナへの燃焼モードの切換えが必要と
なる。即ち、ガスタービンが定格運転に至るある定めら
れた部分負荷条件において、第一段燃焼から第一段目及
び第二段目の燃焼モードへの切換えが行われる。これ
は、総燃料流量をほぼ一定に保ちながら、第二段目燃料
を定められた一定量をステップ状に投入し、ほぼ同時に
第一段目燃料をステップ状に減じることによって達成さ
れる。燃焼モード切換時のそれぞれの燃料投入量は第二
段目バーナについては確実な着火とそれに続く安定燃焼
のために必要な燃料流量でなければならず、また、第一
段目バーナについてはステップ状に燃料を減じても火炎
が安定に保持可能な燃料流量以上でなければならない。
これらの値は、ガスタービンの作動条件をシミュレート
した燃焼実験により基本計画され、詳細にはガスタービ
ン運転時に調整が行われて燃料制御計画が定められる。
更に、実用運転の信頼性と運転裕度を高めるために季節
や天候によるガスタービンの作動条件の変化や燃料組成
の変化に対しても十分対応できるための安定燃焼が確保
されねばならない。
In the operation of the gas turbine, it is necessary to switch the combustion mode from the first stage burner to the second stage burner. That is, the switching from the first-stage combustion to the first-stage and second-stage combustion modes is performed under a certain predetermined partial load condition in which the gas turbine reaches the rated operation. This is achieved by injecting a predetermined fixed amount of the second-stage fuel in steps while keeping the total fuel flow rate substantially constant, and reducing the first-stage fuel in steps almost simultaneously. When switching the combustion mode, the amount of fuel input must be the fuel flow rate required for reliable ignition and subsequent stable combustion for the second stage burner, and for the first stage burner it must be stepped. Even if the fuel is reduced, the fuel flow rate must be higher than the fuel flow rate to keep the flame stable.
These values are basically planned by a combustion experiment simulating the operating conditions of the gas turbine, and in detail, the fuel control plan is established by adjusting the gas turbine during operation.
Furthermore, in order to increase the reliability and operational margin of practical operation, stable combustion must be ensured so that it can sufficiently cope with changes in operating conditions of the gas turbine and changes in fuel composition due to seasons and weather.

【0012】この要求には、具体的には着火や燃焼安定
性に及ぼすガスタービンの運転条件や大気条件,燃料性
状などが着火や火炎安定性にどのように影響するかを調
べ、それらの単体の影響,複合した場合の影響をデータ
ベース化し、ガスタービン運転時にそれらの諸量を実測
ないしは予測して、それらの影響度合を評価し、予め定
められた燃料制御計画値を必要に応じて修正することに
よって実現される。更に具体的には、図2に示すような
大気湿度による着火及び火炎安定範囲の変化を実験的に
調べ、これを制御に反映させるものである。○印で結ん
だ三本の線((1),(2),(3))がそれぞれ大気
湿度が異なる場合の第二段目燃焼の着火条件の変化を示
すもので、大気湿度は(1)→(2)→(3)の順に高
くなる。第二段目燃焼の着火燃料流量は第一段目燃焼の
燃料が大きい程小さくなる傾向にあるが最小着火燃料流
量があり、大気湿度が(1)の場合についてみると、図
中の第二段目燃料はF2*であり、その時の第一段目燃料
はF1** である。また、第一段目燃焼の安定可能燃料流
量が存在し、それが図中のF1** である。また、この時
の第二段燃焼の着火燃料流量はF2** である。即ち、大
気湿度(1)の場合には○印を結んだ第一段目燃料と第
二段目燃料の流量条件が作動可能条件となる。なお、燃
焼モードの切換えは、総燃料流量をほぼ一定に保ち、ガ
スタービンの出力変化を小さくして行う。この総燃料一
定の条件を示したのは図中の一点鎖線であり、従って
(1)の場合にはこの線上の(a)(F1*,F2*)から
(b)(F1**,F2**)までが切換え可能条件となる。大
気湿度が高い(2)の場合には第二段目の着火燃料流量
と第一段目燃焼の安定限界燃料流量は増加する方向へシ
フトする。この場合(c)〜(b)が切換え可能条件と
なる。更に大気湿度が高くなった(3)の場合には、一
点鎖線で示す総燃料条件では着火条件は存在しないこと
になる。この場合には総燃料流量を多くしたガスタービ
ン負荷条件で燃焼モードの切換えを行うことになる。図
3は圧縮機吐出空気温度による着火及び火炎安定範囲の
変化を示したものであり、(1)→(2)→(3)の順
序で圧縮機吐出空気温度は低い。図4は同様に圧縮機吐
出空気流量による着火及び火炎安定範囲の変化を示した
ものであり(1)→(2)→(3)の順で圧縮機吐出空
気流量は増大しており、これに対応して着火及び安定燃
焼に必要な燃料流量に増大する。図5は天然ガスについ
て燃料組成による着火及び火炎安定範囲の変化を示すも
ので、(1)→(2)→(3)の順で燃料ガス中のメタ
ン濃度が高くなっており、これに対応して必要燃料流量
は増大する。
[0012] To meet this requirement, specifically, it is investigated how the operating conditions of the gas turbine, atmospheric conditions, fuel properties, etc., which affect ignition and combustion stability, affect ignition and flame stability. The effects of the above and combined effects are compiled into a database, and various quantities are measured or predicted during gas turbine operation, the degree of their effects is evaluated, and the predetermined fuel control plan value is modified as necessary. It is realized by More specifically, the change in ignition and flame stability range due to atmospheric humidity as shown in FIG. 2 is experimentally investigated, and this is reflected in control. The three lines ((1), (2), (3)) connected by circles show changes in the ignition conditions of the second stage combustion when the atmospheric humidity is different, and the atmospheric humidity is (1 ) → (2) → (3). The ignition fuel flow rate of the second stage combustion tends to decrease as the fuel of the first stage combustion increases, but there is a minimum ignition fuel flow rate and the atmospheric humidity is (1). The first stage fuel is F 2 *, and the first stage fuel at that time is F 1 **. Also, there exists a stable fuel flow rate for the first stage combustion, which is F 1 ** in the figure. Further, the ignition fuel flow rate in the second stage combustion at this time is F 2 **. That is, in the case of atmospheric humidity (1), the flow rate conditions of the first-stage fuel and the second-stage fuel, which are marked with a circle, are the operable conditions. The combustion mode is switched by keeping the total fuel flow rate substantially constant and reducing the output change of the gas turbine. The condition of constant total fuel is shown by the chain line in the figure. Therefore, in the case of (1), from (a) (F 1 *, F 2 *) on this line
(b) Up to (F 1 **, F 2 **) is a switchable condition. When the atmospheric humidity is high (2), the second stage ignition fuel flow rate and the first stage combustion stability limit fuel flow rate shift in an increasing direction. In this case, (c) to (b) are switchable conditions. When the atmospheric humidity becomes higher (3), the ignition condition does not exist under the total fuel condition shown by the alternate long and short dash line. In this case, the combustion mode is switched under the gas turbine load condition in which the total fuel flow rate is increased. FIG. 3 shows changes in the ignition and flame stable ranges depending on the compressor discharge air temperature, and the compressor discharge air temperature is low in the order of (1) → (2) → (3). Similarly, FIG. 4 shows changes in the ignition and flame stability range depending on the compressor discharge air flow rate, and the compressor discharge air flow rate increases in the order of (1) → (2) → (3). The fuel flow rate required for ignition and stable combustion is correspondingly increased. Figure 5 shows the change in ignition and flame stability range for natural gas depending on the fuel composition, and the methane concentration in the fuel gas increases in the order of (1) → (2) → (3), and it corresponds to this. Then, the required fuel flow rate increases.

【0013】図1に再び戻って、燃焼モードの切換え方
法について説明する。圧縮機1には吸気ダクトに湿度セ
ンサ20及び空気流量計21が取り付けられており、圧
縮機1の吐出部には空気温度センサ22が付けられ、こ
れらの測定信号はそれぞれ湿度データ処理器29,空気
流量データ処理器28及び空気温度データ処理器30に
入力される。一方、燃料系統には、燃料性状測定器23
と第一段燃料系統ならびに第二段燃料系統にそれぞれ燃
料流量測定器25,27が設けられている。これらの測
定信号はそれぞれ燃料性状データ処理器32と第一段
目,第二段目燃料流量データ処理器31,32に入力さ
れる。各々のデータ処理器からは適切な制御信号として
燃料流量・配分算出器に入力され、ここにおいて、燃焼
モード切換えに必要なそれぞれ第一段目燃料流量と第二
段目燃料流量が演算されて設定され、この信号が燃料流
量設定器35に入力され、これより発掘される制御信号
によりそれぞれ第一段目燃料流量調節弁24ならび第二
段目燃料流量調節弁26の開度調節がなされて燃焼モー
ドの切換えが行われる。図6に燃焼モード切換え過程の
燃料流量の時間変化を示す。時刻t1 において燃焼モー
ドの切換えに入り、適切に設定された第二段目燃料ガス
ステップ状に投入され、ほぼこの燃料流量に対応して第
一段目燃料がステップ状に減じられ、時刻t2 において
モード切換えは完了する。図7は燃焼モード切換え過程
のガスタービン出力の時間変化を示す。本発明により燃
焼モード切換えにより、実線に示すようにこの間のガス
タービンの負荷変化は小さく、円滑な切換えが可能とな
る。なお、点線は第二段目バーナへの着火が遅れた時の
出力変化を示したものである。着火遅れにより負荷低下
が大きく、また、着火後は急激な負荷上昇を伴うことと
なり、円滑な燃焼モードの切換えは出来ない。
Returning to FIG. 1 again, the method of switching the combustion mode will be described. A humidity sensor 20 and an air flow meter 21 are attached to the intake duct of the compressor 1, and an air temperature sensor 22 is attached to the discharge portion of the compressor 1. These measurement signals are measured by a humidity data processor 29, respectively. The data is input to the air flow rate data processor 28 and the air temperature data processor 30. On the other hand, in the fuel system, the fuel property measuring device 23
Fuel flow rate measuring devices 25 and 27 are provided in the first-stage fuel system and the second-stage fuel system, respectively. These measurement signals are input to the fuel property data processor 32 and the first and second stage fuel flow rate data processors 31 and 32, respectively. Appropriate control signals are input from each data processor to the fuel flow rate / distribution calculator, where the first-stage fuel flow rate and the second-stage fuel flow rate required for combustion mode switching are calculated and set. This signal is input to the fuel flow rate setting device 35, and the opening degree of the first-stage fuel flow rate adjusting valve 24 and the second-stage fuel flow rate adjusting valve 26 is adjusted by the control signals uncovered from the signal, and the combustion is performed. Mode switching is performed. FIG. 6 shows the change over time in the fuel flow rate during the combustion mode switching process. At time t 1 , the combustion mode is switched, and the appropriately set second-stage fuel gas is injected in a step-like manner, and the first-stage fuel is reduced in a step-like manner substantially corresponding to this fuel flow rate. At 2 , the mode switching is completed. FIG. 7 shows the time variation of the gas turbine output during the combustion mode switching process. According to the present invention, by switching the combustion mode, the change in the load of the gas turbine during this period is small as shown by the solid line, and smooth switching is possible. The dotted line shows the output change when the ignition of the second stage burner is delayed. Due to the ignition delay, the load is largely decreased, and after the ignition, the load is rapidly increased, and the combustion mode cannot be switched smoothly.

【0014】[0014]

【発明の効果】本発明によれば次のような効果が得られ
る。
According to the present invention, the following effects can be obtained.

【0015】(1)ガスタービンの作動条件や大気湿度な
らびに燃料性状が変化した場合も燃焼モードの切換え条
件が適切に選定される。
(1) Even when the operating conditions of the gas turbine, the atmospheric humidity, and the fuel properties change, the combustion mode switching conditions are appropriately selected.

【0016】(2)燃焼モードの切換え条件が適切に選定
される結果、第二段目バーナの着火が円滑となり、燃焼
モード切換え過程のガスタービン出力の変化が小さく抑
えられガスタービンの信頼性が高くなり、運転性が向上
する。
(2) As a result of proper selection of the combustion mode switching conditions, the ignition of the second stage burner is smoothed, the change in the gas turbine output during the combustion mode switching process is suppressed to a small level, and the reliability of the gas turbine is improved. It becomes higher and the drivability is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】ガスタービン燃焼器の燃料制御系統図。FIG. 1 is a fuel control system diagram of a gas turbine combustor.

【図2】大気湿度による着火,安定燃焼範囲の変化を示
す特性図。
FIG. 2 is a characteristic diagram showing changes in ignition and stable combustion ranges depending on atmospheric humidity.

【図3】圧縮機吐出空気温度による着火,安定燃焼範囲
の変化を示す特性図。
FIG. 3 is a characteristic diagram showing changes in ignition and stable combustion ranges depending on compressor discharge air temperature.

【図4】圧縮機吐出空気流量による着火,安定燃焼範囲
の変化を示す特性図。
FIG. 4 is a characteristic diagram showing changes in ignition and stable combustion ranges depending on the compressor discharge air flow rate.

【図5】燃料組成による着火,安定燃焼範囲の変化を示
す特性図。
FIG. 5 is a characteristic diagram showing changes in ignition and stable combustion ranges depending on fuel composition.

【図6】燃焼モード切換え過程の燃料流量の時間変化を
示す特性図。
FIG. 6 is a characteristic diagram showing a change over time in the fuel flow rate during the combustion mode switching process.

【図7】燃焼モード切換え過程のガスタービン出力の時
間変化を示す特性図。
FIG. 7 is a characteristic diagram showing a time change of a gas turbine output during a combustion mode switching process.

【符号の説明】[Explanation of symbols]

2…燃焼器、13…第一段目燃料ノズル、17…第二段
目燃料ノズル、20…湿度測定センサ、21…空気流量
計、22…空気温度測定センサ、23…燃料性状測定
器、25…第一段目燃料流量計、27…第二段目燃料流
量計、34…燃料流量・配分算出器、35…燃料流量設
定器。
2 ... Combustor, 13 ... First stage fuel nozzle, 17 ... Second stage fuel nozzle, 20 ... Humidity measuring sensor, 21 ... Air flow meter, 22 ... Air temperature measuring sensor, 23 ... Fuel property measuring device, 25 ... 1st stage fuel flow meter, 27 ... 2nd stage fuel flow meter, 34 ... Fuel flow rate / distribution calculator, 35 ... Fuel flow rate setter.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉田 正平 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 (72)発明者 赤津 茂行 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 (72)発明者 小金沢 知己 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 (72)発明者 林 則行 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shohei Yoshida 502 Jinritsu-cho, Tsuchiura-shi, Ibaraki Hiritsu Seisakusho Co., Ltd.Mechanical Research Institute (72) Shigeyuki Akatsu 502 Jinre-cho, Tsuchiura-shi, Ibaraki Hiritsu Seisakusho Inside the Mechanical Research Institute (72) Inventor Tomoki Koganawa 502 Jinritsu-cho, Tsuchiura-shi, Ibaraki Prefecture Hiritsu Seisakusho Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】拡散燃焼をする拡散バーナと予混合燃焼す
る予混合バーナとを組合せたガスタービン燃焼器であ
り、ガスタービンの起動から部分負荷運転時は第一段目
燃焼の拡散バーナで運転し、部分負荷から定格負荷は第
一段目燃焼と第二段目燃焼の予混合バーナで運転し、第
一段目燃焼から第二段目燃焼への燃焼モードの切換えは
第一段目燃料を定流量に保ちながら、もしくは第一段目
燃料を減じながら第二段目燃料を所定量まで投入するガ
スタービン燃焼器において、大気湿度,圧縮機吐出温
度,圧縮機吐出空気流量および燃料性状のいずれか一つ
もしくはそれら複数の情報を取り込み、燃焼モード切換
過程の第一段目燃焼と第二段目燃焼のそれぞれの安定燃
焼条件を演算,判定し、これに基づき予め計画された燃
料流量を修正して供給し、燃焼モード切換えを行うこと
を特徴とする二段燃焼型ガスタービン燃焼器の燃料制御
方法。
1. A gas turbine combustor in which a diffusion burner for performing diffusion combustion and a premixing burner for performing premix combustion are combined, and the gas turbine combustor is operated by a diffusion burner for first-stage combustion during partial load operation from start of the gas turbine. However, the partial load to the rated load is operated by the premixed burner of the first stage combustion and the second stage combustion, and the switching of the combustion mode from the first stage combustion to the second stage combustion is performed by the first stage fuel. In a gas turbine combustor in which the second-stage fuel is charged to a predetermined amount while maintaining the constant flow rate or reducing the first-stage fuel, the atmospheric humidity, the compressor discharge temperature, the compressor discharge air flow rate, and the fuel properties Taking in one or more of these pieces of information, the stable combustion conditions for each of the first-stage combustion and the second-stage combustion in the combustion mode switching process are calculated and determined, and based on this, the planned fuel flow rate is calculated. Modified and supplied The fuel control method for a two-stage combustion type gas turbine combustor and performing combustion mode switching.
JP9410293A 1993-04-21 1993-04-21 Fuel controlling method for two stage combustion type gas turbine combustor Pending JPH06307259A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9410293A JPH06307259A (en) 1993-04-21 1993-04-21 Fuel controlling method for two stage combustion type gas turbine combustor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9410293A JPH06307259A (en) 1993-04-21 1993-04-21 Fuel controlling method for two stage combustion type gas turbine combustor

Publications (1)

Publication Number Publication Date
JPH06307259A true JPH06307259A (en) 1994-11-01

Family

ID=14101085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9410293A Pending JPH06307259A (en) 1993-04-21 1993-04-21 Fuel controlling method for two stage combustion type gas turbine combustor

Country Status (1)

Country Link
JP (1) JPH06307259A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999060308A1 (en) * 1998-05-14 1999-11-25 Bayer Aktiengesellschaft Device and method for monitoring the air-fuel ratio in steam generators
JP2016014371A (en) * 2014-07-03 2016-01-28 三菱日立パワーシステムズ株式会社 Two-shaft gas turbine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999060308A1 (en) * 1998-05-14 1999-11-25 Bayer Aktiengesellschaft Device and method for monitoring the air-fuel ratio in steam generators
JP2016014371A (en) * 2014-07-03 2016-01-28 三菱日立パワーシステムズ株式会社 Two-shaft gas turbine
US10094290B2 (en) 2014-07-03 2018-10-09 Mitsubishi Hitachi Power Systems, Ltd. Two-shaft gas turbine
EP2963266B1 (en) * 2014-07-03 2022-01-05 Mitsubishi Power, Ltd. Gas turbine powerplant with free turbine

Similar Documents

Publication Publication Date Title
US5339635A (en) Gas turbine combustor of the completely premixed combustion type
EP0335978B1 (en) Gas turbine combustor
US7152409B2 (en) Dynamic control system and method for multi-combustor catalytic gas turbine engine
JP2644745B2 (en) Gas turbine combustor
JPH05203146A (en) Gas turbine combustion apparatus and gas turbine power generator
JPH05203150A (en) Stepwise fuel pre-mixing low nox combustion apparatus and low nox combustion
JPH04203808A (en) Method and apparatus for controlling gas turbine combustion device
JP2961913B2 (en) Combustion device and control method thereof
JPH06307259A (en) Fuel controlling method for two stage combustion type gas turbine combustor
JP3116081B2 (en) Air distribution control gas turbine combustor
JP2755603B2 (en) Gas turbine combustor
US5319919A (en) Method for controlling gas turbine combustor
JPH09159143A (en) Fuel supply system for multi-burner type combustion device and gas turbine having fuel supply system
JPH0115775B2 (en)
JPH07248117A (en) Combustion method for gas turbine premixing combustor
JPS6152523A (en) Gas turbine combustor
JPH0139016B2 (en)
JP2783638B2 (en) Gas turbine combustion equipment
JPH04124520A (en) Gas turbine combustor
JP3472424B2 (en) Gas turbine and method of operating gas turbine
JPS6166019A (en) Gas turbine combustor
JPH05187270A (en) Operation method for gas turbine combustor
JP2544515B2 (en) Gas combustor
JPH0233419A (en) Gas turbine combustor
JP3181122B2 (en) Gas turbine combustor control method