JPH06306500A - Method for judging progress of oxidation reaction - Google Patents

Method for judging progress of oxidation reaction

Info

Publication number
JPH06306500A
JPH06306500A JP11934893A JP11934893A JPH06306500A JP H06306500 A JPH06306500 A JP H06306500A JP 11934893 A JP11934893 A JP 11934893A JP 11934893 A JP11934893 A JP 11934893A JP H06306500 A JPH06306500 A JP H06306500A
Authority
JP
Japan
Prior art keywords
metal
noble
lead
melting point
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11934893A
Other languages
Japanese (ja)
Inventor
Takeshi Kusakabe
武 日下部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP11934893A priority Critical patent/JPH06306500A/en
Publication of JPH06306500A publication Critical patent/JPH06306500A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To rapidly and conveniently judge the progress of an oxidation reaction at the time of recovering noble metal from noble lead. CONSTITUTION:The m.p. of a sampled metal is measured, and the noble metal content of the sampled metal is obtained from the measured m.p. and the relation between the previously obtained m.p. of the metal and the noble metal grade in the metal, and the progress of the oxidation reaction is judged therefrom. The end point of the oxidation and refining reaction is extremely easily and rapidly obtained in this way.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、銅や鉛の電解精製で発
生するスライムを処理して得られる含貴金属鉛から、鉛
その他の不純物元素をスラグ中に酸化除去もしくは揮発
除去して金と銀とを回収する方法に関する。
FIELD OF THE INVENTION The present invention relates to a precious metal-containing lead obtained by treating slime generated by electrolytic refining of copper and lead, by removing lead and other impurity elements into slag by oxidation or volatilization to remove gold and gold. It relates to a method of recovering silver.

【0002】[0002]

【従来の技術】銅あるいは銅精鉱の乾式製錬では、鉱石
や溶剤中の貴金属は粗銅や粗鉛に吸収され、最終的には
電解精製に生じるアノードスライム中に濃縮する。そし
て、このアノードスライムから得た含貴金属鉛(以下
「貴鉛」と示す。)より貴金属を回収している。
In the dry smelting of copper or copper concentrate, precious metals in ores and solvents are absorbed by crude copper and crude lead and finally concentrated in anode slime produced in electrolytic refining. Then, the noble metal is recovered from the noble metal-containing lead (hereinafter referred to as "noble lead") obtained from this anode slime.

【0003】この回収において、原料が銅電解スライム
の場合には、該スライムを硫酸化焙焼し、水抽出して銅
を分離し、得た残さを酸化焙焼してセレンを揮発除去
し、次いで得た焼成物と還元剤とを混合して加熱溶解し
て貴金属を鉛中に濃縮して貴鉛を得、この貴鉛を処理し
て貴金属を回収する。また、原料が鉛電解スライムの場
合には、該スライムを直接熔解して貴金属を鉛中に濃縮
して貴鉛を得、この貴鉛を処理して貴金属を回収する。
貴鉛よりの貴金属の回収は、該貴鉛を加熱熔解して熔体
とし、この熔体に空気を吹き当てて鉛やその他の不純物
を酸化あるいは揮発させ除去する。従来この酸化除去は
分銀炉と称される反射炉を用いて行われている。
In this recovery, when the raw material is copper electrolytic slime, the slime is sulphated and roasted, extracted with water to separate copper, and the resulting residue is oxidatively roasted to volatilize and remove selenium, Next, the obtained calcined product and a reducing agent are mixed, heated and dissolved to concentrate the noble metal in lead to obtain noble lead, and the noble metal is treated to recover the noble metal. When the raw material is lead electrolytic slime, the slime is directly melted to concentrate the precious metal in lead to obtain precious lead, and the precious lead is treated to recover the precious metal.
To recover the noble metal from the noble lead, the noble lead is heated and melted to form a melt, and air is blown to the melt to oxidize or volatilize lead and other impurities to remove them. Conventionally, this oxidization removal is performed using a reverberatory furnace called a weight separating furnace.

【0004】なお、近年求められるより一層の製造コス
トの削減を達成するためには、この反射炉タイプの分銀
炉を用いた操業方法の改良では必ずしも十分とは言えな
いので上吹き回転炉(TBRC)を使用したり、特殊な
ランスを用いて酸素を熔体底部より吹き込むことによ
り、より酸化効率を高めようとすることが試みられてい
る。
In order to achieve the further reduction in manufacturing cost required in recent years, it is not always sufficient to improve the operating method using this reverberatory furnace type centralization furnace, and therefore the upper blowing rotary furnace ( It has been attempted to further increase the oxidation efficiency by using (TBRC) or by blowing oxygen from the bottom of the melt using a special lance.

【0005】何れの方法を採用するにしろ、反応として
は貴鉛中の各元素が酸化され易い順に酸化され、揮発
し、あるいはスラグとしてメタルより分離除去される。
また、処理される貴鉛の組成によっては、酸化反応があ
る程度進行した段階でスラグを炉外に排出して反応性を
維持したり、あるいはスラグを炉外に排出した後に貴鉛
を追加装入して処理効率の向上を図ったり、あるいはテ
ルルを除去するためにスラグを炉外に排出後アルカリ金
属化合物やアルカリ土類金属化合物を炉内に添加した
り、あるいは銅の除去を促進するためにスラグを炉外に
排出し、その後鉛を炉内に追加装入したりする。
Whichever method is adopted, as a reaction, each element in the noble lead is oxidized in the order in which it is easily oxidized, volatilizes, or is separated and removed from the metal as slag.
Depending on the composition of the noble lead to be treated, the slag is discharged to the outside of the furnace to maintain the reactivity after the oxidation reaction progresses to some extent, or the noble lead is additionally charged after the slag is discharged to the outside of the furnace. To improve the treatment efficiency, or to discharge the slag out of the furnace to remove the tellurium, add an alkali metal compound or an alkaline earth metal compound into the furnace, or accelerate the removal of copper. The slag is discharged outside the furnace, and then lead is additionally charged into the furnace.

【0006】ところで、この酸化反応の進行度を正確に
把握することは、上記反応途中のスラグの炉外への排出
等の各操作を効率よく実施するために不可欠である。ま
た、酸化反応の末期にはメタル中の貴金属品位が極めて
高くなり、かつスラグ中の貴金属品位の変化も激しい。
よって、反応の終了時点の判定、すなわち終点の判定を
誤ると、例えば酸化しすぎるとスラグ中に貴金属が移行
し、貴金属ロスを増加させ、例えば酸化不十分の場合に
は以後の銀の電解精製時にスライム等を多発し、支障が
生じることとなる。従って、上記反応の終点の判定をい
かに正確にするかが極めて重要な問題となる。
By the way, it is indispensable to accurately grasp the progress of the oxidation reaction in order to efficiently carry out each operation such as discharging the slag during the reaction to the outside of the furnace. In addition, the noble metal quality in the metal becomes extremely high at the end of the oxidation reaction, and the noble metal quality in the slag changes drastically.
Therefore, if the determination of the end point of the reaction, that is, the determination of the end point is erroneous, for example, if the oxidation is excessive, the precious metal migrates into the slag, increasing the loss of the precious metal, for example, in the case of insufficient oxidation, subsequent electrolytic refining of silver. Occasionally, slimes and the like occur frequently, which causes trouble. Therefore, how to accurately determine the end point of the reaction is a very important problem.

【0007】従来よりこの反応の進行度を推定、あるい
は測定するために以下のような方法が採られている。 (1)過去の操業結果に基づいて酸素効率を評価してお
き、送風量と予想酸素効率とから反応の進行度を推定す
る。 (2)スラグの生成速度から推定する。この方法は一定
の酸化条件で操業すれば、ある反応段階において酸化さ
れる元素の種類によってスラグの生成速度が早くなった
り遅くなったりするという現象に基づくものである。 (3)生成したスラグの流動性、色などの性状からその
品位を推定する。 (4)メタルのサンプルを採取し、その色や性状を観察
し、組成を推定する。 (5)メタルのサンプルを採取し、分析を行う。
Conventionally, the following method has been adopted to estimate or measure the progress of this reaction. (1) The oxygen efficiency is evaluated based on the past operation results, and the progress of the reaction is estimated from the air flow rate and the expected oxygen efficiency. (2) Estimate from the generation rate of slag. This method is based on the phenomenon that when operating under constant oxidation conditions, the rate of slag formation increases or decreases depending on the type of element that is oxidized in a certain reaction stage. (3) The quality of the generated slag is estimated from properties such as fluidity and color. (4) A metal sample is taken, its color and properties are observed, and the composition is estimated. (5) A metal sample is taken and analyzed.

【0008】これらの方法のうち(1)の方法には、該
方法により推定した終点は酸化効率のばらつきにより実
際の反応終点と一致しないという問題があり、(2)、
(3)、(4)の方法には熟練を要するという問題があ
り、(5)の方法では時間がかかりすぎ、現場の操業管
理には適さないという問題がある。
Among these methods, the method (1) has a problem that the end point estimated by the method does not coincide with the actual reaction end point due to variations in the oxidation efficiency.
The methods (3) and (4) have a problem that skill is required, and the method (5) has a problem that it takes too much time and is not suitable for on-site operation management.

【0009】[0009]

【発明が解決しようとする課題】本発明の目的は、貴鉛
より貴金属を回収するに際して酸化反応の進行度を迅
速、且つ簡便に判定し得る方法の提供にある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method capable of quickly and simply determining the progress of an oxidation reaction when recovering a noble metal from noble lead.

【0010】[0010]

【課題を解決するための手段】本発明者らは上記課題を
解消すべく種々検討した結果、熔体中のメタル組成と融
点との間に明確な関係のあることを見出し、本発明にい
たった。すなわち、上記課題を解決する本発明の方法
は、貴鉛より貴金属を回収する方法において、サンプリ
ングして得たサンプルメタルの融点を測定し、得た融点
と、予め求めておいたメタルの融点と該メタル中の貴金
属品位との関係とを用いてサンプルメタル中の貴金属割
合を求めるものである。
As a result of various studies to solve the above-mentioned problems, the present inventors have found that there is a clear relationship between the metal composition in the melt and the melting point, and the present invention has led to the present invention. It was That is, the method of the present invention for solving the above problems, in the method of recovering a noble metal from noble lead, the melting point of the sample metal obtained by sampling is measured, and the obtained melting point and the melting point of the metal obtained in advance. The ratio of the noble metal in the sample metal is obtained by using the relationship with the quality of the noble metal in the metal.

【0011】[0011]

【作用】本発明の方法においては、予め貴金属品位の異
なるサンプルを用いてメタルの融点を求めておく。例え
ば、図1はAg25〜32重量%、Au1〜3重量%、Bi
20〜30重量%、Pb10〜15重量%、Sb10〜20重量%、
Te5〜10重量%の合成貴鉛350Kgを反射炉内に装入
し、加熱熔解し、温度1050℃に維持しつつ空気を120Nm3
/hの割合で熔体表面に吹き当てつつ適宜発生したメタル
をサンプリングしてその融点と組成とを調べて得たメタ
ルの融点と貴金属(Au+Ag)品位との関係を示した
ものであり、両者間に良好な相関関係が存在することを
示している。
In the method of the present invention, the melting points of metals are obtained in advance by using samples having different noble metal grades. For example, FIG. 1 shows Ag 25-32 wt%, Au 1-3 wt%, Bi
20-30% by weight, Pb10-15% by weight, Sb10-20% by weight,
350 kg of synthetic noble lead of 5 to 10% by weight of Te is charged into a reverberatory furnace, heated and melted, and air is maintained at 120 Nm 3 while maintaining the temperature at 1050 ° C
It shows the relationship between the melting point of precious metal (Au + Ag) and the melting point of the metal obtained by sampling the appropriately generated metal while spraying it on the surface of the melt at a ratio of / h, and It shows that there is a good correlation between them.

【0012】図1に示される相関関係を検量線として用
いれば、メタルの融点を求めることにより該メタル中の
Au+Ag品位を求めることは可能である。そして、貴
鉛中の他の貴金属であるPt、Pd等はAuやAgと比
較してその量は少なく、かつAuやAgに対する割合の
変動も少なく、本発明の方法により貴鉛中の貴金属量の
定量結果にほとんど影響を与えない。
By using the correlation shown in FIG. 1 as a calibration curve, it is possible to determine the Au + Ag quality in the metal by determining the melting point of the metal. The amount of other noble metals in the noble lead, such as Pt and Pd, is smaller than that of Au and Ag, and its proportion to Au and Ag is less changed, and the amount of noble metal in the noble lead is increased by the method of the present invention. Has almost no effect on the quantification result of.

【0013】なお、予めメタルの融点と貴金属品位との
相関を求めるに際し、採用する融点測定法は実際のサン
プルの融点を測定する方法と同じ方法とすることが好ま
しい。
When the correlation between the melting point of the metal and the quality of the noble metal is obtained in advance, it is preferable that the melting point measuring method adopted is the same as the method of measuring the actual melting point of the sample.

【0014】[0014]

【実施例】次に本発明の実施例について述べる。 (実施例1)貴金属としてAu,Ag,Pd,Ptを合
計で28.1%、Biを20.0%、Cuを9.0%、Teを6.2
%、Pbを12.0%、Sbを17.0%の割合で含む貴鉛2t
を容積0.25m3、熔体表面積1.69m2の反射炉に装入し、
重油バーナーを用いて加熱熔解した。加熱開始(操業開
始)後2時間で貴鉛は完全に熔解した。このとき、山里
エレクトロナイト社製複合コンビランスを用いてメタル
の融点を測定し、分析試料を採取した。その結果、メタ
ルの融点は411℃であり、貴金属合計品位は30.5%、S
bが18.6%、Pbが12.6%、Biが9.8%、Teが6.2
%、Cuが9.8%であった。なお、この貴金属品位の値
は図1より求めた30%とほぼ同じであった。
EXAMPLES Next, examples of the present invention will be described. (Example 1) Au, Ag, Pd, and Pt as the noble metals were 28.1% in total, Bi was 20.0%, Cu was 9.0%, and Te was 6.2.
%, Pb 12.0%, Sb 17.0% noble lead 2t
Was charged into a reverberatory furnace with a volume of 0.25 m 3 and a surface area of molten metal of 1.69 m 2 .
It was melted by heating using a heavy oil burner. Two hours after the start of heating (start of operation), the noble lead was completely melted. At this time, the melting point of the metal was measured using a composite combination manufactured by Yamazato Electronite Co., and an analysis sample was collected. As a result, the melting point of the metal was 411 ° C, the total quality of the precious metals was 30.5%, and the S
b is 18.6%, Pb is 12.6%, Bi is 9.8%, Te is 6.2.
%, Cu was 9.8%. The value of this noble metal grade was almost the same as 30% obtained from FIG.

【0015】その後上吹きランスより空気を15Nm3/min
の割合で熔体表面に吹き当てて酸化精製を開始した。酸
化精製により生成した浮きカスを随時炉外に掻き出し、
1時間おきに200〜400Kgの貴鉛を追加装入し、生成した
Bi密陀を炉外に排出した。なお、反応により発生する
揮発物はバッグフィルターを用いて回収した。
After that, the air is blown from the top blowing lance at 15 Nm 3 / min.
The oxidative purification was started by spraying on the surface of the melt at a ratio of. Rubbing the floating debris generated by oxidation refining outside the furnace at any time,
200-400 kg of noble lead was additionally charged every hour, and the produced Bi dense material was discharged out of the furnace. The volatile matter generated by the reaction was collected using a bag filter.

【0016】操業開始後15時間を過ぎると揮発物の発生
が減少したため、上記と同様にして融点を測定し、分析
試料を採取した。この時点でメタルの融点は235℃であ
り、貴金属合計品位は46.7%、Sbが0.5%、Pbが2.5
%、Biが10.1%、Teが6.4%、Cuが10.1%であ
り、Sb、Pbはほぼ除去できたと判断できた。ちなみ
にSbとPbの除去率とを求めたところ、それぞれ95%
以上、85%以上であった。なお、この貴金属品位の値は
図1より求めた45%とほぼ同じであった。
Generation of volatiles decreased after 15 hours from the start of the operation. Therefore, the melting point was measured and an analytical sample was taken in the same manner as above. At this point, the melting point of the metal is 235 ° C, the total quality of precious metals is 46.7%, Sb is 0.5%, Pb is 2.5%.
%, Bi was 10.1%, Te was 6.4%, Cu was 10.1%, and it was judged that Sb and Pb were almost removed. By the way, when the removal rates of Sb and Pb were calculated, each was 95%.
It was above 85%. The value of this noble metal grade was almost the same as 45% obtained from FIG.

【0017】その後、同様な操業を継続し、操業開始よ
り31時間後のメタルの融点を上記と同様にして測定し
た。この時点でメタルの融点は802℃であり、貴金属合
計品位は75.6%、Sbが<0.1%、Pbが0.5%、Biが
6.3%、Teが9.9%、Cuが6.3%であった。なお、こ
の貴金属品位の値は図1より求めた76%とほぼ同じであ
った。
Thereafter, the same operation was continued, and the melting point of the metal 31 hours after the start of operation was measured in the same manner as above. At this point, the melting point of the metal is 802 ° C, the total quality of precious metals is 75.6%, Sb is <0.1%, Pb is 0.5%, Bi is
The content was 6.3%, Te was 9.9%, and Cu was 6.3%. The value of this noble metal quality was almost the same as 76% obtained from FIG.

【0018】操業開始より39時間後には単位時間当たり
の密陀生成量も少なくなり、貴鉛の追加装入もできなく
なった。この時点までに追加装入した貴鉛の量は5.4t
となっていた。この時点でのメタルの融点を上記と同様
にして測定した。その結果、メタルの融点は850℃であ
り、貴金属合計品位は85.7%、Sbが<0.1%、Pbが0.
2%、Biが0.8%、Teが9.0%、Cuが4.0%であり、
この時点でBiはほぼ除去できていることがわかった。
なお、この貴金属品位の値は図1より求めた84%とほぼ
同じであった。
After 39 hours from the start of operation, the amount of dense metal produced per unit time decreased, and it became impossible to additionally charge precious lead. The amount of precious lead additionally charged up to this point is 5.4t.
It was. The melting point of the metal at this point was measured in the same manner as above. As a result, the melting point of the metal is 850 ° C, the total quality of precious metals is 85.7%, Sb is <0.1%, Pb is 0.
2%, Bi 0.8%, Te 9.0%, Cu 4.0%,
It was found that Bi was almost removed at this point.
The value of this noble metal grade was almost the same as 84% obtained from FIG.

【0019】次にTeを除去するためにソーダ灰を20Kg
づつ、10回に分けて炉内に装入し、生成するソーダガラ
ミを都度炉外に除去しつつ酸化を継続した。操業開始後
54時間でメタルの融点を上記と同様にして測定した。そ
の結果、メタルの融点は938℃であり、貴金属合計品位
は97.0%、Sbが<0.1%、Pbが0.14%、Biが0.8
%、Teが0.6%、Cuが2.0%であり、サンプルの色は
赤色であった。なお、この貴金属品位の値は図1より求
めた96%とほぼ同じであった。
Next, to remove Te, 20 kg of soda ash
Each time, it was charged 10 times into the furnace, and the oxidation was continued while removing the generated soda lice outside the furnace each time. After the start of operation
The melting point of the metal was measured at 54 hours in the same manner as above. As a result, the melting point of the metal was 938 ° C, the total grade of precious metals was 97.0%, Sb <0.1%, Pb 0.14%, Bi 0.8.
%, Te was 0.6%, Cu was 2.0%, and the color of the sample was red. The value of the noble metal quality was almost the same as 96% obtained from FIG.

【0020】最後にメタル中に残存しているCuを除去
するために熔体温度を1030℃とし、Pb300Kgを炉内に
装入し、生成するスラグを炉外に除去しつつ酸化精製を
継続した。操業開始後62時間でメタルの融点を上記と同
様にして測定した。その結果、メタルの融点は958℃で
あり、貴金属合計品位は99.2%、Sbが<0.1%、Pbが
<0.1%、Biが0.3%、Teが<0.1%、Cuが0.5%であ
り、Cuの除去が終了していることがわかった。なお、
この貴金属品位の値は図1より求めた99%とほぼ同じで
あった。
Finally, in order to remove Cu remaining in the metal, the temperature of the melt was set to 1030 ° C., 300 kg of Pb was charged into the furnace, and the slag produced was removed outside the furnace to continue the oxidative refining. . The melting point of the metal was measured 62 hours after the start of operation in the same manner as above. As a result, the melting point of the metal was 958 ° C, the total quality of precious metals was 99.2%, Sb was <0.1%, Pb was
<0.1%, Bi: 0.3%, Te: <0.1%, Cu: 0.5%, which means that Cu removal is completed. In addition,
The value of this noble metal grade was almost the same as 99% obtained from FIG.

【0021】以上の結果よりわかるように、本発明の方
法によれば、メタルの融点を測定することにより容易に
反応の終点を求めることができる。
As can be seen from the above results, according to the method of the present invention, the end point of the reaction can be easily obtained by measuring the melting point of the metal.

【0022】[0022]

【発明の効果】本発明の方法に従えば極めて容易、かつ
迅速に酸化精製反応の終了点を求めることができる。そ
して、この方法を用いることにより操業の適正化が容易
となる。
According to the method of the present invention, the end point of the oxidative purification reaction can be determined extremely easily and quickly. Then, by using this method, it becomes easy to optimize the operation.

【図面の簡単な説明】[Brief description of drawings]

【図1】合成貴鉛を用いて得たメタルの融点とAu+A
g品位との関係図である。
1] Melting point and Au + A of metal obtained by using synthetic noble lead
It is a relationship diagram with g quality.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】貴鉛より貴金属を回収する方法において、
サンプリングして得たサンプルメタルの融点を測定し、
得た融点と、予め求めておいたメタルの融点と該メタル
中の貴金属品位との関係とを用いてサンプルメタル中の
貴金属割合を求めることを特徴とする酸化反応の進行度
の判定方法。
1. A method for recovering precious metal from precious lead, comprising:
Measure the melting point of the sample metal obtained by sampling,
A method for judging the degree of progress of an oxidation reaction, characterized in that a ratio of a noble metal in a sample metal is obtained by using the obtained melting point and a previously obtained relation between the melting point of the metal and the quality of the noble metal in the metal.
JP11934893A 1993-04-23 1993-04-23 Method for judging progress of oxidation reaction Pending JPH06306500A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11934893A JPH06306500A (en) 1993-04-23 1993-04-23 Method for judging progress of oxidation reaction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11934893A JPH06306500A (en) 1993-04-23 1993-04-23 Method for judging progress of oxidation reaction

Publications (1)

Publication Number Publication Date
JPH06306500A true JPH06306500A (en) 1994-11-01

Family

ID=14759271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11934893A Pending JPH06306500A (en) 1993-04-23 1993-04-23 Method for judging progress of oxidation reaction

Country Status (1)

Country Link
JP (1) JPH06306500A (en)

Similar Documents

Publication Publication Date Title
Hait et al. Processing of copper electrorefining anode slime: a review
US11839938B2 (en) Solder and method for producing high purity lead
CA2933448C (en) A process for extracting noble metals from anode slime
Cooper The treatment of copper refinery anode slimes
JPH06306500A (en) Method for judging progress of oxidation reaction
US1896807A (en) Process for the recovery of platimum and its bymetals from mattes
JP3424885B2 (en) Copper electrolytic slime treatment method
EP2417274B1 (en) Method of refining copper bullion comprising antimony and/or arsenic
JP4155177B2 (en) Method for recovering silver from silver-lead-containing materials
JPH05263160A (en) Method for recovering noble metal
Mirzanova et al. Technology for processing industrial waste containing non-ferrous metals
JPH07118769A (en) Treatment judging method of product of silver separation furnace
JPH0813052A (en) Method for controlling oxidation treatment stage in recovery of noble metal
JPS6348929B2 (en)
JP2020147811A (en) Precious metal recovery method
JP4155176B2 (en) Method for recovering silver from silver-lead-containing materials
US20220203482A1 (en) Solder and method for producing high purity lead
US2043573A (en) Process for recovering tin
RU2191835C1 (en) Method of processing lead wastes containing noble and rare metals
JPH08199255A (en) Method for classifying and removing antimony and lead from lead bullon
RU2240367C1 (en) Method of recovering precious metals from gravitation concentrates
RU2170773C2 (en) Method of processing zinc cakes
JPS6352093B2 (en)
Drzazga et al. Copper-cobalt cake as a potential source of germanium
JP2000313924A (en) Treatment of copper sulfide