JPH05263160A - Method for recovering noble metal - Google Patents

Method for recovering noble metal

Info

Publication number
JPH05263160A
JPH05263160A JP9228692A JP9228692A JPH05263160A JP H05263160 A JPH05263160 A JP H05263160A JP 9228692 A JP9228692 A JP 9228692A JP 9228692 A JP9228692 A JP 9228692A JP H05263160 A JPH05263160 A JP H05263160A
Authority
JP
Japan
Prior art keywords
metal
noble
lead
weight
partial pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9228692A
Other languages
Japanese (ja)
Inventor
Yoshiaki Mori
芳秋 森
Nobuyuki Kii
伸之 紀伊
Yasuhiro Tsugita
泰裕 次田
Takeshi Kusakabe
武 日下部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP9228692A priority Critical patent/JPH05263160A/en
Publication of JPH05263160A publication Critical patent/JPH05263160A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PURPOSE:To rapidly and simply detect the progress of an oxidation reaction and to surely recover noble metals by oxidizing the molten noble lead contg. noble metals to obtain the oxides of lead, etc., to be removable and measuring the oxygen partial pressure of the metal in the melt. CONSTITUTION:A noble lead contg. noble metals is heated and melted. The molten metal is air-blown and oxidized. Consequently, the lead and impurities are converted to their oxides, and the oxides a entrained by the slag and removed or volatilzed to recover the noble metals. In this case, the oxygen partial pressure of the metal in the melt is measured, the grade of the noble metal in the metal is obtained from the measured value and the relation between the previously obtained oxygen partial pressure in the metal and the grade of the noble metal in the metal, and oxidation is carried out. Consequently, the end point of oxidation is accurately determined, and the noble metal recovering operation precisely and efficiently controlled.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、銅や鉛の電解精製で発
生するスライムを処理して得られる含貴金属鉛(貴鉛と
いう)から、鉛その他の不純物元素をスラグ中に酸化除
去もしくは揮発除去して金と銀とを回収する方法に関す
る。
BACKGROUND OF THE INVENTION The present invention relates to the removal or volatilization of lead and other impurity elements in slag from a noble metal-containing lead (referred to as noble lead) obtained by treating slime generated by electrolytic refining of copper and lead. It relates to a method of removing gold and silver to recover them.

【0002】[0002]

【従来の技術】銅あるいは鉛精鉱の乾式製錬では、鉱石
や熔剤中の貴金属は粗銅や粗鉛中に吸収され、最終的に
は電解精製時に生じるアノードスライム中に濃縮する。
そして、このアノードスライムから得た貴鉛より貴金属
の回収を行なっている。
In the dry smelting of copper or lead concentrates, precious metals in ores and melts are absorbed in crude copper and crude lead and finally concentrated in anode slime produced during electrolytic refining.
Then, the precious metal is recovered from the precious lead obtained from this anode slime.

【0003】この回収において、原料が銅電解スライム
の場合には、該スライムを硫酸化ばい焼し、水抽出して
銅を分離し、得た残渣を酸化ばい焼してセレンを揮発分
離し、次いで得たばい焼物と還元剤とを混合して加熱熔
解して貴金属を貴鉛中に濃縮し、得た貴鉛を処理する。
また、原料が鉛電解スライムの場合には、該スライムを
直接熔解することにより貴金属を貴鉛中に濃縮し、得た
貴鉛を処理する。また、パークス法で得られた亜鉛クラ
ストを原料とする場合には、該亜鉛クラストの亜鉛を蒸
留することにより得た貴鉛を処理する。
In this recovery, when the raw material is copper electrolytic slime, the slime is sulphated roasted and extracted with water to separate copper, and the obtained residue is roasted by oxidation to selenium volatilize and separate, Then, the obtained roasted product and a reducing agent are mixed and heated to melt to concentrate the noble metal in the noble lead, and the noble lead thus obtained is treated.
When the raw material is lead electrolytic slime, the precious metal is concentrated in the precious lead by directly melting the slime, and the obtained precious lead is treated. Further, when the zinc crust obtained by the Perks method is used as a raw material, the noble lead obtained by distilling the zinc of the zinc crust is treated.

【0004】上記貴鉛よりの貴金属の回収は、該貴鉛を
加熱熔解して熔体とし、熔体に空気を吹き当て、貴鉛中
の鉛や不純物を順次酸化除去する。通常この酸化除去は
分銀炉と呼ばれる反射炉で行なわれる。酸化効率を改善
するために最近上吹き回転炉(TBRC)を用いる方法
や、特殊なランスを用いて酸素を熔体底部より吹き込む
方法(特公平2−53492)が提案され、実用化され
ている。
To recover the noble metal from the noble lead, the noble lead is heated and melted to form a melt, and air is blown to the melt to sequentially remove the lead and impurities in the noble lead by oxidation. Usually, this oxidation removal is carried out in a reverberatory furnace called a weight separating furnace. Recently, a method of using a top-blown rotary furnace (TBRC) to improve the oxidation efficiency and a method of blowing oxygen from the bottom of the melt using a special lance have been proposed and put into practical use. ..

【0005】いずれの型式の炉を用いるにせよ、反応と
しては貴鉛中の各元素が酸化されやすい順に従って酸化
揮発、或いはスラグとしてメタルより除去される。ま
た、処理される貴鉛の組成によっては、酸化反応がある
程度進行した段階でスラグを排出し、貴鉛を追加装入し
たり、生成したスラグを分別して炉外に排出したり、テ
ルルを除去するためにアルカリ、或いはアルカリ土類化
合物を添加したり、脱銅を促進するために鉛を加えたり
する場合があることも同じである。
Regardless of which type of furnace is used, as a reaction, each element in the noble lead is oxidized and volatilized or removed from the metal as slag according to the order in which it is easily oxidized. Also, depending on the composition of the noble lead to be treated, slag is discharged when the oxidation reaction has progressed to some extent, additional noble lead is charged, the generated slag is separated and discharged to the outside of the furnace, and tellurium is removed. It is also the same that an alkali or alkaline earth compound may be added to do so, or lead may be added to accelerate decoppering.

【0006】ところで、反応の進行度を正確に把握する
ことは、上記反応途中のスラグの分別排出等の各操作を
効率よく行うために不可欠である。また、酸化反応の末
期には、メタル中の貴金属品位が極めて高くなり、且つ
スラグ中の貴金属品位の変化も激しい。よって、終点の
判定を誤ると、酸化し過ぎによって、スラグへの貴金属
損失が激しくなったり、酸化不足によって、生成物の粗
銀の品位に低下を来し、以後の粗銀よりの貴金属の回収
に支障を来すことになる。
By the way, it is indispensable to accurately grasp the progress of the reaction in order to efficiently perform each operation such as the separate discharge of the slag during the reaction. Further, at the end of the oxidation reaction, the quality of the precious metal in the metal becomes extremely high, and the quality of the precious metal in the slag changes drastically. Therefore, if the end point is erroneously determined, excessive oxidation will result in severe loss of precious metal to the slag, or insufficient oxidation will result in deterioration of the quality of the crude silver product, and subsequent recovery of precious metal from the crude silver. It will cause problems.

【0007】従って、メタル中の貴金属品位が所定の値
となった時点で反応を停止することが重要である。この
ために反応の進行度を正確に把握することは重要な管理
点となっている。
Therefore, it is important to stop the reaction when the quality of the noble metal in the metal reaches a predetermined value. For this reason, it is an important control point to accurately grasp the progress of the reaction.

【0008】従来よりこの反応の進行度を推定、或いは
測定するために以下のような方法が採られている。
Conventionally, the following method has been adopted to estimate or measure the progress of this reaction.

【0009】(1)過去の操業結果に基づいて酸素効率
を評価しておき、送風量と予想酸素効率とから反応の進
行度を推定する。
(1) The oxygen efficiency is evaluated based on the past operation results, and the progress of the reaction is estimated from the air flow rate and the expected oxygen efficiency.

【0010】(2)スラグの生成速度から推定する。(2) Estimated from the generation rate of slag.

【0011】これは、ある反応段階において、一定の酸
化条件下では、酸化される元素の種類によってスラグの
生成速度が早くなったり遅くなったりするという現象に
基づくものである。
This is based on the phenomenon that, in a certain reaction stage, under a certain oxidizing condition, the rate of slag generation becomes faster or slower depending on the kind of the element to be oxidized.

【0012】(3)生成したスラグの流動性、色などの
性状からその品位を推定する。
(3) The quality of the produced slag is estimated from the properties such as fluidity and color.

【0013】(4)メタルのサンプルを採取し、その色
や性状を観察し、組成を推定する。
(4) A metal sample is taken, its color and properties are observed, and the composition is estimated.

【0014】(5)メタルのサンプルを採取し、分析を
行う。
(5) A metal sample is taken and analyzed.

【0015】しかし、(1)の方法では、酸化効率のば
らつきにより結果が異なるという問題があり、(2)、
(3)、(4)の方法には熟練者を要するという問題が
あり、(5)の方法では時間がかかり過ぎるので現場の
操業管理には適さないという問題がある。
However, the method (1) has a problem that the result varies depending on the variation of the oxidation efficiency.
The methods (3) and (4) have a problem that a skilled person is required, and the method (5) has a problem that it is not suitable for operation management on site because it takes too much time.

【0016】[0016]

【発明が解決しようとする課題】本発明の目的は、貴鉛
より貴金属の回収に際して酸化反応の進行度を迅速、且
つ簡便に測定し得る方法の提供にある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method capable of rapidly and simply measuring the progress of an oxidation reaction when recovering a noble metal from a noble lead.

【0017】[0017]

【課題を解決するための手段】本発明者らは、熔体にし
た貴鉛の酸化工程を検討した結果、熔体中のメタルの組
成と酸素分圧との間に明確な関係のあることを見出し本
発明に至った。
Means for Solving the Problems As a result of studying the oxidation process of molten noble lead in the molten metal, the present inventors have found that there is a clear relationship between the composition of the metal in the molten metal and the oxygen partial pressure. This led to the present invention.

【0018】上記課題を解決する本発明の方法は、貴金
属を含む貴鉛を熔体にして酸化処理し、鉛を酸化物とし
てスラグへ除去し、貴金属をメタルに回収する方法にお
いて、熔体中のメタルの酸素分圧を測定し、得た酸素分
圧測定値と、予め求めておいた酸素分圧とメタル中の貴
金属品位との関係とからメタル中の貴金属の割合を求め
つつ酸化処理を行うものである。
The method of the present invention for solving the above-mentioned problems is a method of oxidizing precious lead containing a noble metal into a liquid, oxidizing the lead to form an oxide in a slag, and recovering the precious metal into a metal. Oxygen partial pressure of the metal is measured, and the oxidation treatment is performed while obtaining the ratio of the noble metal in the metal from the obtained oxygen partial pressure measurement value and the relationship between the oxygen partial pressure and the noble metal grade in the metal that have been obtained in advance. It is something to do.

【0019】なお、本発明において酸素分圧は酸素濃淡
電池を用いた酸素センサにより測定する。酸素分圧は連
続的に測定しても良く、消耗型センサを用いて逐時的に
測定しても良い。
In the present invention, the oxygen partial pressure is measured by an oxygen sensor using an oxygen concentration battery. The oxygen partial pressure may be measured continuously, or may be measured intermittently using a consumable sensor.

【0020】[0020]

【作用】本発明において、回収すべき貴金属の主成分は
銀である。この銀の中に金や白金やパラジウムが含まれ
ることになる。予めメタル中の酸素分圧と貴金属品位と
の関係を求めるに際し、実際に貴鉛を用いてテストを行
うことにより得てもよく、熱力学的計算により求めても
よい。以下、図を用いて本発明を説明する。
In the present invention, the main component of the noble metal to be recovered is silver. This silver will contain gold, platinum, and palladium. When obtaining the relationship between the oxygen partial pressure in the metal and the noble metal quality in advance, it may be obtained by actually performing a test using noble lead, or may be obtained by a thermodynamic calculation. The present invention will be described below with reference to the drawings.

【0021】図1は、Ag:25〜32重量%、Au:
2〜4重量%、Bi:25〜30重量%、Pb:10〜
15重量%、Cu:7〜12重量%、Sb:9〜13重
量%の範囲の種々の組成の貴鉛をそれぞれ2Kgづつア
ルミナ坩堝に入れ、約1000℃で加熱熔解し、得た熔
体中に酸素富化空気を吹き込み、メタルを酸化しつつ、
消耗型酸素センサを該メタル中に浸漬し、測定して得た
酸素分圧と、その時のメタル中の金品位と銀品位との含
有量(以下、これを「貴金属品位」と言う。)との関係
を示したものである。
FIG. 1 shows Ag: 25 to 32% by weight, Au:
2 to 4% by weight, Bi: 25 to 30% by weight, Pb: 10
Noble lead of various compositions in the range of 15 wt%, Cu: 7 to 12 wt%, Sb: 9 to 13 wt% was put into an alumina crucible in an amount of 2 kg each, and the mixture was heated and melted at about 1000 ° C. Blow oxygen-enriched air into the metal to oxidize the metal,
The oxygen partial pressure obtained by immersing the consumable oxygen sensor in the metal and measuring it, and the contents of the gold grade and the silver grade in the metal at that time (hereinafter referred to as "precious metal grade"). It shows the relationship of.

【0022】図1は、メタル中の酸素分圧とメタル中の
貴金属品位とに明瞭な相関があることを示している。よ
って、この関係を利用すれば、酸化過程にあるメタルの
酸素分圧を測定するだけで、メタル中の貴金属品位を推
定できることになる。貴鉛中の随伴元素の種類や品位に
より得られる酸素分圧−貴金属品位曲線に差が生ずるこ
とも考えられるが、そのような場合には、予め処理する
組成の貴鉛を用いてメタル中の酸素分圧と貴金属品位と
を求めておけばよい。
FIG. 1 shows that there is a clear correlation between the oxygen partial pressure in the metal and the noble metal quality in the metal. Therefore, if this relationship is utilized, the quality of the precious metal in the metal can be estimated only by measuring the oxygen partial pressure of the metal in the oxidation process. Oxygen partial pressure obtained depending on the type and quality of the accompanying elements in the noble lead may differ from the noble metal quality curve.However, in such a case, the noble lead of the composition to be pretreated should be used. It is sufficient to obtain the oxygen partial pressure and the precious metal quality.

【0023】なお、酸素分圧の測定方法については特開
昭61−261445号公報に詳述されているので省略
する。
Since the method for measuring the oxygen partial pressure is described in detail in Japanese Patent Laid-Open No. 61-261445, its description is omitted.

【0024】[0024]

【実施例】次に本発明の実施例について述べる [実施例1] ビーカーテスト:Au+Ag:30.1重量%、Pb:
19.6重量%、Sb:10.1重量%、Bi:29.
5重量%、Cu:6.59重量%を含む貴鉛2Kgをア
ルミナ坩堝にいれ、1000℃に加熱して熔解し、得た
熔体中に酸素80体積%の酸素富化空気を0.51/m
inの割合で吹き込み、貴鉛中に含まれるPb、Sb、
Bi、Cu等を酸化してスラグへ除去した。なお、貴鉛
が完全に熔解したときの熔体中のメタルの酸素分圧は、
1000℃に換算したときの値で10-9.28 atm.で
あった。
EXAMPLES Next, examples of the present invention will be described. [Example 1] Beaker test: Au + Ag: 30.1% by weight, Pb:
19.6% by weight, Sb: 10.1% by weight, Bi: 29.
2 kg of precious lead containing 5 wt% and Cu: 6.59 wt% was put into an alumina crucible and heated to 1000 ° C. to melt, and 0.51 of oxygen-enriched air containing 80 vol% oxygen was added to the obtained melt. / M
Pb, Sb, contained in noble lead, blown in at a ratio of in
Bi, Cu, etc. were oxidized and removed to slag. The oxygen partial pressure of the metal in the molten metal when the noble lead is completely melted is
The value when converted to 1000 ° C. is 10 −9.28 atm. Met.

【0025】固体電解質としてマグネシアで安定化した
ジルコニアを用い、参照電極としてFe−FeOを用い
た消耗型酸素センサ(山里エレクトロナイト株式会社
製)で反応中のメタルの酸素分圧を所定時間毎に測定し
た。酸素富化空気を吹き込み始めてから220分後、メ
タルの酸素分圧は1000℃に換算したときの値で10
-6.98 atm.であった。
With a consumable oxygen sensor (manufactured by Yamazato Electronite Co., Ltd.) that uses magnesia-stabilized zirconia as the solid electrolyte and Fe-FeO as the reference electrode, the oxygen partial pressure of the metal during the reaction is determined every predetermined time. It was measured. 220 minutes after the start of blowing oxygen-enriched air, the oxygen partial pressure of the metal is 10 when converted to 1000 ° C.
-6.98 atm. Met.

【0026】図1の結果とこの酸素分圧とから、メタル
中の貴金属品位が50%となったものと推定し、メタル
の小量をサンプルとして採取し、分析した。サンプリン
グは内径8mmの不透明石英管に吸引することにより行
った。その後スラグを排出した。
From the results of FIG. 1 and the oxygen partial pressure, it was estimated that the noble metal grade in the metal was 50%, and a small amount of the metal was sampled and analyzed. Sampling was performed by suctioning into an opaque quartz tube having an inner diameter of 8 mm. Then the slag was discharged.

【0027】メタルの分析の結果、Au+Agは50.
5重量%であり、推定値とほぼ同じであった。また、P
bは0.58重量%であり、Sbは0.5重量%以下と
なっていた。貴鉛中の鉛とアンチモンの除去率は95%
以上であり、ほぼ全量除去されていることがわかった。
As a result of metal analysis, Au + Ag was 50.
It was 5% by weight, which was almost the same as the estimated value. Also, P
b was 0.58% by weight and Sb was 0.5% by weight or less. Removal rate of lead and antimony in precious lead is 95%
It was found that almost all was removed.

【0028】次に、メタル中に残存しているBi、T
e、Cuを順次酸化除去するために、引続き180分間
同じ割合で酸素富化空気をメタル中に吹き込んだ。10
00℃に換算したメタル中の酸素分圧が10-2.04 at
m.となった時点で酸素富化空気の吹き込みを停止し
た。図1よりの貴金属品位の推定値は95重量%であ
る。
Next, Bi, T remaining in the metal
In order to sequentially remove e and Cu by oxidation, oxygen-enriched air was continuously blown into the metal for 180 minutes at the same rate. 10
Oxygen partial pressure in metal converted to 00 ℃ is 10 -2.04 at
m. At that point, the blowing of oxygen-enriched air was stopped. The estimated value of noble metal grade from FIG. 1 is 95% by weight.

【0029】熔体を冷却し、固化した後スラグとメタル
とを分離し、メタルの分析を行った。メタル中のAu+
Agは97.2重量%、Pbは<0.5重量%、Sbは
<0.5重量%、Biは0.5重量%、Cuは1.21
重量%であった。貴金属品位は予想値に近いものであ
り、Biの除去率は95%以上であり、ほぼ全量酸化さ
れていることがわかる。なお、本実施例において得られ
たメタル中の貴金属品位と酸素分圧との関係を図2の黒
丸で示した。
After the melt was cooled and solidified, the slag and the metal were separated and the metal was analyzed. Au + in metal
Ag is 97.2% by weight, Pb is <0.5% by weight, Sb is <0.5% by weight, Bi is 0.5% by weight, Cu is 1.21%.
% By weight. The quality of the noble metal is close to the expected value, the removal rate of Bi is 95% or more, and it can be seen that almost all is oxidized. The relationship between the noble metal grade in the metal obtained in this example and the oxygen partial pressure is shown by the black circles in FIG.

【0030】[実施例2] 実炉テスト:Au+Ag:28.0重量%、Pb:1
0.0重量%、Sb:12.8重量%、Bi:25.6
重量%、Te:3.7重量%、Cu:7.2重量%を含
む貴鉛2tを容積0.25m3 、熔体の表面積3.11
2 の反射炉に装入し、重油バーナーを用いて加熱熔解
した。貴鉛が完全に熔解したときの熔体中のメタルの酸
素分圧は、1000℃に換算したときの値で10-14.5
atm.であった。このときのメタルの品位は、Au+
Ag:32.0重量%、Pb:12.6重量%、Sb:
10.5重量%、Bi:30.0重量%、Te:3.4
重量%、Cu:7.0重量%であった。その後、上吹き
ランスより空気を15Nm3 /minの割合で熔体表面
に吹き当て、貴鉛中に含まれるSb、Pb、Bi、T
e、Cu等を酸化除去すべく操業開始した。
Example 2 Actual furnace test: Au + Ag: 28.0% by weight, Pb: 1
0.0% by weight, Sb: 12.8% by weight, Bi: 25.6
2 t of noble lead containing 1% by weight, Te: 3.7% by weight, Cu: 7.2% by weight, volume 0.25 m 3 , surface area of the melt 3.11.
It was charged into a m 2 reverberatory furnace and heated and melted using a heavy oil burner. The oxygen partial pressure of the metal in the molten metal when the noble lead is completely melted is 10 -14.5 when converted to 1000 ° C.
atm. Met. The quality of the metal at this time is Au +
Ag: 32.0 wt%, Pb: 12.6 wt%, Sb:
10.5% by weight, Bi: 30.0% by weight, Te: 3.4
% By weight and Cu: 7.0% by weight. After that, air was blown onto the surface of the molten metal from the upper blowing lance at a rate of 15 Nm 3 / min, and Sb, Pb, Bi, T
The operation started to oxidize and remove e, Cu and the like.

【0031】操業開始後6時間は表面に生成したカス滓
とスラグとを随時掻き出しつつ貴鉛を追加した。操業開
始後8時間でメタル中の酸素分圧を測定したところ、1
000℃に換算したときの値で10-7.0atm.であっ
た。この結果より、PbとSbの除去はほぼ終了したも
のと判断し、小量のメタルをサンプリングして分析し
た。メタルの品位は、Au+Ag:35.1重量%、P
b:5.0重量%、Sb:0.3重量%、Bi:37.
6重量%、Te:4.6重量%、Cu:9.0重量%で
あった。Pb、Sbの除去が著しく、特にSbの除去は
95%以上となっている。
6 hours after the start of operation, precious lead was added while scraping off the slag and slag generated on the surface as needed. When the oxygen partial pressure in the metal was measured 8 hours after the start of operation, it was 1
The value when converted to 000 ° C. is 10 −7.0 atm. Met. From this result, it was judged that the removal of Pb and Sb was almost completed, and a small amount of metal was sampled and analyzed. The grade of metal is Au + Ag: 35.1% by weight, P
b: 5.0% by weight, Sb: 0.3% by weight, Bi: 37.
6% by weight, Te: 4.6% by weight, Cu: 9.0% by weight. The removal of Pb and Sb is remarkable, and the removal of Sb is 95% or more.

【0032】次いで、メタル中のBiを除去するため
に、空気の吹き当てによる酸化を続行し、随時貴鉛を装
入しながらスラグを排出した。合計で4.6t追加した
ところで生成するスラグ量が減少し、スラグ受けの容器
が一杯となった。この時点でメタル中の酸素分圧を測定
した。その結果、1000℃に換算したときの値で10
-5.5atm.であった。この結果より、Biの除去はほ
ぼ終了したものと判断し、炉内のスラグを全量排出し、
小量のメタルをサンプリングして分析した。
Next, in order to remove Bi in the metal, the oxidation by blowing air was continued, and the slag was discharged while charging the precious lead at any time. When 4.6 t was added in total, the amount of slag generated decreased and the slag receiving container became full. At this point, the oxygen partial pressure in the metal was measured. As a result, the value when converted to 1000 ° C is 10
-5.5 atm. Met. From this result, it was judged that the removal of Bi was almost completed, and all the slag in the furnace was discharged,
A small amount of metal was sampled and analyzed.

【0033】メタルの品位は、Au+Ag:86.7重
量%、Pb:0.1重量%、Sb:<0.1重量%、B
i:1.4重量%、Te:5.4重量%、Cu:4.4
重量%であり、Biの除去は95%以上となっている。
なお、このスラグはBi蜜陀としてBi原料となるもの
である。
The grades of metal are Au + Ag: 86.7% by weight, Pb: 0.1% by weight, Sb: <0.1% by weight, B
i: 1.4% by weight, Te: 5.4% by weight, Cu: 4.4
% By weight, and the removal of Bi is 95% or more.
In addition, this slag serves as Bi raw material as Bi honey.

【0034】次いで、Teを除去するために、ソーダ灰
を装入し、随時生成したスラグを排出した。この間、空
気の吹き当てによる酸化を続行した。操業開始後48時
間でメタル中の酸素分圧を測定した。その結果、100
0℃に換算したときの値で10-3.5atm.であった。
この結果より、Teの除去はほぼ終了したものと判断
し、ソーダ灰の装入を中止し、炉内のスラグを全量排出
し、小量のメタルをサンプリングして分析した。メタル
の品位は、Au+Ag:95.0重量%、Pb:0.1
重量%、Sb:<0.1重量%、Bi:0.4重量%、
Te:0.1重量%、Cu:3.2重量%であり、Te
の除去は95%以上となっている。
Then, in order to remove Te, soda ash was charged, and the slag produced at any time was discharged. During this period, oxidation by blowing air was continued. The oxygen partial pressure in the metal was measured 48 hours after the start of operation. As a result, 100
The value when converted to 0 ° C. is 10 −3.5 atm. Met.
From this result, it was judged that the removal of Te was almost completed, the charging of soda ash was stopped, all the slag in the furnace was discharged, and a small amount of metal was sampled and analyzed. The grade of metal is Au + Ag: 95.0% by weight, Pb: 0.1
% By weight, Sb: <0.1% by weight, Bi: 0.4% by weight,
Te: 0.1% by weight, Cu: 3.2% by weight, Te
Removal is over 95%.

【0035】次いで、メタル中に残存しているCuを除
去するために、鉛を300kg追加装入し、さらに空気
の吹き当てによる酸化を続行した。酸素分圧が1000
℃に換算したときの値で10-2.5atm.となったの
で、メタルの酸化精製が終了したものと判断し、スラグ
を炉より排出し、メタルを銀電解用のアノードに鋳造し
た。メタルの品位は、Au+Ag:98.2重量%、P
b:0.1重量%、Sb:<0.1重量%、Bi:0.
1重量%、Te:0.02重量%、Cu:0.4重量%
であり、予想どおりのメタル品位となっていた。なお、
本実施例で得られたメタル中の貴金属品位と酸素分圧と
の関係を図2の白丸で示した。
Next, in order to remove Cu remaining in the metal, 300 kg of lead was additionally charged, and further oxidation by blowing air was continued. Oxygen partial pressure is 1000
The value when converted to ° C is 10 -2.5 atm. Therefore, it was judged that the oxidation and refining of the metal had been completed, the slag was discharged from the furnace, and the metal was cast into the anode for silver electrolysis. The grade of metal is Au + Ag: 98.2% by weight, P
b: 0.1% by weight, Sb: <0.1% by weight, Bi: 0.
1% by weight, Te: 0.02% by weight, Cu: 0.4% by weight
And the metal quality was as expected. In addition,
The relationship between the noble metal grade and the oxygen partial pressure in the metal obtained in this example is shown by the white circles in FIG.

【0036】[実施例3] 熱力学的計算:Ag:33.8重量%、Pb:14.9
重量%、Sb:10.9重量%、Bi:27.6重量
%、Te:3.2重量%、Cu:9.5重量%の想定貴
鉛に純酸素を吹き込んで、酸化したとして、生成すると
思われるスラグとメタルとの組成を計算し、メタル中の
酸素分圧と銀品位との関係を計算により求めた。計算に
際しては、熔体系(スラグ+メタル)の中に存在する各
元素の量と該系の温度と圧力を与え、生成する相と構成
成分とを想定し、該系の自由エネルギーが最小となるよ
うに各生成成分の量を求めた。考慮した相はスラグ、メ
タルの2相であり、気相は考慮していない。メタルは上
記元素のみから成るものとし、スラグはそれらの元素の
安定な酸化物のみから成るとした。また、スラグ、メタ
ルは共に理想溶液と考え、計算に必要な化合物の生成自
由エネルギーは「非鉄金属製錬(日本金属学会編、19
80年)」基づき決定した。そして、系の示す酸素分圧
は系に含まれる任意の金属元素をMとしたとき、M+n/
2 O2 =MOn の平衡関係から求めた。
[Example 3] Thermodynamic calculation: Ag: 33.8% by weight, Pb: 14.9
%, Sb: 10.9% by weight, Bi: 27.6% by weight, Te: 3.2% by weight, Cu: 9.5% by weight Then, the composition of slag and metal, which is thought to be considered, was calculated, and the relationship between the oxygen partial pressure in the metal and the silver grade was calculated. At the time of calculation, the amount of each element existing in the molten system (slag + metal), the temperature and pressure of the system are given, the generated phases and constituents are assumed, and the free energy of the system is minimized. Thus, the amount of each produced component was determined. The phases considered were two phases, slag and metal, and the gas phase was not considered. The metal is assumed to be composed only of the above elements, and the slag is assumed to consist only of stable oxides of those elements. In addition, both slag and metal are considered to be ideal solutions, and the free energy of formation of compounds required for calculation is “Nonferrous metal smelting (edited by the Japan Institute of Metals,
80 years) ". The oxygen partial pressure indicated by the system is M + n /, where M is an arbitrary metal element contained in the system.
It was determined from the equilibrium relationship of 2 O 2 = MO n .

【0037】得られた1273K、1atm.での計算
結果を図3に示した。この結果は、図1と近似してお
り、いわゆる検量線を計算で求める事も可能であること
がわかった。
The obtained 1273K, 1 atm. The calculation result in Table 3 is shown in FIG. This result is similar to that of FIG. 1, and it was found that a so-called calibration curve can be calculated.

【0038】[0038]

【発明の効果】以上述べたように、本発明の方法に従え
ば、貴鉛の酸化反応の進行状況を簡単且つ容易に把握で
き、これに基づき効率的、且つ正確な操業管理を行うこ
とができる。
As described above, according to the method of the present invention, the progress of the noble lead oxidation reaction can be easily and easily grasped, and efficient and accurate operation control can be performed based on this. it can.

【図面の簡単な説明】[Brief description of drawings]

【図1】種々の組成の貴鉛を酸化処理して求めたメタル
中の酸素分圧と、貴金属品位との関係を示したグラフで
ある。
FIG. 1 is a graph showing the relationship between the oxygen partial pressure in metal, which is obtained by oxidizing noble lead having various compositions, and the noble metal grade.

【図2】本発明の実施例で得られたメタル中の酸素分圧
と、貴金属品位との関係を示したグラフであり、黒丸は
ビーカーテストの結果であり、白丸は実炉での試験結果
である。
FIG. 2 is a graph showing the relationship between the oxygen partial pressure in the metal obtained in the example of the present invention and the noble metal grade, the black circles are the results of the beaker test, and the white circles are the test results in the actual furnace. Is.

【図3】熱力学的計算により求めたメタル中の酸素分圧
と貴金属品位との関係を示したグラフである。
FIG. 3 is a graph showing the relationship between the oxygen partial pressure in metal and the noble metal quality obtained by thermodynamic calculation.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 貴金属を含む貴鉛を熔体にして酸化処理
し、鉛を酸化物としてスラグへ除去し、貴金属をメタル
に回収する方法において、熔体中のメタルの酸素分圧を
測定し、得た酸素分圧測定値と、予め求めておいたメタ
ルの酸素分圧とメタル中の貴金属品位との関係とからメ
タル中の貴金属品位を求めつつ酸化処理を行うことを特
徴とする貴金属の回収方法。
1. A method of oxidizing noble lead containing noble metal into a liquid, oxidizing the noble metal into a slag and recovering the noble metal into a metal, and measuring the oxygen partial pressure of the metal in the melt. The obtained oxygen partial pressure measurement value and the relationship between the oxygen partial pressure of the metal and the precious metal grade in the metal obtained in advance are used to perform oxidation treatment while determining the precious metal grade in the metal. Recovery method.
JP9228692A 1992-03-19 1992-03-19 Method for recovering noble metal Pending JPH05263160A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9228692A JPH05263160A (en) 1992-03-19 1992-03-19 Method for recovering noble metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9228692A JPH05263160A (en) 1992-03-19 1992-03-19 Method for recovering noble metal

Publications (1)

Publication Number Publication Date
JPH05263160A true JPH05263160A (en) 1993-10-12

Family

ID=14050171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9228692A Pending JPH05263160A (en) 1992-03-19 1992-03-19 Method for recovering noble metal

Country Status (1)

Country Link
JP (1) JPH05263160A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6165248A (en) * 1999-05-24 2000-12-26 Metallic Fingerprints, Inc. Evaluating precious metal content in the processing of scrap materials
RU2618282C1 (en) * 2015-10-22 2017-05-03 Алексей Михайлович Птицын Method of processing materials containing platinum metals

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6165248A (en) * 1999-05-24 2000-12-26 Metallic Fingerprints, Inc. Evaluating precious metal content in the processing of scrap materials
RU2618282C1 (en) * 2015-10-22 2017-05-03 Алексей Михайлович Птицын Method of processing materials containing platinum metals

Similar Documents

Publication Publication Date Title
Cooper The treatment of copper refinery anode slimes
CN111566236A (en) Improved fire refining process
RU2763128C1 (en) Method for producing raw soldering product and copper product
FR2579996A1 (en)
BR112020011676B1 (en) IMPROVED SOLDER PRODUCTION PROCESS
JPH05263160A (en) Method for recovering noble metal
US4397686A (en) Method for refining precious metals
JP2022519174A (en) An improved way to produce high-purity lead
US1896807A (en) Process for the recovery of platimum and its bymetals from mattes
DK2417274T3 (en) METHOD OF REFINING COIN COPPER INCLUDING ANTIMON AND / OR ARSENIC
JPH0813052A (en) Method for controlling oxidation treatment stage in recovery of noble metal
JPH06306500A (en) Method for judging progress of oxidation reaction
JPH07118769A (en) Treatment judging method of product of silver separation furnace
RU2698237C1 (en) Silvery foam processing method by vacuum distillation
JPH08199255A (en) Method for classifying and removing antimony and lead from lead bullon
RU2784865C2 (en) Improved method for solder production
RU2110594C1 (en) Method of recovering precious metals from intermediate products
RU2191835C1 (en) Method of processing lead wastes containing noble and rare metals
BR112020011658B1 (en) IMPROVED PYROREFINING PROCESS
JP3211339B2 (en) Method of adjusting Pb content in copper anode
JPH05271818A (en) Method for adjusting pb content in copper anode
Luganova-Chnyrenkova Factors affecting behaviour of minor elements in dore metal-soda slag partitioning
JPS6352093B2 (en)
JPS622014B2 (en)
RU2153014C1 (en) Method of processing chloride slag containing noble metals