JPH06306653A - Improvement of corrosion resistance of welded site of stainless steel - Google Patents

Improvement of corrosion resistance of welded site of stainless steel

Info

Publication number
JPH06306653A
JPH06306653A JP11518693A JP11518693A JPH06306653A JP H06306653 A JPH06306653 A JP H06306653A JP 11518693 A JP11518693 A JP 11518693A JP 11518693 A JP11518693 A JP 11518693A JP H06306653 A JPH06306653 A JP H06306653A
Authority
JP
Japan
Prior art keywords
stainless steel
welded
welding
corrosion resistance
nitric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11518693A
Other languages
Japanese (ja)
Other versions
JP3355696B2 (en
Inventor
Fumio Nozaki
文雄 野崎
Isamu Funahashi
勇 舟橋
Takeshi Wakabayashi
剛 若林
Shuji Moriya
修司 守谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Nihon Millipore KK
Original Assignee
Tokyo Electron Ltd
Nihon Millipore KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd, Nihon Millipore KK filed Critical Tokyo Electron Ltd
Priority to JP11518693A priority Critical patent/JP3355696B2/en
Publication of JPH06306653A publication Critical patent/JPH06306653A/en
Application granted granted Critical
Publication of JP3355696B2 publication Critical patent/JP3355696B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Chemical Treatment Of Metals (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

PURPOSE:To improve corrosion resistance at a welded site and its surroundings by welding an electrode-polished austenite stainless steel, immersing the welded site in an aq. soln. of nitric acid under heating, washing and heat-treating in a specified condition in an inert gas-containing oxygen. CONSTITUTION:The austenite stainless steel which is electrode-polished previously is welded, and the welded site is immersed in the aq. soln. of nitric acid of 20-40% concn. at 60-75 deg.C for several min-several ten min. When the surface treatment by the aq. soln. of nitric acid is ended, the welded site is washed by superpure water, then heat-treated at temp. within a 150-200 deg.C range for 1-2 hour in the inactive gas containing oxygen and dried and oxidized. In this way, the corrosion resistance comparable to that in the conventional method which executes electrode-polish after welding then forms oxidized film is imparted at the welded site and its surroundings.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、少量の水分含有塩素、
臭素系ガスと接触するオーステナイト系ステンレス鋼の
溶接部位及びその近傍の熱履歴部位の耐食性を向上せし
める方法に関するものである。
This invention relates to a small amount of water-containing chlorine,
The present invention relates to a method for improving the corrosion resistance of a welded portion of austenitic stainless steel that comes into contact with a bromine-based gas and a heat history portion in the vicinity thereof.

【0002】[0002]

【従来の技術】ステンレス鋼は普通の炭素綱に比べ耐食
性が優れているが、これは予めクロムを主体とする不動
態化被膜の形成により耐食性を向上させているからであ
る。しかし、このステンレス鋼でも溶接をするとその溶
接時の入熱により溶接部及びその周辺部の耐食性が低下
するという問題点があることが知られている。そこでこ
れを改善するため、溶接後に再度機械研磨とそれに続く
化学研磨や、電解研磨などの処理を行い溶接により耐食
性の低下した表面の不動態被膜の再形成がなされてき
た。
2. Description of the Related Art Stainless steel is superior in corrosion resistance to ordinary carbon steel because it has been improved in corrosion resistance by forming a passivation film mainly containing chromium. However, it is known that even when this stainless steel is welded, there is a problem that the heat resistance during the welding lowers the corrosion resistance of the welded portion and its peripheral portion. Therefore, in order to improve this, after the welding, mechanical polishing and subsequent chemical polishing, electrolytic polishing, and other treatments are performed again to re-form the passivation film on the surface whose corrosion resistance is reduced by welding.

【0003】特に電解研磨は電気化学的に金属表面の凸
部から、金属をイオン化溶解せしめることにより平滑面
が形成でき、同時に酸素酸化などの不動態化処理により
耐食性を復帰させるに好都合な手段であった。したがっ
て、溶接後の構造が簡単で電極を溶接部位まで導入する
ことが可能な場合は、溶接後電解研磨による下地処理
後、自然酸化膜形成や必要に応じたこれに続くより適切
な酸化条件下の特定の酸化被膜の成長を計り、不動態化
膜の形成をなすことによって十分な耐食性を期待し得る
溶接ステンレス鋼を得てきたのである。
In particular, electropolishing is a convenient means for electrochemically electrochemically forming a smooth surface by ionizing and dissolving a metal from a convex portion of the metal surface, and at the same time restoring the corrosion resistance by a passivation treatment such as oxygen oxidation. there were. Therefore, if the structure after welding is simple and the electrode can be introduced up to the welding site, after the surface treatment by post-welding electropolishing, natural oxide film formation and subsequent more appropriate oxidizing conditions as necessary We have obtained a welded stainless steel that can be expected to have sufficient corrosion resistance by measuring the growth of a specific oxide film and forming a passivation film.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、溶接後
のステンレス鋼構造体が電解研磨のための電極挿入が不
可能の場合は前記従来技術は実施できないので、それに
替わる方法を採用する必要があった。即ち、前記した不
動態化被膜の再形成の際、溶接対象物の内部構造が複雑
な場合は機械研磨も適用し難く、たとえ適用しても砥粒
の残留が避けられないため溶接して製造した構造物の使
用場面に於ける思わぬ障害がひき起こされることがあっ
たのである。例えば、図1に示すようなフィルタ1、バ
ルブ2、マスフローコントローラ3および配管からなる
ガス供給システムにおいてこれら部品と配管の溶接接続
を行った場合は溶接後の電解研磨は殆ど不可能であり、
機械研磨に於いてもその状況に変わりはない。
However, if the stainless steel structure after welding cannot be inserted into the electrode for electrolytic polishing, the above-mentioned prior art cannot be carried out, and it is necessary to adopt an alternative method. . That is, when the above-mentioned passivation film is reformed, it is difficult to apply mechanical polishing when the internal structure of the welding object is complicated, and even if it is applied, it is unavoidable that residual abrasive grains are produced and welded. There was a case where an unexpected obstacle in the usage of the structure was caused. For example, in a gas supply system including a filter 1, a valve 2, a mass flow controller 3 and piping as shown in FIG. 1, when these components and piping are welded and connected, electrolytic polishing after welding is almost impossible,
Even in mechanical polishing, the situation remains the same.

【0005】これに対し、硝酸処理や、酸素酸化による
溶接部位の不動態被膜再形成は溶接部位の構造が複雑で
も容易に実施し易いため、よく試みられてはいる。しか
し、それらの方法でも塩化水素、臭化水素、塩素、その
他半導体工業で使用される塩素、臭素系ガスに対する耐
食性は十分なものとは言えず、やはり問題であった。
On the other hand, nitric acid treatment or reforming of the passive film on the welded portion by oxygen oxidation is often attempted because it is easy to carry out even if the structure of the welded portion is complicated. However, even with these methods, the corrosion resistance to hydrogen chloride, hydrogen bromide, chlorine, and chlorine and bromine-based gases used in the semiconductor industry cannot be said to be sufficient, which is also a problem.

【0006】本発明は、このような事情のもとに、溶接
後の不動態被膜形成対象物の形状の如何に関係なく、前
述した障害などを引き起こさないで簡便に不動態化被膜
形成を達成すること、特に微量水分を含有する塩素、臭
素系ガスに対する溶接構造体の耐食性を向上することを
課題とするものである。
Under the circumstances described above, the present invention achieves a simple passivation film formation without causing the above-mentioned obstacles and the like, regardless of the shape of the object for forming the passivation film after welding. In particular, it is an object to improve the corrosion resistance of the welded structure to chlorine and bromine-based gas containing a trace amount of water.

【0007】[0007]

【課題を解決するための手段】ステンレス鋼溶接部の構
造が複雑でも不動態化被膜形成をおこなわしめるために
は流体による処理を採用するのが好都合である。しか
し、前記した様に単なるステンレス鋼溶接後の温硝酸水
溶液による不動態化被膜形成は塩素、臭素系ガスに対す
る耐食性向上という観点からは十分ではなかった。そこ
で本発明者はステンレス鋼溶接部の複雑な構造体に適用
可能な耐食性向上方法を種々検討したところ溶接前のス
テンレス鋼材の溶接部及び入熱が予想される溶接周辺部
を予め電解研磨することにより溶接後の硝酸処理とこれ
に続く水洗、酸化処理が塩素、臭素系ガスに対する耐食
性のよい酸化被膜を形成させることができるという事実
を見いだし本発明を完成するに至った。
[Means for Solving the Problems] Even if the structure of the stainless steel welded portion is complicated, it is convenient to adopt a treatment with a fluid in order to perform passivation film formation. However, as described above, the formation of the passivation film by the hot nitric acid aqueous solution after the simple welding of stainless steel was not sufficient from the viewpoint of improving the corrosion resistance to chlorine and bromine gas. Therefore, the present inventor has studied various methods of improving the corrosion resistance applicable to the complex structure of the stainless steel welded portion, and found that the welded portion of the stainless steel material before welding and the weld peripheral portion where heat input is expected are electrolytically polished in advance. As a result, the fact that the nitric acid treatment after welding and the subsequent washing with water and oxidation can form an oxide film having good corrosion resistance to chlorine and bromine-based gas was completed and the present invention was completed.

【0008】すなわち、本発明は、予め電解研磨したオ
ーステナイト系ステンレス鋼を溶接し、該溶接部位を加
温下、硝酸水溶液中に浸漬し水洗後酸素含有不活性ガス
中で150〜200℃で1時間ないし2時間の熱処理す
ることを特徴とするオーステナイト系ステンレス鋼溶接
部及びその周辺部の耐食性向上方法を提供するものであ
る。本発明により、従来のステンレス鋼の溶接部の電解
研磨とこれに続く不動態被膜形成処理と同等の塩素、臭
素系ガスに対する耐食性を得ることが可能となった。
That is, according to the present invention, pre-electrolytically polished austenitic stainless steel is welded, and the welded portion is immersed in a nitric acid aqueous solution under heating, washed with water, and then in an oxygen-containing inert gas at 150 to 200 ° C. The present invention provides a method for improving the corrosion resistance of an austenitic stainless steel welded portion and its peripheral portion, which is characterized by performing heat treatment for 2 hours to 2 hours. According to the present invention, it is possible to obtain the same corrosion resistance to chlorine and bromine gas as the conventional electrolytic polishing of a welded portion of stainless steel and the subsequent passivation film forming treatment.

【0009】以下に本発明を詳述する。本発明で用いる
電解研磨液は燐酸、硫酸、クロム酸をそれぞれ40〜4
5%、34〜37%、3〜4%の割合のものが一般的に
使用できるが、それに限定されず更に広範囲に選択し得
る。また、電解研磨は対象のステンレス鋼材の形態を考
慮して処理液槽を選択し液温40〜80℃、電流密度3
0〜100A/dm2 の条件下、電解研磨液の循環下に
行えばよい。これらの溶接前の電解研磨を施したステン
レス鋼の溶接方法はティグ溶接、プラズマアーク溶接、
Nd:YAG溶接、電子ビーム溶接が適用し得る。
The present invention will be described in detail below. The electrolytic polishing solution used in the present invention contains phosphoric acid, sulfuric acid, and chromic acid in an amount of 40 to 4 each.
Those having a ratio of 5%, 34 to 37%, 3 to 4% can generally be used, but the present invention is not limited thereto and a wider range can be selected. For electrolytic polishing, a treatment liquid tank is selected in consideration of the form of the target stainless steel material, and the liquid temperature is 40 to 80 ° C. and the current density is 3
The electropolishing liquid may be circulated under the condition of 0 to 100 A / dm 2 . Welding methods for electrolytically polished stainless steel before welding are TIG welding, plasma arc welding,
Nd: YAG welding and electron beam welding can be applied.

【0010】溶接後は、その構造体の形状を考慮し、そ
の全体に硝酸水溶液が接液するように浸漬方法を選択す
る必要がある。即ちデッドスペースに該水溶液が充填さ
れないことの無いように例えば、減圧下に水溶液を添加
するとか密閉容器にいれて振蕩したり、該水溶液をノズ
ルより吹き付ける等の方法を用いる。硝酸水溶液の濃度
は最終的な耐食性の点から20〜40%が好ましく、硝
酸濃度がこれより低い場合は材料の溶解が進み易く、高
濃度の場合は効果が発現しない。また、硝酸処理液によ
る処理時間、処理温度は硝酸水溶液の濃度により適宜選
択されるが、大略、数分ないし数10分間、温度60〜
75℃で常圧付近でなされるのがよい。
After welding, it is necessary to consider the shape of the structure and to select the dipping method so that the nitric acid aqueous solution comes into contact with the entire structure. That is, in order to prevent the dead space from being filled with the aqueous solution, for example, a method of adding the aqueous solution under reduced pressure, shaking in a closed container, or spraying the aqueous solution from a nozzle is used. From the viewpoint of final corrosion resistance, the concentration of the nitric acid aqueous solution is preferably 20 to 40%. When the concentration of nitric acid is lower than this, dissolution of the material is likely to proceed, and when the concentration of nitric acid is high, the effect is not exhibited. The treatment time and treatment temperature with the nitric acid treatment liquid are appropriately selected depending on the concentration of the nitric acid aqueous solution, but are generally several minutes to several tens minutes, and the temperature 60 to
It is recommended to be carried out at 75 ° C and near normal pressure.

【0011】硝酸水溶液による表面処理後は常温下、蒸
留水等の清浄な水により水洗されるが、特にイオン含有
量の少ない超純水などの使用が好ましい。水洗時間は溶
接後の構造によって適宜選択されるが、硝酸イオンの検
出が認められなくなるまで行なわなければならない。又
洗浄効果を高めるために超音波洗浄器の使用は一層好ま
しい。
After the surface treatment with the nitric acid aqueous solution, it is washed with clean water such as distilled water at room temperature, and it is particularly preferable to use ultrapure water having a low ionic content. The washing time is appropriately selected depending on the structure after welding, but it must be performed until the detection of nitrate ion is no longer recognized. Further, it is more preferable to use an ultrasonic cleaner to enhance the cleaning effect.

【0012】水洗後の乾燥・酸化は空気中もしくは酸素
含有量を種々変更した窒素、アルゴン等の不活性ガス中
で、150〜200℃の温度範囲で酸素含有量に応じて
処理時間を決定してなされるが、空気中の場合は60分
で十分である。200℃を越えた条件も採用し得るが、
着色の原因となるので外観上好ましくない。なお、本発
明で塩素、臭素系ガスとは、塩素、臭素、塩化水素、臭
化水素、各種クロロシランなどの半導体用ガスのことを
いう。
For drying and oxidation after washing with water, the treatment time is determined according to the oxygen content in the temperature range of 150 to 200 ° C. in the air or in an inert gas such as nitrogen and argon having various oxygen contents. However, 60 minutes is sufficient when in air. Conditions exceeding 200 ° C can also be adopted,
It is not preferable in appearance because it causes coloring. In the present invention, the chlorine and bromine-based gases refer to semiconductor gases such as chlorine, bromine, hydrogen chloride, hydrogen bromide and various chlorosilanes.

【0013】以上説明したオーステナイト系ステンレス
鋼の溶接対象部及びその周辺部を溶接前に電解研磨し、
次いで溶接後硝酸水溶液で酸処理を行い水洗して酸素含
有ガス中で乾燥することにより得られる該オーステナイ
ト系ステンレス鋼溶接体は、水分含有塩素、臭素系ガス
に対する耐食性が向上し、その耐食性はオーステナイト
系ステンレス鋼溶接後の電解研磨による耐食性向上と同
等であることが確認されている。
The above-mentioned austenitic stainless steel to be welded and its peripheral portion are electrolytically polished before welding,
Next, after the welding, the austenitic stainless steel welded body obtained by acid treatment with a nitric acid aqueous solution, followed by washing with water and drying in an oxygen-containing gas has improved corrosion resistance to moisture-containing chlorine and bromine-based gases, and its corrosion resistance is austenite. It has been confirmed that it is equivalent to the improvement of corrosion resistance by electrolytic polishing after welding of stainless steel.

【0014】[0014]

【実施例】以下実施例で本発明を説明する。The present invention will be described in the following examples.

【0015】実施例1 あらかじめ、長さ150.0mm、内径22.0mm、
外径22.5mmのステンレス鋼管(SUS316L)
2本を85%燐酸と96%硫酸が1:1の容量比で存在
する電解研磨液中で温度40℃、電流密度100A/d
2 、電解時間3分間の電解研磨処理を行った後、その
2本を突合せ、回転させながらプラズマガスおよびアー
ク・バックシールドガスとしてアルゴンガスを用いてタ
ングステン電極との間にアークを発生せしめてプラズマ
アーク溶接をした。
Example 1 In advance, a length of 150.0 mm, an inner diameter of 22.0 mm,
Stainless steel pipe with an outer diameter of 22.5 mm (SUS316L)
Two of them in an electropolishing solution containing 85% phosphoric acid and 96% sulfuric acid in a volume ratio of 1: 1 at a temperature of 40 ° C. and a current density of 100 A / d.
After performing electropolishing treatment for m 2 and electrolysis time of 3 minutes, butt the two and rotate them to generate an arc between the tungsten electrode and plasma gas and argon gas as an arc / back shield gas. Plasma arc welding was performed.

【0016】その溶接後、接続されたステンレス鋼管を
30%硝酸溶液に温度70℃で60分間浸漬し、18M
Ω・cmの超純水で硝酸イオンが検出されなくなるまで
常温洗浄した。次いでこれを乾燥後大気中温度150℃
で2時間熱処理した。このようにして得られた長さ約3
00mmの溶接ステンレス鋼管を軸方向に切断し4つの
同一形状の部片とした。部片をイソプロピルアルコール
で繰り返し洗浄した後常温で減圧乾燥し、塩化第二鉄水
溶液(2%、4%、8%、10%)を含浸させた該切断
部片と同一の短冊状の濾紙をそれぞれの切断部片内面に
密着させ、25℃で相対湿度ほぼ100%の雰囲気に6
時間設置し腐食試験に供した。
After the welding, the connected stainless steel pipe was immersed in a 30% nitric acid solution at a temperature of 70 ° C. for 60 minutes to obtain 18M.
It was washed at room temperature with ultra pure water of Ω · cm until nitrate ions were not detected. Then, after drying this, the temperature in the atmosphere is 150 ° C.
And heat treated for 2 hours. A length of about 3 thus obtained
A 00 mm welded stainless steel pipe was axially cut into four pieces of the same shape. The piece was repeatedly washed with isopropyl alcohol, dried under reduced pressure at room temperature, and impregnated with an aqueous ferric chloride solution (2%, 4%, 8%, 10%) to obtain the same strip-shaped filter paper as the cut piece. Adhere to the inner surface of each cut piece, and place it in an atmosphere with a relative humidity of approximately 100% at 25 ° C.
It was installed for a time and subjected to a corrosion test.

【0017】6時間経過後、各切断部片表面をイソプロ
ピルアルコールで洗浄乾燥し顕微鏡で濾紙密着部分にお
ける孔食発生の有無を観測した。ここで行った塩化第二
鉄水溶液濃度を変化させる上記の試験は、溶質濃度に対
応した加水分解に基づく水素イオン濃度(pH)と構成
される電極電位を一定に保持した孔食試験であり、孔食
が発生する塩化第二鉄の臨界濃度から該切断部片の耐孔
食性の優劣を判定することが出来る。
After the lapse of 6 hours, the surface of each cut piece was washed with isopropyl alcohol and dried, and the presence or absence of pitting corrosion was observed under a microscope with the filter paper. The above test for changing the ferric chloride aqueous solution concentration performed here is a pitting corrosion test in which the electrode potential constituted by the hydrogen ion concentration (pH) based on hydrolysis corresponding to the solute concentration is kept constant, The superiority or inferiority of the pitting corrosion resistance of the cut piece can be determined from the critical concentration of ferric chloride that causes pitting corrosion.

【0018】試験の結果、塩化第二鉄水溶液10%を含
浸させた濾紙を密着させたケースにおいてのみ該切断部
片の溶接部位、並びにその熱履歴部位及び非熱履歴部位
のいずれの部位にも孔食が認められたが、8%以下の塩
化第二鉄水溶液における試験ではいずれの部位にも孔食
は認められなかった。比較例として溶接後の酸処理、水
洗、酸素含有ガス中での乾燥処理などの一連の工程を割
愛したところ、その溶接ステンレス鋼管についてはいず
れの塩化第二鉄水溶液濃度においても孔食が認められ
た。
As a result of the test, only in the case where a filter paper impregnated with an aqueous ferric chloride solution of 10% was closely attached, the welded portion of the cut piece, and both the heat history portion and the non-heat history portion thereof were detected. Although pitting corrosion was observed, no pitting corrosion was observed at any part in the test in an aqueous solution of 8% ferric chloride or less. As a comparative example, after omitting a series of steps such as acid treatment after welding, washing with water, and drying treatment in an oxygen-containing gas, pitting corrosion was observed in the welded stainless steel pipe at any ferric chloride aqueous solution concentration. It was

【0019】実施例2 図2に塩素、臭素、塩化水素、臭化水素、ジクロロシラ
ン、トリクロロシランなどの塩素、臭素系ガス用の全長
約5〜60mmのオールステンレス鋼製インラインフィ
ルタを示す。図2から明らかなように該オールステンレ
ス鋼製インラインフィルタはそのライン内に電解研磨用
の電極を挿入することは実質的に不可能な構造となって
いる。
Example 2 FIG. 2 shows an all-stainless steel in-line filter for chlorine, bromine, hydrogen chloride, hydrogen bromide, chlorine such as dichlorosilane and trichlorosilane, and bromine type gas having a total length of about 5 to 60 mm. As is apparent from FIG. 2, the all-stainless steel in-line filter has a structure in which it is substantially impossible to insert an electrode for electrolytic polishing into the line.

【0020】図2中の部品8とフィルタ部11を有する
部品10を9の面に於いて溶接するに当たり、部品8と
10をあらかじめ、85%燐酸と96%硫酸が1:1の
容量比で存在する電解研磨液中で温度40℃、電流密度
100A/dm2 、電解時間3分間の電解研磨処理を行
った後、両部品を突合せ、回転させながら、プラズマガ
スおよびアーク・バックシールドガスとしてアルゴンガ
スを用いてタングステン電極との間にアークを発生せし
めプラズマアーク溶接した。溶接後、インラインフィル
タを30%硝酸溶液に温度70℃で60分間浸漬し、1
8MΩ・cmの超純水で硝酸イオンが検出されなくなる
まで常温洗浄し、乾燥後大気中温度150℃で100分
間熱処理した。
In welding the component 8 shown in FIG. 2 and the component 10 having the filter portion 11 on the surface 9, the components 8 and 10 are previously mixed with 85% phosphoric acid and 96% sulfuric acid in a volume ratio of 1: 1. After performing electrolytic polishing treatment in an existing electrolytic polishing liquid at a temperature of 40 ° C., a current density of 100 A / dm 2 , and an electrolysis time of 3 minutes, both parts are butted and rotated, and a plasma gas and an arc / back shield gas containing argon are used. Plasma arc welding was performed by generating an arc between the tungsten electrode and the gas. After welding, soak the in-line filter in a 30% nitric acid solution at a temperature of 70 ° C for 60 minutes, and
The sample was washed with 8 MΩ · cm ultrapure water at room temperature until nitrate ions were not detected, dried, and then heat-treated in the air at a temperature of 150 ° C. for 100 minutes.

【0021】このようにして得られたインラインフィル
タに純度99.5%の湿潤塩酸ガスを常温下、毎分10
00mlの速度で1時間流し続けた後、窒素ガスで残存
塩酸ガスをパージし、次いで軸方向に切断して溶接部の
腐食状況を観察したところ、ガス出入口と比較して耐食
性に差は認められなかった。
Wet hydrochloric acid gas having a purity of 99.5% was applied to the in-line filter thus obtained at room temperature at a rate of 10 minutes per minute.
After continuing to flow at a rate of 00 ml for 1 hour, the residual hydrochloric acid gas was purged with nitrogen gas and then cut in the axial direction to observe the corrosion state of the welded portion. There wasn't.

【0022】[0022]

【発明の効果】本発明によれば、溶接後の構造が複雑で
電解研磨のための電極挿入が困難なオーステナイト系ス
テンレス鋼の溶接部及びその周辺部においても、溶接前
の電解研磨が可能なステンレス鋼構造体をあらかじめ電
解研磨しておき、溶接後、温硝酸処理を行い、水洗し加
熱酸化することにより、従来の溶接後電解研磨とこれに
続く酸化被膜形成による方法と同等の耐食性が付与され
るという効果がある。
According to the present invention, it is possible to perform electrolytic polishing before welding even in a welded portion of austenitic stainless steel where the structure after welding is complicated and it is difficult to insert an electrode for electrolytic polishing, and its peripheral portion. The stainless steel structure is electrolytically polished in advance, and after welding, treated with warm nitric acid, washed with water and heated to oxidize, giving the same corrosion resistance as conventional post-welding electrolytic polishing and the subsequent oxide film formation method. There is an effect that is done.

【図面の簡単な説明】[Brief description of drawings]

【図1】塩素系ガス供給システム概観図で多くの溶接配
管の存在を示す例である。
FIG. 1 is an overview diagram of a chlorine-based gas supply system showing an example of the presence of many welded pipes.

【図2】本発明方法の対象となるインラインフィルタの
1例の断面図である。
FIG. 2 is a cross-sectional view of an example of an in-line filter which is a target of the method of the present invention.

【符号の説明】[Explanation of symbols]

1 フィルタ 2 バルブ 3 マスフローコントローラ 4 溶接部 5 塩素系ガス1 6 塩素系ガス2 7 不活性ガス 8 インラインフィルタ外套 9 溶接部位 10 フィルタサポート 11 円筒フィルタ 1 Filter 2 Valve 3 Mass Flow Controller 4 Weld Section 5 Chlorine Gas 1 6 Chlorine Gas 2 7 Inert Gas 8 Inline Filter Outer 9 Welding Site 10 Filter Support 11 Cylindrical Filter

───────────────────────────────────────────────────── フロントページの続き (72)発明者 若林 剛 東京都新宿区西新宿2丁目3番1号 東京 エレクトロン株式会社内 (72)発明者 守谷 修司 東京都新宿区西新宿2丁目3番1号 東京 エレクトロン株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Go Wakabayashi 2-3-1 Nishishinjuku, Shinjuku-ku, Tokyo Within Tokyo Electron Co., Ltd. (72) Inventor Shuji Moriya 2-3-3 Nishishinjuku, Shinjuku-ku, Tokyo Within Tokyo Electron Limited

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 予め電解研磨したオーステナイト系ステ
ンレス鋼を溶接し、該溶接部位を加温下、硝酸水溶液中
に浸漬し水洗後酸素含有不活性ガス中で150〜200
℃で1時間ないし2時間の熱処理することを特徴とする
オーステナイト系ステンレス鋼溶接部及びその周辺部の
耐食性向上方法。
1. A pre-electrolytically polished austenitic stainless steel is welded, and the welded portion is immersed in a nitric acid aqueous solution under heating, washed with water, and then heated in an oxygen-containing inert gas at 150 to 200.
A method for improving corrosion resistance of an austenitic stainless steel welded portion and its peripheral portion, characterized by performing a heat treatment at 1 ° C. for 1 hour to 2 hours.
JP11518693A 1993-04-20 1993-04-20 Method for improving corrosion resistance of stainless steel welds Expired - Lifetime JP3355696B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11518693A JP3355696B2 (en) 1993-04-20 1993-04-20 Method for improving corrosion resistance of stainless steel welds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11518693A JP3355696B2 (en) 1993-04-20 1993-04-20 Method for improving corrosion resistance of stainless steel welds

Publications (2)

Publication Number Publication Date
JPH06306653A true JPH06306653A (en) 1994-11-01
JP3355696B2 JP3355696B2 (en) 2002-12-09

Family

ID=14656489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11518693A Expired - Lifetime JP3355696B2 (en) 1993-04-20 1993-04-20 Method for improving corrosion resistance of stainless steel welds

Country Status (1)

Country Link
JP (1) JP3355696B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7326306B2 (en) 2001-10-16 2008-02-05 Honda Giken Kogyo Kabushiki Kaisha Method for producing nitriding steel
WO2013141030A1 (en) * 2012-03-23 2013-09-26 株式会社クボタ Cast product having alumina barrier layer, and method for manufacturing same
JP2013198917A (en) * 2012-03-23 2013-10-03 Kubota Corp Cast product having alumina barrier layer, and method for manufacturing the same
JP2016223017A (en) * 2016-07-21 2016-12-28 株式会社クボタ Reaction tube for ethylene production having alumina barrier layer
JP2017531092A (en) * 2014-08-18 2017-10-19 イーファウアー シュメッツ ゲゼル シャフト ミット ベシュレンクテル ハフツングIva Schmetz Gmbh Method of manufacturing retort for nitriding furnace and retort thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7326306B2 (en) 2001-10-16 2008-02-05 Honda Giken Kogyo Kabushiki Kaisha Method for producing nitriding steel
WO2013141030A1 (en) * 2012-03-23 2013-09-26 株式会社クボタ Cast product having alumina barrier layer, and method for manufacturing same
JP2013198917A (en) * 2012-03-23 2013-10-03 Kubota Corp Cast product having alumina barrier layer, and method for manufacturing the same
EP2829628A4 (en) * 2012-03-23 2016-03-23 Kubota Kk Cast product having alumina barrier layer, and method for manufacturing same
US11072847B2 (en) 2012-03-23 2021-07-27 Kubota Corporation Cast product having alumina barrier layer
JP2017531092A (en) * 2014-08-18 2017-10-19 イーファウアー シュメッツ ゲゼル シャフト ミット ベシュレンクテル ハフツングIva Schmetz Gmbh Method of manufacturing retort for nitriding furnace and retort thereof
US10294537B2 (en) 2014-08-18 2019-05-21 Iva Schmetz Gmbh Method for producing a retort for a nitriding furnace and retort
JP2016223017A (en) * 2016-07-21 2016-12-28 株式会社クボタ Reaction tube for ethylene production having alumina barrier layer

Also Published As

Publication number Publication date
JP3355696B2 (en) 2002-12-09

Similar Documents

Publication Publication Date Title
JP6694693B2 (en) How to treat stainless steel parts
TW410241B (en) Method of pickling steel in an acidic aqueous pickling solution containing Fe<3+> and Fe<2+>
ES2242330T3 (en) PROCEDURE FOR DECAPAR STAINLESS STEEL.
JPH07276048A (en) Method of assembling pipe or member by tig welding
JPH06306653A (en) Improvement of corrosion resistance of welded site of stainless steel
JPH06260480A (en) Method and device for wet treatment
HU186900B (en) High current density acid-free electrolitic descaling method
US5720824A (en) Propulsion cleaning system
JP3436776B2 (en) Wafer cleaning apparatus and cleaning method
JPS63169391A (en) Metal member for semiconductor producing device
JP3386750B2 (en) Stainless steel pickling finish material with enhanced Fe ion elution suppression action and method for producing the same
JP7038751B2 (en) How to handle stainless steel parts
WO1994015749A1 (en) Welding method and welded structure for forming passivated chromium oxide film on weld
JPH05311455A (en) Stainless steel member for semiconductor production device and surface treatment thereof
JP2000183015A (en) Method and device for cleaning semiconductor substrate
JP2003057393A (en) Decontamination method and decontamination agent
JP4016073B2 (en) Method for forming aluminum oxide passive film, welding method, fluid contact member and fluid supply / exhaust system
JPH091153A (en) Method for removing dissolved oxygen using hydrogen activated by conductor surface
WO1999032690A1 (en) Pickling process with at least two steps
JPH11172478A (en) Descaling of stainless steel
JP3882866B2 (en) Stainless steel descaling method
JPH0514027B2 (en)
JPH05171479A (en) Surface treatment f0r stainless steel
JP7324687B2 (en) Processing system and processing method
JP2010185136A (en) Catalyst for decomposing hydrogen peroxide, storage method thereof and method for decomposing hydrogen peroxide

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091004

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20101004

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111004

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121004

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131004

Year of fee payment: 11

EXPY Cancellation because of completion of term