JPH06305894A - Thick film of lithium niobate single crystal and its production - Google Patents

Thick film of lithium niobate single crystal and its production

Info

Publication number
JPH06305894A
JPH06305894A JP9175093A JP9175093A JPH06305894A JP H06305894 A JPH06305894 A JP H06305894A JP 9175093 A JP9175093 A JP 9175093A JP 9175093 A JP9175093 A JP 9175093A JP H06305894 A JPH06305894 A JP H06305894A
Authority
JP
Japan
Prior art keywords
single crystal
lithium niobate
crystal
face
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9175093A
Other languages
Japanese (ja)
Other versions
JP2546131B2 (en
Inventor
Taketoshi Hibiya
孟俊 日比谷
Hiroe Suzuki
洋恵 鈴木
Tsuguo Fukuda
承生 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP5091750A priority Critical patent/JP2546131B2/en
Publication of JPH06305894A publication Critical patent/JPH06305894A/en
Application granted granted Critical
Publication of JP2546131B2 publication Critical patent/JP2546131B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To provide a new material for reducing photorefractive effects causing problems in using a lithium niobate bulk single crystal as an optical element for the second harmonic generation and a method for preparing the material. CONSTITUTION:The single crystal is a liquid-phase epitaxial single crystal film obtained by regulating the thickness of a lithium niobate single crystal to >=50mum and prepared from a flux containing Pb0-B2O3 or GeO2 as one component thereof by using the Z face or the Y or X face tilted from the Z face by an angle within the range of 0.2-2.0 deg. as a substrate face orientation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、第二高調波発生光学素
子用材料等として有望なニオブ酸リチウム単結晶膜厚お
よびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a promising lithium niobate single crystal film thickness as a material for a second harmonic generating optical element and a method for producing the same.

【0002】[0002]

【従来の技術】レーザ光を光源とする光記録用ディスク
において記録密度を向上することが求められている。1
ビット当りに要する媒体の面積は使用するレーザ光の波
長に依存する。従って、光源波長が短ければ短いほど記
録密度を高められる。現在、光ディスクの光源として
は、赤色の半導体レーザが用いられているが、青から緑
の波長のレーザ光が利用できれば記録密度の向上を期待
できる。
2. Description of the Related Art It is required to improve the recording density of an optical recording disk using a laser beam as a light source. 1
The area of the medium required for each bit depends on the wavelength of the laser light used. Therefore, the shorter the light source wavelength, the higher the recording density. At present, a red semiconductor laser is used as a light source of an optical disk, but if laser light having a wavelength of blue to green can be used, improvement in recording density can be expected.

【0003】このため、入射レーザ光の波長を1/2に
できる第二高調波発生光学素子用材料の研究がなされて
きた。有望な材料として、ニオブ酸リチウム単結晶が提
案されている。この場合、結晶の端面に光を結合させて
用いることから厚さが50μm以上必要である。ニオブ
酸リチウム結晶は、これまでは、その融点である126
0℃において、引上げ法によりバルク(塊状)結晶とし
て作成されてきている。
For this reason, studies have been made on materials for the second harmonic generating optical element capable of halving the wavelength of incident laser light. A lithium niobate single crystal has been proposed as a promising material. In this case, the thickness is required to be 50 μm or more because light is coupled to the end face of the crystal for use. Lithium niobate crystals have hitherto been at their melting point of 126
It has been prepared as a bulk crystal at 0 ° C. by the pulling method.

【0004】一方、ニオブ酸リチウム結晶を導波路素子
として用いる研究もなされており、例えば(特公昭56
−47160号)に開示されているように、Li2 O−
25 系融剤からニオブ酸リチウムのZ面基板上にエ
ピタキシャル成長させる技術も提案されている。
On the other hand, studies using a lithium niobate crystal as a waveguide element have been made, for example, (Japanese Examined Patent Publication No. Sho 56).
-47160), Li 2 O-
A technique of epitaxially growing a lithium niobate on a Z-plane substrate from a V 2 O 5 type flux has also been proposed.

【0005】[0005]

【発明が解決しようとする課題】引上げ法によるニオブ
酸リチウムのバルク結晶を用いる場合、溶融したニオブ
酸リチウムから固化されて単結晶を作るので、得られた
結晶の組成は必ずしも化学量論組成とはなっておらず、
ニオビウムの多い組成Li0 . 9 5 Nb1 . 0 13
所謂、調和融液組成となっている。このため、結晶に光
を入射させると、光を吸収して結晶の屈折率が変化する
「フォトリフラクティブ効果」が生じ、第二高調波発生
の効率が低下すると言う問題点があった。バルク結晶に
おけるフォトリフラクティブ効果の第1番目の原因は、
結晶の組成が上述のように化学量論組成からずれた調和
融液組成となっていること、2番目の原因は高温で育成
されているために、熱平衡的に存在する点欠陥が多いこ
とである。すなわち、結晶中の空格子点、格子間を占め
る構成イオンの数が多いことである。
When a bulk crystal of lithium niobate prepared by the pulling method is used, the composition of the obtained crystal is not always stoichiometric because it is solidified from molten lithium niobate to form a single crystal. Is not
Lot of niobium composition Li 0. 9 5 Nb 1. 0 1 O 3,
It has a so-called harmonic melt composition. Therefore, when light is incident on the crystal, there is a problem that the "photorefractive effect" occurs in which the light is absorbed and the refractive index of the crystal changes, and the efficiency of second harmonic generation decreases. The first cause of the photorefractive effect in bulk crystals is
The crystal composition is a harmonic melt composition that deviates from the stoichiometric composition as described above, and the second cause is that there are many point defects that exist in thermal equilibrium because they are grown at high temperatures. is there. That is, the number of constituent ions occupying vacancies and interstitial spaces in the crystal is large.

【0006】一方、従来より用いられていたLi2 O−
2 5 系融剤(特公昭56−47160号)を用いて
ニオブ酸リチウムの液相エピタキシャル単結晶膜をニオ
ブ酸リチウム結晶のZ面を基板面として用いると、膜厚
が2−3μmの場合には表面が平坦な単結晶膜が得られ
るものの、厚さが10μm以上になると{012}で構
成されるヒルロックが成長発達することが、本発明者ら
の実験から明らかになった。さらに時間をかけて膜厚を
増加させていくと組成的過冷却を生じ、単結晶膜中に融
剤を取込むことが生じ、光学材料としては利用できない
ことが明らかとなった。この原因は、結晶成長の機構が
{012}ファセットで構成されるヒルロックでの表面
カイネティクスが律速となっているためである。
On the other hand, Li 2 O-- which has been conventionally used
When a liquid phase epitaxial single crystal film of lithium niobate is used as the substrate surface of a lithium niobate crystal using a V 2 O 5 type flux (Japanese Patent Publication No. 56-47160), the film thickness is 2-3 μm. In this case, it was revealed from the experiments by the present inventors that although a single crystal film having a flat surface can be obtained, the hillock composed of {012} grows and develops when the thickness becomes 10 μm or more. When the film thickness was further increased over time, compositional supercooling occurred, and a flux was incorporated into the single crystal film, which revealed that it cannot be used as an optical material. This is because the mechanism of crystal growth is the rate-determining surface kinetics in hillrock composed of {012} facets.

【0007】[0007]

【課題を解決するための手段】以上述べた如く、ニオブ
酸リチウム単結晶を用いた第二高調波発生光学素子用結
晶において、フォトリフラクティブ効果の減少するため
に、液相エピタキシャル法により作成された厚さが50
μm以上である単結晶膜の利用が提案される。
As described above, in the crystal for the second harmonic generation optical element using the lithium niobate single crystal, it was prepared by the liquid phase epitaxial method in order to reduce the photorefractive effect. Thickness is 50
It is proposed to use a single crystal film having a thickness of μm or more.

【0008】このために、Z面を基板面方位としたとき
に、{012}ファセットで構成されるヒルロックの成
長をさせることなく、本来、結晶学的にはキンク面であ
るZ面を固液界面として保ったまま、結晶を成長させる
ことが必須の要件であることを見出し、このために必要
な、結晶成長機構を輸送律速に保ったまま成長を継続さ
せる手段を得た。すなわち、融剤としてPbO−B2
3 系、もしくは、GeO2 をその成分の一とする融剤を
用いることである。なお、基板面方位として、Yあるい
はX面を用いてもよい。
For this reason, when the Z plane is the substrate plane orientation, the Z plane, which is originally a kink plane crystallographically, is solid-liquid without growing hillocks composed of {012} facets. It was found that it is an essential requirement to grow a crystal while maintaining it as an interface, and for this reason, a means for continuing the growth while maintaining the crystal growth mechanism at the transport-controlled rate was obtained. That, PbO-B 2 O as a flux
It is to use a flux based on 3 series or GeO 2 as one of the components. Note that the Y or X plane may be used as the substrate plane orientation.

【0009】[0009]

【作用】膜厚が50μm以上の単結晶膜を用いることに
より、引上げ法で作成されたバルク結晶より切出したの
と同様に機械的強度も充分にある、かつ外部光学系との
結合が可能なニオブ酸リチウム結晶が得られ、第二高調
波発生用光学素子用材料となる。
By using a single crystal film having a film thickness of 50 μm or more, it has sufficient mechanical strength as well as being cut out from a bulk crystal prepared by the pulling method, and can be connected to an external optical system. A lithium niobate crystal is obtained, which serves as a material for an optical element for second harmonic generation.

【0010】融剤としてLi2 O−V2 5 系よりも粘
度の大きいPbO−B2 3 系、あるいは,GeO2
その成分の一とする融剤を用いることにより、ヒルロッ
クの生成を防ぎ、用いた基板面と平行な固液界面を維持
したまま成長が可能となり、膜厚が50μm以上の単結
晶膜を得ることが可能となる。基板面はZ面のみなら
ず、Z面からa軸方向に0.2−2°傾けた基板におい
ても同様の効果がある。YおよびX面を用いても同様の
作用がある。
[0010] greater PbO-B 2 O 3 -based viscosity than Li 2 O-V 2 O 5 system as a flux, or by using a flux for the GeO 2 as one of its components, the generation of hillocks It becomes possible to grow while maintaining a solid-liquid interface parallel to the used substrate surface, and it is possible to obtain a single crystal film having a film thickness of 50 μm or more. The same effect is obtained not only for the Z plane but also for the substrate tilted from the Z plane by 0.2-2 ° in the a-axis direction. The same effect can be obtained by using the Y and X planes.

【0011】さらに、バルク結晶よりも低温で作成でき
ることから、フォトリフラクティブ効果の原因となる空
格子の数や格子間位置を占める構成イオンの数が減少す
ることにより、フォトリフラクティブ効果が著しく減少
する。
Further, since it can be formed at a temperature lower than that of a bulk crystal, the number of vacancies causing the photorefractive effect and the number of constituent ions occupying the interstitial positions are reduced, so that the photorefractive effect is significantly reduced.

【0012】[0012]

【実施例】【Example】

(実施例1)表1に示すように、Li2 CO3 とNb2
5 とをモル比で1:1となるように精密に秤量し、混
合・焼成してニオブ酸リチウム(LiNbO3 )を得
た。LiNbO3 が融剤を含む全融液の組成に対して8
mol%となるように、86.59mol%のPbOお
よび5.41mol%のB2 3 を精密に秤量して混合
し、白金坩堝中で昇温1000℃で5時間攪拌保持し
た。その後、融液の温度を830℃まで降下させ、ニオ
ブ酸リチウム単結晶Z面基板を融液に8時間浸漬し、基
板上にニオブ酸リチウム単結晶膜を作成したところ、固
液界面は膜作成の期間中、常に平坦であった。再び融液
から基板を引上げたところ、厚さ50μmでその表面が
鏡面状態のエピタキシャル単結晶膜が得られた。この厚
膜結晶から5mm角の結晶片を切出し、端面を光学研磨
した。この端面より結晶の成長面に平行に、波長541
nmの25W/cm2 のアルゴン緑色レーザを照射し、
ヘリウム−ネオン・レーザを用いてフォトリフラクティ
ブ効果を調べた。このエピタキシャル単結晶厚膜は光学
量論組成を有し、かつ、バルク単結晶とは異なり低温で
育成されているために、フォトリフラクティブ効果の原
因となる空格子、や格子間位置構成イオンの占拠がない
ため、アルゴン・レーザを10分間照射しても屈折率変
化は2×10- 6 に留った。また、この単結晶膜の組成
を分析したところ、Pbはイオン半径が大きすぎるの
で、ニオブ酸リチウムのリチウムおよびニオビウムのい
ずれの格子位置を占めることがなく、結晶性および光学
特性において優れていた。一方、一致溶融組成の融液か
ら引上げ法で作成したニオブ酸リチウムのフォトリフラ
クティブ効果を調べたところ、10分間のアルゴン・レ
ーザ照射では10×10- 5 の屈折率変化が観測され
た。
(Example 1) As shown in Table 1, Li 2 CO 3 and Nb 2
O 5 and O 5 were precisely weighed so that the molar ratio was 1: 1 and mixed and fired to obtain lithium niobate (LiNbO 3 ). LiNbO 3 is 8 with respect to the composition of the total melt containing the flux.
86.59 mol% of PbO and 5.41 mol% of B 2 O 3 were precisely weighed and mixed so as to have a mol%, and the mixture was stirred and held at a temperature of 1000 ° C. for 5 hours in a platinum crucible. Then, the temperature of the melt was lowered to 830 ° C., the lithium niobate single crystal Z-plane substrate was immersed in the melt for 8 hours, and a lithium niobate single crystal film was formed on the substrate. Was always flat during the period. When the substrate was pulled up again from the melt, an epitaxial single crystal film having a thickness of 50 μm and a mirror-finished surface was obtained. A crystal piece of 5 mm square was cut out from this thick film crystal, and the end face was optically polished. From this end face, the wavelength 541
irradiating a 25 W / cm 2 argon green laser of nm,
The photorefractive effect was investigated using a helium-neon laser. Since this epitaxial single crystal thick film has an optical stoichiometric composition and is grown at a low temperature unlike a bulk single crystal, it occupies vacancies and interstitial position-constituting ions that cause the photorefractive effect. since there is no change in refractive index even when the argon laser was irradiated 10 minutes 2 × 10 - greeted 6. The composition of this single crystal film was analyzed. As a result, Pb had an excessively large ionic radius, so that it did not occupy any lattice position of lithium or niobium of lithium niobate, and was excellent in crystallinity and optical characteristics. On the other hand, when examining the photorefractive effect of lithium niobate created in pulling method from the congruent melt, 10 minutes of argon laser irradiation 10 × 10 - change in refractive index 5 was observed.

【0013】(比較例1)実施例1と同一の条件で、基
板を浸漬する時間のみを、4.5時間とした場合には、
厚さ45μmのエピタキシャル単結晶膜が得られた。こ
の厚膜結晶から5mm角の結晶片を切出し、端面を光学
研磨した。この端面より結晶の成長面に平行に、所望の
波長の光を結合させ第二高調波の発生を試みたが、結晶
が薄いために外部光学系との結合が不可能であり、第二
高調波発生光学素子として利用することが不可能であっ
た。また、機械的強度も充分ではなかった。
(Comparative Example 1) Under the same conditions as in Example 1, when the time for immersing the substrate was 4.5 hours,
An epitaxial single crystal film having a thickness of 45 μm was obtained. A crystal piece of 5 mm square was cut out from this thick film crystal, and the end face was optically polished. We tried to generate a second harmonic by coupling light of a desired wavelength parallel to the crystal growth surface from this end face, but because the crystal was thin, it was impossible to couple with an external optical system, and the second harmonic was generated. It was impossible to use it as a wave generating optical element. Also, the mechanical strength was not sufficient.

【0014】(比較例2)引上げ法で育成したニオブ酸
リチウムバルク結晶より、厚さ50μmの板状試料を切
出し端面を光学研磨した。その端面から、実施例1に示
すのと同一の条件でアルゴン・レーザを入射させてフォ
トリフラクティブ効果を測定したところ、10×10
- 5 の屈折率変化が生じた。
Comparative Example 2 A plate-like sample having a thickness of 50 μm was cut out from a lithium niobate bulk crystal grown by the pulling method, and the end face was optically polished. The photorefractive effect was measured from the end face under the same conditions as in Example 1 by injecting an argon laser, and the result was 10 × 10.
A refractive index change of- 5 occurred.

【0015】(比較例3)また、エピタキシャル結晶成
長融剤として、従来から提案されているLi2 O−V2
5 系を用いてエピタキシャル膜を作成した場合には、
バナジウムが結晶中に取込まれるために、緑色に着色
し、光学吸収係数を大きくした。またエピタキシャル単
結晶膜の厚さが増すに伴い結晶成長界面が平坦でなくな
り、最終的には融剤を結晶中に取込んでしまった。この
ために、第二高調波発生用光学素子として利用できなか
った。
(Comparative Example 3) Further, as an epitaxial crystal growth flux, Li 2 O-V 2 conventionally proposed.
When an epitaxial film is formed using the O 5 system,
Since vanadium was incorporated into the crystal, it was colored green and the optical absorption coefficient was increased. In addition, as the thickness of the epitaxial single crystal film increased, the crystal growth interface became uneven, and eventually the flux was incorporated into the crystal. Therefore, it cannot be used as an optical element for generating a second harmonic.

【0016】(実施例2)表1に示すように、化学量論
組成のニオブ酸リチウム(LiNbO3 )が、融剤を含
む全融液の組成に対して11.26mol%となるよう
に、83.20mol%のPbOおよび5.54mol
%のB2 3 を精密に秤量して混合し、白金坩堝中で昇
温1050℃で7時間攪拌保持した。その後、融液の温
度を903℃まで降下させ、ニオブ酸リチウム単結晶の
Z面からa軸方向に0.2°傾いた面を基板面とする基
板を融液に14時間浸漬し、再び融液から基板を引上げ
たところ、厚さ100μmのエピタキシャル単結晶膜が
得られた。この厚膜結晶から5mm角の結晶片を切出
し、端面を光学研磨した。この端面より結晶の成長面に
平行し、波長541nmの25W/cm2 のアルゴン緑
色レーザを照射し、ヘリウム−ネオン・レーザを用いて
フォトリフラクティブ効果を調べた。この結果、アルゴ
ン・レーザを10分間照射しても屈折率変化は8×10
- 6 であった。また、この単結晶膜の組成を分析したと
ころ、Pbはイオン半径が大きすぎるので、ニオブ酸リ
チウムのリチウムおよびニオビウムのいずれの格子位置
を占めることがなく、結晶性および光学特性において優
れていた。膜厚が100μmと厚いために、端面からの
光の入射は、より容易であり、かつ確実であった。
(Example 2) As shown in Table 1, the stoichiometric composition of lithium niobate (LiNbO 3 ) was 11.26 mol% with respect to the composition of the total melt containing the flux. 83.20 mol% PbO and 5.54 mol
% B 2 O 3 was precisely weighed and mixed, and the mixture was stirred and held at a temperature rise of 1050 ° C. for 7 hours in a platinum crucible. After that, the temperature of the melt is lowered to 903 ° C., and the substrate whose surface is tilted 0.2 ° from the Z-plane of the lithium niobate single crystal in the a-axis direction is immersed in the melt for 14 hours and melted again. When the substrate was pulled up from the solution, an epitaxial single crystal film having a thickness of 100 μm was obtained. A crystal piece of 5 mm square was cut out from this thick film crystal, and the end face was optically polished. A 25 W / cm 2 argon green laser having a wavelength of 541 nm was irradiated from this end face in parallel with the crystal growth face, and the photorefractive effect was examined using a helium-neon laser. As a result, even if the argon laser is irradiated for 10 minutes, the change in the refractive index is 8 × 10.
-It was 6 . The composition of this single crystal film was analyzed. As a result, Pb had an excessively large ionic radius, so that it did not occupy any lattice position of lithium or niobium of lithium niobate, and was excellent in crystallinity and optical characteristics. Since the film thickness was as thick as 100 μm, the incidence of light from the end face was easier and more reliable.

【0017】(実施例3)表1に示すように、化学量論
組成ニオブ酸リチウム(LiNbO3 )が、融剤を含む
全融液の組成に対して18mol%となるように、7
5.00mol%のPbOおよび7.00mol%のB
2 3 を精密に秤量して混合し、白金坩堝中で昇温12
00℃で5時間攪拌保持した。その後、融液の温度を9
80℃まで降下させ、その基板面が2つの等価なa軸の
間の方向にZ面から2.0°傾いた基板を融液に12時
間浸漬し、再び融液から基板を引上げたところ、厚さ6
0μmのエピタキシャル単結晶膜が得られた。この厚膜
結晶から5mm角の結晶片を切出し、端面を光学研磨し
た。この端面より結晶の成長面に平行に、波長541n
mの25W/cm2 のアルゴン緑色レーザを照射し、ヘ
リウム−ネオン・レーザを用いてフォトリフラクティブ
効果を調べた。この結果、アルゴン・レ−ザを10分間
照射しても屈折率変化は10- 5 以下に留った。また、
この単結晶膜の組成を分析したところ、Pbはイオン半
径が大きすぎるので、ニオブ酸リチウムのリチウムおよ
びニオビウムのいずれの格子位置を占めることがなく、
結晶性および光学特性において優れていた。
Example 3 As shown in Table 1, the stoichiometric composition of lithium niobate (LiNbO 3 ) was adjusted to 7 mol% with respect to the composition of the total melt containing the flux.
5.00 mol% PbO and 7.00 mol% B
2 O 3 is precisely weighed and mixed, and the temperature is raised in a platinum crucible 12
The mixture was held at 00 ° C for 5 hours with stirring. Then, the melt temperature is set to 9
When the temperature of the substrate was lowered to 80 ° C. and the substrate surface was tilted 2.0 ° from the Z-plane in the direction between the two equivalent a-axes, the substrate was immersed in the melt for 12 hours, and the substrate was pulled up again from the melt. Thickness 6
A 0 μm epitaxial single crystal film was obtained. A crystal piece of 5 mm square was cut out from this thick film crystal, and the end face was optically polished. From this end face, the wavelength of 541n is parallel to the crystal growth face.
The photorefractive effect was examined using a helium-neon laser by irradiating a 25 W / cm 2 argon green laser of m. As a result, argon LES - refractive index change with a The irradiated 10 minutes 10 - greeted 5 below. Also,
Analysis of the composition of this single crystal film revealed that Pb has an excessively large ionic radius, so that it does not occupy either lattice position of lithium or niobium of lithium niobate.
It was excellent in crystallinity and optical properties.

【0018】(比較例4)実施例3において、基板面の
Z面からの傾き角度を2.3°とした場合には、膜厚が
50μm以上となるとヒルロックの生成が始まり、固液
界面形状が平坦とはならず、融剤のエピタキシャル結晶
中への取込みが見られ、光学素子の用途には適さなかっ
た。
(Comparative Example 4) In Example 3, when the angle of inclination of the substrate surface from the Z plane was 2.3 °, hillocks started to be generated when the film thickness became 50 μm or more, and the solid-liquid interface shape was formed. However, it was not flat and the incorporation of the flux into the epitaxial crystal was observed, which was not suitable for use as an optical element.

【0019】(実施例4)表1に示すように、化学量論
組成のニオブ酸リチウム(LiNbO3 )が、融剤を含
む全融液の組成に対して3.12mol%となるよう
に、93.00mol%のPbOおよび3.78mol
%のB2 3 を精密に秤量して混合し、白金坩堝中で昇
温750℃で6時間攪拌保持した。その後、融液の温度
を650℃まで降下させ、ニオブ酸リチウム単結晶Y面
基板を融液に18時間浸漬し、再び融液から基板を引上
げたところ、厚さ60μmのエピタキシャル単結晶膜が
得られた。この厚膜結晶から5mm角の結晶片を切出
し、端面を光学研磨した。この端面より結晶の成長面に
平行に、波長541nmの25W/cm2 のアルゴン緑
色レーザを照射し、ヘリウム−ネオン・レーザを用いて
フォトリフラクティブ効果を調べた。この結果、アルゴ
ン・レーザを10分間照射しても屈折率変化は9×10
- 7 であった。
Example 4 As shown in Table 1, the stoichiometric composition of lithium niobate (LiNbO 3 ) was 3.12 mol% with respect to the composition of the total melt containing the flux. 93.00 mol% PbO and 3.78 mol
% B 2 O 3 was precisely weighed and mixed, and the mixture was stirred and held at a temperature rise of 750 ° C. for 6 hours in a platinum crucible. Then, the temperature of the melt was lowered to 650 ° C., the lithium niobate single crystal Y-plane substrate was dipped in the melt for 18 hours, and the substrate was pulled up from the melt again to obtain an epitaxial single crystal film with a thickness of 60 μm. Was given. A crystal piece of 5 mm square was cut out from this thick film crystal, and the end face was optically polished. A 25 W / cm 2 argon green laser having a wavelength of 541 nm was irradiated from this end face in parallel with the crystal growth face, and the photorefractive effect was examined using a helium-neon laser. As a result, the change in the refractive index is 9 × 10 even if the argon laser is irradiated for 10 minutes.
-It was 7 .

【0020】(実施例5)表1に示すように、化学量論
組成のニオブ酸リチウム(LiNbO3 )が、融剤を含
む全融液の組成に対して6.24mol%となるよう
に、88.78mol%のPbOおよび4.98mol
%のB2 3 を精密に秤量して混合し、白金坩堝中で昇
温1010℃で6時間攪拌保持した。その後、融液の温
度を880℃まで降下させ、ニオブ酸リチウム単結晶Z
面基板を融液に6時間浸漬し、再び融液から基板を引上
げたところ、厚さ53μmのエピタキシャル単結晶膜が
得られた。この厚膜結晶から5mm角の結晶片を切出
し、端面を光学研磨した。この端面より結晶の成長面に
平行に、波長541nmの25W/cm2 のアルゴン緑
色レーザを照射し、ヘリウム−ネオン・レーザを用いて
フォトリフラクティブ効果を調べた。この結果、アルゴ
ン・レーザを10分間照射しても屈折率変化は7.5×
10- 7 であった。
Example 5 As shown in Table 1, the stoichiometric composition of lithium niobate (LiNbO 3 ) was 6.24 mol% with respect to the composition of the total melt containing the flux. 88.78 mol% PbO and 4.98 mol
% B 2 O 3 was precisely weighed and mixed, and the mixture was stirred and held at a temperature rise of 1010 ° C. for 6 hours in a platinum crucible. Then, the temperature of the melt is lowered to 880 ° C., and the lithium niobate single crystal Z
When the plane substrate was immersed in the melt for 6 hours and the substrate was pulled up from the melt again, an epitaxial single crystal film having a thickness of 53 μm was obtained. A crystal piece of 5 mm square was cut out from this thick film crystal, and the end face was optically polished. A 25 W / cm 2 argon green laser having a wavelength of 541 nm was irradiated from this end face in parallel with the crystal growth face, and the photorefractive effect was examined using a helium-neon laser. As a result, the change in the refractive index is 7.5 × even if the argon laser is irradiated for 10 minutes.
10 - was 7.

【0021】(実施例6)表2に示すように、化学量論
組成のニオブ酸リチウム(LiNbO3 )が、融剤を含
む全融液の組成に対して5.40mol%となるよう
に、83.20mol%のPbOおよび11.40mo
l%のGeO2 を精密に秤量して混合し、白金坩堝中で
昇温980℃で5時間攪拌保持した。その後、融液の温
度を912℃まで降下させ、ニオブ酸リチウム単結晶の
Y面を基板として融液に14時間浸漬し、再び融液から
基板を引上げたところ、厚さ55μmのエピタキシャル
単結晶膜が得られた。この厚膜結晶から5mm角の結晶
片を切出し、端面を光学研磨した。この端面より結晶の
成長面に平行に、波長541nmの25W/cm2 のア
ルゴン緑色レーザを照射し、ヘリウム−ネオン・レーザ
を用いてフォトリフラクティブ効果を調べた。この結
果、アルゴン・レーザを10分間照射しても屈折率変化
は4×10- 6 であった。
Example 6 As shown in Table 2, the stoichiometric composition of lithium niobate (LiNbO 3 ) was adjusted to 5.40 mol% with respect to the composition of the total melt containing the flux. 83.20 mol% PbO and 11.40 mo
1% of GeO 2 was precisely weighed and mixed, and the mixture was kept in a platinum crucible with stirring at a temperature rise of 980 ° C. for 5 hours. After that, the temperature of the melt was lowered to 912 ° C., the Y-plane of the lithium niobate single crystal was used as a substrate, and the substrate was immersed in the melt for 14 hours, and the substrate was pulled up from the melt again. was gotten. A crystal piece of 5 mm square was cut out from this thick film crystal, and the end face was optically polished. A 25 W / cm 2 argon green laser having a wavelength of 541 nm was irradiated from this end face in parallel with the crystal growth face, and the photorefractive effect was examined using a helium-neon laser. As a result, the refractive index change with an argon laser was irradiated 10 minutes 4 × 10 - was 6.

【0022】(実施例7)表2に示すように、化学量論
組成のニオブ酸リチウム(LiNbO3 )が、融剤を含
む全融液の組成に対して8.65mol%となるよう
に、74.31mol%のPbO、11.34mol%
のGeO2 および5.70mol%のB2 3 を精密に
秤量して混合し、白金坩堝中で昇温1070℃で8時間
攪拌保持した。その後、融液の温度を887℃まで降下
させ、ニオブ酸リチウム単結晶のZ面を基板として融液
に22時間浸漬し、再び融液から基板を引上げたとこ
ろ、厚さ110μmのエピタキシャル単結晶膜が得られ
た。この厚膜結晶から5mm角の結晶片を切出し、端面
を光学研磨した。この端面より結晶の成長面に平行に、
波長541nmの25W/cm2 のアルゴン緑色レーザ
を照射し、ヘリウム−ネオン・レーザを用いてフォトリ
フラクティブ効果を調べた。この結果、アルゴン・レー
ザを10分間照射しても屈折率変化は4×10- 6 であ
った。膜厚が110μmと厚いために、端面からの光の
入射は、より容易であり、かつ確実であった。
Example 7 As shown in Table 2, the stoichiometric composition of lithium niobate (LiNbO 3 ) was adjusted to 8.65 mol% with respect to the composition of the total melt containing the flux. 74.31 mol% PbO, 11.34 mol%
GeO 2 and 5.70 mol% B 2 O 3 were precisely weighed and mixed, and the mixture was stirred and held at a temperature rise of 1070 ° C. for 8 hours in a platinum crucible. After that, the temperature of the melt was lowered to 887 ° C., the Z-plane of the lithium niobate single crystal was used as a substrate, the substrate was immersed in the melt for 22 hours, and the substrate was pulled up again from the melt. was gotten. A crystal piece of 5 mm square was cut out from this thick film crystal, and the end face was optically polished. From this end face, parallel to the crystal growth plane,
The photorefractive effect was examined using a helium-neon laser by irradiating a 25 W / cm 2 argon green laser with a wavelength of 541 nm. As a result, the refractive index change with an argon laser was irradiated 10 minutes 4 × 10 - was 6. Since the film thickness was as thick as 110 μm, the incidence of light from the end face was easier and more reliable.

【0023】(実施例8)表2に示すように、化学量論
組成のニオブ酸リチウム(LiNbO3 )が、融剤を含
む全融液の組成に対して3.12mol%となるよう
に、65.28mol%のGeO2 および31.60m
ol%のB2 3 を精密に秤量して混合し白金坩堝中で
昇温、1005℃で5時間攪拌保持した。その後、融液
の温度を869℃まで降下させ、ニオブ酸リチウム単結
晶のX面を基板として融液に11時間浸漬し、再び融液
から基板を引上げたところ、厚さ55μmのエピタキシ
ャル単結晶膜が得られた。この厚膜結晶から5mm角の
結晶片を切出し、端面を光学研磨した。この端面より結
晶の成長面に平行に、波長541nmの25W/cm2
のアルゴン緑色レーザを照射し、ヘリウム−ネオン・レ
ーザを用いてフォトリフラクティブ効果を調べた。この
結果、アルゴン・レーザを10分間照射しても屈折率変
化は9.5×10- 7 であった。
(Example 8) As shown in Table 2, the stoichiometric composition of lithium niobate (LiNbO 3 ) was 3.12 mol% with respect to the composition of the total melt containing the flux. 65.28 mol% GeO 2 and 31.60 m
O2% of B 2 O 3 was precisely weighed and mixed, and the temperature was raised in a platinum crucible and the mixture was kept at 1005 ° C. for 5 hours with stirring. Then, the temperature of the melt was lowered to 869 ° C., the surface of the lithium niobate single crystal was immersed in the melt for 11 hours, and the substrate was pulled up from the melt again. As a result, an epitaxial single crystal film having a thickness of 55 μm was formed. was gotten. A crystal piece of 5 mm square was cut out from this thick film crystal, and the end face was optically polished. 25 W / cm 2 at a wavelength of 541 nm, parallel to the crystal growth surface from this end face.
Was irradiated with argon green laser, and the photorefractive effect was examined using a helium-neon laser. As a result, the refractive index change with an argon laser was irradiated 10 minutes 9.5 × 10 - was 7.

【0024】(その他の実施例)ニオブ酸リチウム結晶
への添加不純物として、Na、Zn、Mn、Cr、F
e、Mg、Nd、Ti、Ni、Co、Rhを用いる場合
にも、同様の結果が得られた。
Other Examples Na, Zn, Mn, Cr, F as impurities added to the lithium niobate crystal.
Similar results were obtained when using e, Mg, Nd, Ti, Ni, Co and Rh.

【0025】[0025]

【表1】 [Table 1]

【0026】[0026]

【表2】 [Table 2]

【0027】[0027]

【発明の効果】本発明により、フォトリフラクティブ効
果を低減した、ニオブ酸リチウム単結晶厚膜が得られ
る。これによって、第二高調波発生用光学素子用材料と
して、有効なニオブ酸リチウム単結晶厚膜を提供するこ
とができる。
According to the present invention, a lithium niobate single crystal thick film with reduced photorefractive effect can be obtained. This makes it possible to provide an effective lithium niobate single crystal thick film as a material for a second harmonic generation optical element.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ニオブ酸リチウム単結晶基板上に液相エ
ピタキシャル法により形成され、その膜厚が50μm以
上であることを特徴とするニオブ酸リチウム単結晶厚
膜。
1. A lithium niobate single crystal thick film, which is formed on a lithium niobate single crystal substrate by a liquid phase epitaxial method and has a thickness of 50 μm or more.
【請求項2】 PbOを75.00モル%から93.0
0モル%の範囲で、B2 3 を3.7モル%から7.0
モル%の範囲で含む融剤から液相エピタキシャル法によ
り、ニオブ酸リチウム単結晶基板上にニオブ酸リチウム
単結晶厚膜を作成することを特徴とするニオブ酸リチウ
ム単結晶厚膜の製造方法。
2. PbO from 75.00 mol% to 93.0
In the range of 0 mol%, B 2 O 3 is added from 3.7 mol% to 7.0
A method for producing a lithium niobate single crystal thick film, which comprises forming a lithium niobate single crystal thick film on a lithium niobate single crystal substrate by a liquid phase epitaxial method from a flux containing a mol% range.
【請求項3】 PbO、B2 3 の少なくとも一方とG
eO2 とを含む融剤であって、GeO2 の含有量が1
1.0モル%から65.3モル%である融剤から液相エ
ピタキシャル法により、ニオブ酸リチウム単結晶基板上
にニオブ酸リチウム単結晶厚膜を作成することを特徴と
するニオブ酸リチウム単結晶厚膜の製造方法。
3. At least one of PbO and B 2 O 3 and G
A flux containing eO 2 and having a GeO 2 content of 1
A lithium niobate single crystal thick film is formed on a lithium niobate single crystal substrate by a liquid phase epitaxial method from a flux of 1.0 mol% to 65.3 mol%. Thick film manufacturing method.
【請求項4】 基板面方位としてZ面、もしくは0.2
〜2°の範囲でZ面より傾いた面を利用することを特徴
とする請求項2または3記載のニオブ酸リチウム単結晶
厚膜の製造方法。
4. The substrate plane orientation is the Z plane or 0.2.
The method for producing a lithium niobate single crystal thick film according to claim 2 or 3, wherein a surface tilted from the Z-plane within a range of ~ 2 ° is used.
JP5091750A 1993-04-20 1993-04-20 Lithium niobate single crystal thick film and method for producing the same Expired - Lifetime JP2546131B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5091750A JP2546131B2 (en) 1993-04-20 1993-04-20 Lithium niobate single crystal thick film and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5091750A JP2546131B2 (en) 1993-04-20 1993-04-20 Lithium niobate single crystal thick film and method for producing the same

Publications (2)

Publication Number Publication Date
JPH06305894A true JPH06305894A (en) 1994-11-01
JP2546131B2 JP2546131B2 (en) 1996-10-23

Family

ID=14035218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5091750A Expired - Lifetime JP2546131B2 (en) 1993-04-20 1993-04-20 Lithium niobate single crystal thick film and method for producing the same

Country Status (1)

Country Link
JP (1) JP2546131B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100540449B1 (en) * 2002-12-03 2006-01-11 김유곤 Manufacturing method of garnet single crystal and a garnet single crystal manufactured by the method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0664996A (en) * 1992-03-04 1994-03-08 Hitachi Metals Ltd Production of thin film of lithium niobate single crystal
JPH06219891A (en) * 1993-01-29 1994-08-09 Tokin Corp Production of lithium niobate single crystal film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0664996A (en) * 1992-03-04 1994-03-08 Hitachi Metals Ltd Production of thin film of lithium niobate single crystal
JPH06219891A (en) * 1993-01-29 1994-08-09 Tokin Corp Production of lithium niobate single crystal film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100540449B1 (en) * 2002-12-03 2006-01-11 김유곤 Manufacturing method of garnet single crystal and a garnet single crystal manufactured by the method

Also Published As

Publication number Publication date
JP2546131B2 (en) 1996-10-23

Similar Documents

Publication Publication Date Title
JP3148896B2 (en) Lithium niobate single crystal thin film
EP0444209B1 (en) Thin film of lithium niobate single crystal and production thereof
US3998687A (en) Technique for growth of thin film lithium niobate by liquid phase epitaxy
JP2546131B2 (en) Lithium niobate single crystal thick film and method for producing the same
JP2507915B2 (en) Scandium-doped lithium niobate single crystal for optical elements
JP2838803B2 (en) Method for producing lithium niobate single crystal thin film
JP4067845B2 (en) Magnesium lithium niobate single crystal and method for producing the same
JP2860800B2 (en) Method for producing lithium niobate single crystal thin film
JP2850045B2 (en) Method for producing lithium niobate single crystal thin film
JP3121361B2 (en) Ti-containing lithium niobate thin film and method for producing the same
JP2893212B2 (en) Lithium niobate single crystal thin film
JP3152481B2 (en) Lithium niobate single crystal thin film and method for producing the same
JP3131741B2 (en) Method for producing lithium niobate single crystal thin film
JPH05896A (en) Thin lithium niobate single crystal film
JP2973333B2 (en) Method for forming single crystal thin film on substrate
JP3858776B2 (en) Polarizer and prism using it
JP2636481B2 (en) Growing nonlinear optical materials
JPH05310499A (en) Lithium niobate single crystal, its production and optics
JP2849221B2 (en) Optical device having channel type waveguide and method of manufacturing the same
JP3010881B2 (en) Single crystal growth method
JPH0664996A (en) Production of thin film of lithium niobate single crystal
JPH07234427A (en) Production of nonlinear optical material
JPH05270993A (en) Scandium-containing lithium niobate controlled in photo-induced refractive index change
JPH0545689A (en) Waveguide-type nonlinear optical device
JP2001042147A (en) Substrate for optical element and optical waveguide body using the substrate

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960611