JPH06305485A - Sea bottom magnetic object survey device - Google Patents

Sea bottom magnetic object survey device

Info

Publication number
JPH06305485A
JPH06305485A JP11790093A JP11790093A JPH06305485A JP H06305485 A JPH06305485 A JP H06305485A JP 11790093 A JP11790093 A JP 11790093A JP 11790093 A JP11790093 A JP 11790093A JP H06305485 A JPH06305485 A JP H06305485A
Authority
JP
Japan
Prior art keywords
sensor
magnetic
self
underwater
ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11790093A
Other languages
Japanese (ja)
Inventor
Sunao Sato
佐藤  直
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP11790093A priority Critical patent/JPH06305485A/en
Publication of JPH06305485A publication Critical patent/JPH06305485A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Geophysics And Detection Of Objects (AREA)

Abstract

PURPOSE:To provide a sea bottom magnetic object survey device capable of surveying the location of magnetic objects on the sea bottom safely, rapidly and surely with little error in the man-saving labor-saving state. CONSTITUTION:A magnetic object survey system for detecting magnetic objects existing on and in the sea bottom by a self-traveling device 1 connected to a support ship 2 through a cable 3 so as to move along the sea bottom by remote operation is provided with a depth sensor 16, an azimuth sensor 13, an inclination sensor 17, plural magnetic sensors 4, an underwater telecamera 5 and an ultrasonic survey sensor 6 for detecting foreign matter on and in the sea bottom, all of which are respectively added to the self-traveling device 1, and also a magnetic object survey computer system 28, an ultrasonic survey analysis system 30, an underwater TV display device 31 and a self-traveling device position measuring system 7 respectively mounted to the support ship 2 and actuated on the basis of the output signal of the respective sensors, underwater telecamera 5 and ultrasonic survey sensor 6.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、海底中の磁性物体の探
査装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for exploring magnetic objects in the seabed.

【0002】[0002]

【従来の技術】海底の磁性物体の探査手段としては、従
来、図3斜視図に示すように、専用の船舶に、磁気セン
サーを複数(10程度)を一列横隊的に並設したものを
海底に沿って引き、船位,船速,磁気センサー深度か
ら、図4に示すように、推測した後、潜水士が探査対象
物まで近づき、磁気センサーでこれを確認する手段等が
知られている。
2. Description of the Related Art Conventionally, as a means for exploring magnetic objects on the seabed, as shown in the perspective view of FIG. 3, conventionally, a dedicated ship in which a plurality of magnetic sensors (about 10) are arranged side by side in a row is used. It is known that there are known means for pulling along the ship, the ship position, the ship speed, and the depth of the magnetic sensor to make a guess as shown in FIG.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、このよ
うな船舶で磁性物体位置を推測するシステムでは、位置
を特定するまで船位,船速,センサー深度,船舶の動揺
とパラメーターが多く、また、1つ1つのデータに誤差
を多く含むため、対象物位置指定が広範囲に広がる。さ
らに、船舶にて航行し、データを収集した後、陸上にて
船舶の航行区域や収集したデータを基に、磁性物体の存
在及びその位置を推定し、潜水士を使用する場合は、危
険が伴い、気象,海象,作業時間に制限がある。
However, in such a system for estimating the position of a magnetic object in a ship, there are many ship positions, ship speeds, sensor depths, ship motions and parameters until the position is specified. Since one data contains many errors, the object position designation spreads over a wide range. Furthermore, after navigating by ship and collecting data, the presence and position of magnetic objects are estimated based on the navigation area of the ship and the collected data on land, and when using a diver, there is a danger. As a result, there are restrictions on weather, sea conditions, and working hours.

【0004】本発明はこのような事情に鑑みて提案され
たもので、省人省力的に誤差が少なく安全,迅速かつ確
実に海底磁性物体の所在を探査することができる海底中
の磁性物体の探査装置を提供することを目的とする。
The present invention has been proposed in view of such circumstances, and saves labor and labor with little error, and can safely, promptly and reliably detect the location of a magnetic object in the seabed. It is an object to provide an exploration device.

【0005】[0005]

【課題を解決するための手段】そのために本発明は、支
援船にケーブルを介して接続され遠隔操作により海底に
沿って移動する自走装置により海底上及び海底中に存在
する磁性物体を検出する磁性物体の探査システムにおい
て、上記自走装置にそれぞれ付設された深度センサー,
方位角センサー,傾斜角センサー,複数の磁気センサ
ー,海底上及び海底中の異物を検出する水中TVカメラ
及び超音波センサーと、上記支援船にそれぞれ搭載され
上記各センサー,水中TVカメラ及び超音波センサーの
出力信号に基づいて、作動する磁性物体探査コンピュー
ターシステム,超音波探査解析システム,水中TV表示
装置,自走装置位置測定システムとを具えたことを特徴
とする。
To this end, the present invention detects a magnetic object existing on and in the seabed by a self-propelled device which is connected to a support ship via a cable and moves along the seabed by remote control. In an exploration system for magnetic objects, depth sensors attached to the self-propelled devices,
Azimuth sensor, tilt angle sensor, multiple magnetic sensors, underwater TV camera and ultrasonic sensor for detecting foreign matter on and under the seabed, and each sensor, underwater TV camera and ultrasonic sensor mounted on the support ship, respectively. It is equipped with a magnetic object exploration computer system, an ultrasonic exploration analysis system, an underwater TV display device, and a self-propelled device position measurement system that operate based on the output signal of.

【0006】[0006]

【作用】このような構成によれば、磁気センサーを海底
に近付け、センサーの位置を直接測定することにより、
測定パラメーターを少なくする。そのため、磁気センサ
ーを始め、種々の探査用センサーを海底自走装置に装着
し、自走装置の位置を超音波,レーザー等で測定するこ
とにより、磁気センサーの位置を特定する。また、磁気
センサーを送信ラインからリアルタイムで入手し、コン
ピューターで解析し、自走装置の位置との関係から、測
定と同時に磁気分布図を作り、磁性物体位置を推定す
る。
With this structure, the magnetic sensor is brought close to the seabed, and the position of the sensor is directly measured.
Use fewer measurement parameters. Therefore, the position of the magnetic sensor is specified by mounting various exploration sensors including the magnetic sensor on the seabed self-propelled device and measuring the position of the self-propelled device by ultrasonic waves, laser, or the like. In addition, a magnetic sensor is obtained from the transmission line in real time, analyzed by a computer, and a magnetic distribution map is created at the same time as the measurement based on the relationship with the position of the self-propelled device to estimate the magnetic object position.

【0007】[0007]

【実施例】本発明の一実施例を図面について説明する
と、図1はその全体斜視図、図2は図1のブロック図で
ある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring to the drawings, an embodiment of the present invention will be described. FIG. 1 is an overall perspective view thereof, and FIG. 2 is a block diagram of FIG.

【0008】まず、図1において、遠隔制御自走装置1
は支援船2により遠隔制御され、探査区域を自走し、海
底地表から一定の高さを保持するように制御されたセン
サーアーム上の磁気センサー4により探査区域の地磁気
を測定し、磁性物体探査コンピューターシステム28
(図2)により、3次元の磁気分布状態、すなわち磁気
マップを作成する。磁気センサーの3次元位置測定は支
援船2上の超音波位置測定装置33(図2)により、支
援船上の自走装置位置測定用センサー7内に収められた
2個の発信装置から発せられた2種類の超音波信号を自
走装置1上の位置測定用センサー8で受け、支援船上の
自走装置位置センサー7へ返信することにより、同位置
センサー7内の2個発信装置間の距離及び2種類の返信
信号の時間差より自走装置1と支援船2間の相対位置が
求められる。ここで、図2に示すように、自走装置上で
の磁気センサー4の位置は、深度センサー16により深
度が、センサーアーム角センサー15によりセンサー保
持アームの角度が、自走装置自体の傾斜センサー17及
び自走装置に搭載しているジャイロ13による方位信号
がそれぞれ得られ、図1において、以上の支援船2から
の相対位置及び自走装置1上での相対位置及び支援船2
自体の絶対位置から、磁気センサー4の海底上での絶対
位置が特定できる。
First, referring to FIG. 1, a remote control self-propelled device 1
Is remotely controlled by the support vessel 2, self-propels in the exploration area, and measures the geomagnetism of the exploration area by the magnetic sensor 4 on the sensor arm that is controlled so as to maintain a certain height above the surface of the seabed. Computer system 28
(FIG. 2), a three-dimensional magnetic distribution state, that is, a magnetic map is created. The three-dimensional position measurement of the magnetic sensor was issued by the ultrasonic position measuring device 33 (FIG. 2) on the support ship 2 from the two transmitters contained in the self-propelled device position measuring sensor 7 on the support ship. By receiving two kinds of ultrasonic signals with the position measuring sensor 8 on the self-propelled device 1 and returning to the self-propelled device position sensor 7 on the support ship, the distance between the two transmitters in the same position sensor 7 and The relative position between the self-propelled device 1 and the support ship 2 is obtained from the time difference between the two types of reply signals. Here, as shown in FIG. 2, the position of the magnetic sensor 4 on the self-propelled device is the depth by the depth sensor 16, the angle of the sensor holding arm by the sensor arm angle sensor 15, and the inclination sensor of the self-propelled device itself. 17 and the gyro 13 mounted on the self-propelled device, the azimuth signals are respectively obtained, and in FIG. 1, the relative position from the support ship 2 and the relative position on the self-propelled device 1 and the support ship 2 are obtained.
From the absolute position of itself, the absolute position of the magnetic sensor 4 on the seabed can be specified.

【0009】磁気マップにより、磁気分布の異常地点か
ら、磁性物体の存在の可能性のある場所を、海底地表に
ある場合は、支援船2上での水中TVカメラ5により目
視確認し、また、地中にある場合は、超音波地中探査セ
ンサー6により、地中へ発せられた超音波の反射音響よ
り分析し、磁性物体位置を特定することができる。自走
装置1と支援船2は、電力・信号用複合ケーブルである
伝送ケーブル3によって接続され、支援船2から自走装
置1へ電力を送電し、自走装置1から支援船2へは、各
種センサー信号を伝送する。
From the abnormal point of the magnetic distribution, if there is a possibility that a magnetic object exists on the surface of the seabed, the magnetic map is used to visually confirm with the underwater TV camera 5 on the support ship 2, and In the case of being in the ground, the position of the magnetic object can be specified by analyzing the reflected sound of the ultrasonic wave emitted into the ground by the ultrasonic underground exploration sensor 6. The self-propelled device 1 and the support ship 2 are connected by a transmission cable 3 which is a composite cable for electric power and signals, transmit electric power from the support ship 2 to the self-propelled device 1, and from the self-propelled device 1 to the support ship 2, Transmits various sensor signals.

【0010】次に、図2において、自走装置1上では、
磁気センサー4から地磁気の信号,超音波地中探査セン
サー6から地中へ発せられた超音波の反射音響信号,水
中TVカメラ5からの水中映像信号,ジャイロ13から
の自走装置自体の2次元方位信号,傾斜センサー17か
らの自走装置自体の垂直2軸方向すなわち自走装置の前
後方向と左右方向の2種類の傾斜角度信号,センサーア
ーム角度センサー15から磁気センサー4を保持してい
るセンサーアームの水平面からの角度信号及び深度セン
サー16からの自走装置の深度信号が自走装置上伝送装
置9,伝送ケーブル3,支援船上伝送装置27を経由し
て、地磁気信号は磁気センサー4により磁性体探査コン
ピューターシステム28へ、超音波地中探査センサー6
の超音波反射音響信号は超音波探査解析システム30
へ、水中TVカメラ5の水中映像信号は水中TV表示装
置31へ、ジャイロ13の方位信号,傾斜センサー17
の信号,センサーアーム角センサー15の信号,深度セ
ンサー16の信号は自走装置位置測定システム29へそ
れぞれ伝送される。また、自走装置本体は支援船上の走
行装置遠隔操縦装置32から遠隔操作され、操作信号は
支援船上伝送装置27,伝送ケーブル3,自走装置上伝
送装置9を経由して走行装置14を制御し、これを前
進,後進,左転回,右転回する。
Next, referring to FIG. 2, on the self-propelled device 1,
Geomagnetic signal from the magnetic sensor 4, ultrasonic reflected acoustic signal emitted from the underground sensor 6 to the ground, underwater video signal from the underwater TV camera 5, two-dimensional self-propelled device from the gyro 13 Azimuth signal, two vertical axis directions of the self-propelled device itself from the tilt sensor 17, that is, two types of tilt angle signals in the front-rear direction and the left-right direction of the self-propelled device, and a sensor holding the magnetic sensor 4 from the sensor arm angle sensor 15. The angle signal from the horizontal plane of the arm and the depth signal of the self-propelled device from the depth sensor 16 pass through the self-propelled device transmission device 9, the transmission cable 3, the support ship transmission device 27, and the geomagnetic signal is magnetized by the magnetic sensor 4. Ultrasonic underground exploration sensor 6 to the body exploration computer system 28
The ultrasonic reflected acoustic signals of the ultrasonic probe analysis system 30
The underwater video signal of the underwater TV camera 5 is sent to the underwater TV display device 31, the direction signal of the gyro 13, and the tilt sensor 17.
Signal of the sensor arm angle sensor 15 and the signal of the depth sensor 16 are transmitted to the self-propelled device position measuring system 29. Further, the self-propelled device main body is remotely operated from the traveling device remote control device 32 on the support ship, and the operation signal controls the traveling device 14 via the support ship transmission device 27, the transmission cable 3, and the self-propelled device transmission device 9. Then, forward, reverse, left turn, right turn.

【0011】自走装置位置測定システム29では、図1
に示すように、支援船上自走装置位置測定用センサー7
及び自走装置上位置測定用センサー8の超音波発信装置
からの信号による超音波位置測定装置33(図2)によ
り、自走装置自体の支援船との相対位置及びジャイロ1
3の方位信号,傾斜センサー17の信号,センサーアー
ム角度センサー15の信号,深度センサー16の信号か
ら磁気センサー4自体の3次元位置を特定する。磁性物
体探査コンピューターシステム28では、自走装置上伝
送装置9によるセンサー位置と、磁気センサー4の信号
により、磁気分布状態すなわち磁気マップを作成する。
超音波探査解析システム30では、超音波地中探査セン
サー6を介して地中からの反射音響を強度によりディス
プレイ表示することにより、一般の地中反射とは異なる
磁性物体の反射信号を判別し、磁性物体を特定する。水
中TV表示装置31では水中TVカメラ5の映像を表示
する。
The self-propelled device position measuring system 29 shown in FIG.
As shown in, the sensor 7 for measuring the position of the support ship self-propelled device
Also, the relative position of the self-propelled device itself to the support ship and the gyro 1 by the ultrasonic position measuring device 33 (FIG. 2) by the signal from the ultrasonic transmitter of the self-propelled device position measuring sensor 8.
The three-dimensional position of the magnetic sensor 4 itself is specified from the azimuth signal of 3, the signal of the tilt sensor 17, the signal of the sensor arm angle sensor 15, and the signal of the depth sensor 16. In the magnetic object exploration computer system 28, a magnetic distribution state, that is, a magnetic map is created based on the sensor position of the self-propelled device transmission device 9 and the signal of the magnetic sensor 4.
In the ultrasonic exploration analysis system 30, the reflected sound from the ground is displayed on the display by the intensity through the ultrasonic underground exploration sensor 6, thereby discriminating the reflection signal of the magnetic object different from general ground reflection. Identify magnetic objects. The image of the underwater TV camera 5 is displayed on the underwater TV display device 31.

【0012】[0012]

【発明の効果】このような装置によれば、下記の効果が
奏せられる。 (1)誤差の少ない探査を行うことにより、探査区域の
限定が簡単にできる。 (2)リアルタイムにセンサーのデータを処理すること
により、迅速なデータ解析が可能となり、探査対象物の
推定に費す時間を短縮できる。 (3)水中では無人のため、安全であり、潜水士を使用
していた従来方式と比べて気象,海象に関係なく随時探
査可能となる。
According to such an apparatus, the following effects can be obtained. (1) The search area can be easily limited by performing the search with a small error. (2) By processing the sensor data in real time, rapid data analysis becomes possible, and the time spent estimating the exploration target can be shortened. (3) Since it is unmanned underwater, it is safe, and compared to the conventional method that uses a diver, it is possible to perform exploration at any time regardless of weather and sea conditions.

【0013】要するに本発明によれば、支援船にケーブ
ルを介して接続され遠隔操作により海底に沿って移動す
る自走装置により海底上及び海底中に存在する磁性物体
を検出する磁性物体の探査システムにおいて、上記自走
装置にそれぞれ付設された深度センサー,方位角センサ
ー,傾斜角センサー,複数の磁気センサー,海底上及び
海底中の異物を検出する水中TVカメラ及び超音波セン
サーと、上記支援船にそれぞれ搭載され上記各センサ
ー,水中TVカメラ及び超音波センサーの出力信号に基
づいて、作動する磁性物体探査コンピューターシステ
ム,超音波探査解析システム,水中TV表示装置,自走
装置位置測定システムとを具えたことにより、省人省力
的に誤差が少なく安全,迅速かつ確実に海底磁性物体の
所在を探査することができる海底中の磁性物体の探査装
置を得るから、本発明は産業上極めて有益なものであ
る。
In summary, according to the present invention, a magnetic object exploration system for detecting magnetic objects existing on and in the seabed by a self-propelled device connected to a support ship via a cable and moving along the seabed by remote control. In, a depth sensor, an azimuth sensor, a tilt angle sensor, a plurality of magnetic sensors, an underwater TV camera and an ultrasonic sensor for detecting foreign matter on the seabed and in the seabed, and the support ship A magnetic object exploration computer system, an ultrasonic exploration analysis system, an underwater TV display device, and a self-propelled device position measurement system that operate based on the output signals of the above-mentioned respective sensors, the underwater TV camera, and the ultrasonic sensor are installed. By doing so, it is possible to save the labor, labor and labor, and to search for the location of the magnetic substance on the seabed safely, quickly and surely. Since obtaining a locator of the magnetic objects in the seabed that can, the present invention is extremely useful industrially.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す磁性物体探査装置の全
体斜視図である。
FIG. 1 is an overall perspective view of a magnetic object exploration apparatus showing an embodiment of the present invention.

【図2】図1のブロック図である。FIG. 2 is a block diagram of FIG.

【図3】従来の磁性物体探査手段を示す斜視図である。FIG. 3 is a perspective view showing a conventional magnetic object exploration means.

【図4】図3とは異なる磁性物体探査手段を示す側面図
である。
FIG. 4 is a side view showing a magnetic object exploration means different from FIG.

【符号の説明】[Explanation of symbols]

1 自走装置 2 支援船 3 伝送ケーブル 4 磁気センサー 5 水中TVカメラ 6 超音波地中探査センサー 7 支援船上自走装置位置測定用センサー 8 自走装置上位置測定用センサー 9 自走装置上伝送装置 13 ジャイロ 14 走行装置 15 センサーアーム角センサー 16 深度センサー 17 傾斜センサー 27 支援船上伝送装置 28 磁性物体探査コンピューターシステム 29 自走装置位置測定システム 30 超音波探査解析システム 31 水中TV表示装置 32 走行装置遠隔操縦装置 33 超音波位置測定装置 1 Self-propelled device 2 Support ship 3 Transmission cable 4 Magnetic sensor 5 Underwater TV camera 6 Ultrasonic underground survey sensor 7 Sensor for measuring position of self-propelled device on support ship 8 Sensor for position measurement on self-propelled device 9 Transmission device on self-propelled device 13 Gyro 14 Traveling device 15 Sensor arm angle sensor 16 Depth sensor 17 Tilt sensor 27 Supporting ship transmission device 28 Magnetic object exploration computer system 29 Self-propelled device position measurement system 30 Ultrasonic exploration analysis system 31 Underwater TV display device 32 Traveling device remote control Device 33 Ultrasonic position measuring device

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 支援船にケーブルを介して接続され遠隔
操作により海底に沿って移動する自走装置により海底上
及び海底中に存在する磁性物体を検出する磁性物体の探
査システムにおいて、上記自走装置にそれぞれ付設され
た深度センサー,方位角センサー,傾斜角センサー,複
数の磁気センサー,海底上及び海底中の異物を検出する
水中TVカメラ及び超音波センサーと、上記支援船にそ
れぞれ搭載され上記各センサー,水中TVカメラ及び超
音波センサーの出力信号に基づいて、作動する磁性物体
探査コンピューターシステム,超音波探査解析システ
ム,水中TV表示装置,自走装置位置測定システムとを
具えたことを特徴とする海底中の磁性物体の探査装置。
1. A magnetic object exploration system for detecting a magnetic object existing on and in the seabed by a self-propelled device connected to a support ship via a cable and moving along the seabed by remote control. Depth sensor, azimuth sensor, tilt angle sensor, multiple magnetic sensors, underwater TV camera and ultrasonic sensor for detecting foreign matter on the seabed and in the seabed, which are respectively attached to the device, and are mounted on the support ship respectively. It is characterized by comprising a magnetic object exploration computer system, an ultrasonic exploration analysis system, an underwater TV display device, and a self-propelled device position measurement system that operate based on the output signals of the sensor, the underwater TV camera, and the ultrasonic sensor. An exploration device for magnetic objects in the seabed.
JP11790093A 1993-04-21 1993-04-21 Sea bottom magnetic object survey device Withdrawn JPH06305485A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11790093A JPH06305485A (en) 1993-04-21 1993-04-21 Sea bottom magnetic object survey device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11790093A JPH06305485A (en) 1993-04-21 1993-04-21 Sea bottom magnetic object survey device

Publications (1)

Publication Number Publication Date
JPH06305485A true JPH06305485A (en) 1994-11-01

Family

ID=14722989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11790093A Withdrawn JPH06305485A (en) 1993-04-21 1993-04-21 Sea bottom magnetic object survey device

Country Status (1)

Country Link
JP (1) JPH06305485A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016130711A (en) * 2015-01-15 2016-07-21 株式会社島津製作所 Portable magnetic detector and magnetic measurement system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016130711A (en) * 2015-01-15 2016-07-21 株式会社島津製作所 Portable magnetic detector and magnetic measurement system

Similar Documents

Publication Publication Date Title
CN110275169B (en) Near-field detection sensing system of underwater robot
US8655022B2 (en) System and method for detecting position of underwater vehicle
US9223002B2 (en) System and method for determining the position of an underwater vehicle
JPH0339742Y2 (en)
US20170074664A1 (en) Underwater Inspection System Using An Autonomous Underwater Vehicle ("AUV") In Combination With A Laser Micro Bathymetry Unit (Triangulation Laser) and High Definition Camera
WO2012129612A1 (en) Method and system for surveying or monitoring underwater features
EP1348139B1 (en) Subsea navigation and survey
KR101177839B1 (en) System and method for underwater robot global positioning
EP3785046A2 (en) Variable geometry sonar system and method
KR20190141341A (en) Method for Inspection Underwater Structures Using Drone and Sonar
USRE31026E (en) Navigation system for maneuvering a structure about a submerged object
JP2002168952A (en) Method of reconstituting submarine three-dimensional structure
CN108227744B (en) Underwater robot positioning navigation system and positioning navigation method
US20040013471A1 (en) Subsea pipeline touchdown monitoring
US6803943B2 (en) Marine plant field survey method and survey system utilizing the survey method
US4025895A (en) Navigation system for maneuvering a structure about a submerged object
JPH06305485A (en) Sea bottom magnetic object survey device
JP3374376B2 (en) Undersea exploration equipment
JPS61501722A (en) ocean observation equipment
EP1215114A1 (en) Method of laying an underwater cable
JP6942972B2 (en) Underwater search method and underwater search system
JPH01216288A (en) Method for surveying submarine terrain
JP4030088B2 (en) Submarine control method and system for submarine geophysical exploration
AU2012200886A1 (en) System and method for determining the position of an underwater vehicle
CN117572430B (en) Mining plume redeposition thickness area detection device and method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000704