JPH06304594A - Method for estimating scale component - Google Patents

Method for estimating scale component

Info

Publication number
JPH06304594A
JPH06304594A JP10077993A JP10077993A JPH06304594A JP H06304594 A JPH06304594 A JP H06304594A JP 10077993 A JP10077993 A JP 10077993A JP 10077993 A JP10077993 A JP 10077993A JP H06304594 A JPH06304594 A JP H06304594A
Authority
JP
Japan
Prior art keywords
scale
index
silica
cooling water
scale component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10077993A
Other languages
Japanese (ja)
Other versions
JP3172727B2 (en
Inventor
Hideo Otaka
秀夫 大▲高▼
Takayasu Ueda
隆靖 上田
Fumio Kawamura
文夫 川村
Yuuichi Ono
雄壱 小野
Kazumi Ogura
和美 小倉
Katsuhiko Momozaki
勝彦 百崎
Masaaki Taneno
真明 種子野
Hisami Momozaki
久美 百崎
Masako Kusunoki
雅子 楠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP10077993A priority Critical patent/JP3172727B2/en
Publication of JPH06304594A publication Critical patent/JPH06304594A/en
Application granted granted Critical
Publication of JP3172727B2 publication Critical patent/JP3172727B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To select an appropriate cleaning method by easily judging whether scales are deposited or not in the heat exchanger or refrigerator of an open circulating cooling waterline or the scale component from the quality of replenishing water and the operating conditions (concentration rate and temp.). CONSTITUTION:At least one index is selected from a group consisting of the Langelier index of cooling water from the replenishing water quality of an open cooling waterline and concentration rate, the saturation degree of silica and a scale index as the ratio of the silica saturation degree to the Langelier index, and the deposition of scales in the waterline and the scale component are judged from the index. Accordingly, since the Langelier index, silica saturation degree and scale index correspond sufficiently to the scale deposition in the cooling waterline and the kind of the scale component, the deposition of scales and the scale component are effectively judged from the index.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はスケール成分の推定方法
に係り、特に、開放循環冷却水系の熱交換器や冷凍機に
付着するスケールの析出の有無又はスケール成分を、補
給水の水質と運転条件(濃縮倍数、温度)から判定し、
適切な洗浄方法を選定するためのスケール成分の推定方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for estimating scale components, and in particular, the presence or absence of scale deposits on heat exchangers or refrigerators of an open circulation cooling water system or the scale components is determined by the quality of makeup water. Judging from the conditions (concentration multiple, temperature),
The present invention relates to a scale component estimation method for selecting an appropriate cleaning method.

【0002】[0002]

【従来の技術】開放循環冷却水系は、高濃縮運転を行う
と熱交換器や冷凍機にスケールが付着して熱効率が低下
する。このため、熱効率の回復を目的として、系内の洗
浄を行うが、洗浄に当り、付着しているスケールの種類
に応じて適切な洗浄方法を選択する必要がある。即ち、
スケールの種類には、炭酸カルシウム系スケールと無定
形シリカやけい酸マグネシウムに代表されるシリカ系ス
ケールとがある。前者のスケールを洗浄するには酸性の
洗浄剤やキレート剤が使われる。一方、後者のスケール
を洗浄する際にはアルカリ性洗浄剤やフッ化物が使われ
る。
2. Description of the Related Art In an open circulation cooling water system, when highly concentrated operation is performed, scale adheres to a heat exchanger or a refrigerator, resulting in a decrease in thermal efficiency. For this reason, the inside of the system is cleaned for the purpose of recovering the thermal efficiency, but it is necessary to select an appropriate cleaning method according to the type of scale adhering to the system during cleaning. That is,
There are two types of scales, a calcium carbonate-based scale and a silica-based scale represented by amorphous silica and magnesium silicate. To clean the former scale, acidic cleaning agents and chelating agents are used. On the other hand, when cleaning the latter scale, an alkaline cleaner or a fluoride is used.

【0003】[0003]

【発明が解決しようとする課題】従来、この洗浄方法の
選定には、作業員の経験にたよったり試行錯誤による方
法がとられ、正確にスケールの種類を判定して洗浄方法
を選択することはできなかった。正確にスケールの種類
を判定するためには、熱交換器や冷凍機の運転を停止し
て開放点検を行い、これら機器に付着したスケールを採
取して分析する必要があるが、このような煩雑な作業を
行うことは実用的ではない。
Conventionally, the cleaning method has been selected by trial and error based on the experience of the operator, and it is not possible to accurately judge the type of scale and select the cleaning method. could not. In order to accurately determine the type of scale, it is necessary to stop the operation of the heat exchanger and the refrigerator, perform an open inspection, and collect and analyze the scale attached to these devices. It is not practical to do such a task.

【0004】このようなことから、従来においては、開
放循環冷却水系内のスケールの生成により熱効率が低下
した場合において、適切な洗浄方法を速やかに選定する
と共にこれを実施して対処することができなかった。
[0004] Therefore, conventionally, when the thermal efficiency is lowered due to the generation of scale in the open circulating cooling water system, an appropriate cleaning method can be promptly selected and can be dealt with. There wasn't.

【0005】なお、従来、炭酸カルシウムの析出に関し
ては、化学平衡計算に基くランジェリア指数やリズナー
指数などの指標が提案されているが、実際の熱交換器や
冷凍機へ付着するスケールとの関係は明らかにされてい
ない。また、炭酸カルシウム以外のスケール成分に関し
ては、化学平衡計算以外にスケール析出の有無の指標と
なるものは提案されていない。
Conventionally, for precipitation of calcium carbonate, indexes such as Langerian index and Rizner index based on chemical equilibrium calculations have been proposed, but the relationship with the scale attached to actual heat exchangers and refrigerators has been proposed. Has not been revealed. In addition, regarding scale components other than calcium carbonate, other than the chemical equilibrium calculation, no index has been proposed as an index for the presence or absence of scale precipitation.

【0006】本発明は上記従来の実情に鑑みてなされた
ものであって、開放循環冷却水系の熱交換器や冷凍機に
付着するスケールの析出の有無又はスケール成分を、補
給水の水質と運転条件(濃縮倍数、温度)から容易に判
定し、適切な洗浄方法を選定することを可能とするスケ
ール成分の推定方法を提供することを目的とする。
The present invention has been made in view of the above-mentioned conventional circumstances, and the presence or absence of scale deposition on the heat exchanger or the refrigerator of the open circulation cooling water system or the scale component is determined by the quality of the makeup water and the operation. It is an object of the present invention to provide a method for estimating a scale component that enables easy determination based on conditions (concentration factor, temperature) and selection of an appropriate cleaning method.

【0007】[0007]

【課題を解決するための手段】本発明のスケール成分の
推定方法は、開放循環冷却水系の補給水水質と濃縮倍数
から、冷却水のランジェリア指数、冷却水のシリカの飽
和度、及び、ランジェリア指数に対するシリカの飽和度
の比であるスケール指数から成る群から選ばれる少なく
とも1つの指標を求め、この指標に基いて冷却水系内の
スケール析出の有無又はスケール成分を判定することを
特徴とする。
The method for estimating scale components of the present invention is based on the quality of makeup water and concentration factor of an open circulating cooling water system, the Langerian index of the cooling water, the saturation degree of the cooling water silica, and the Langerli. (A) At least one index selected from the group consisting of a scale index, which is the ratio of the degree of saturation of silica to the index, is obtained, and the presence or absence of scale precipitation in the cooling water system or the scale component is determined based on this index. .

【0008】以下に本発明を詳細に説明する。The present invention will be described in detail below.

【0009】熱交換器や冷凍機に付着するスケールの種
類を運転中に判定するため、本発明では開放循環冷却水
系の補給水の水質と運転条件(濃縮倍数、更に必要によ
り温度)から炭酸カルシウムとシリカの飽和度を算出
し、スケールの有無を推定するとともに、両者がスケー
ル付着する場合にどちらが主体を占めるかをこれら飽和
度の比から判定する。
In order to determine the type of scale adhering to the heat exchanger or the refrigerator during operation, the present invention uses calcium carbonate based on the quality of the makeup water of the open circulation cooling water system and the operating conditions (concentration multiple, and if necessary temperature). And the degree of saturation of silica are calculated, the presence or absence of scale is estimated, and when both are attached to the scale, which is the main constituent is determined from the saturation ratio.

【0010】炭酸カルシウムの飽和度は冷却水のランジ
ェリア指数(J. American Water Works [28] PP1500(19
36))の計算値を用いる。また、シリカの飽和度は冷却水
中のシリカ濃度の計算値と無定形シリカの溶解度との比
を用いる。ただし、ここで計算する炭酸カルシウムとシ
リカの飽和度は冷却水の水質分析値を用いて算出するの
ではなく、補給水の水質分析値と濃縮倍数から予想され
る冷却水水質を用いて算出する。これは、冷却水で炭酸
カルシウムやシリカが既に析出していると飽和度が小さ
くなり、スケール析出の有無を正しく判定できなくなる
からである。
The saturation of calcium carbonate is determined by the Langerian index of cooling water (J. American Water Works [28] PP1500 (19
Use the calculated value of 36)). For the saturation of silica, the ratio between the calculated silica concentration in cooling water and the solubility of amorphous silica is used. However, the degree of saturation of calcium carbonate and silica calculated here is not calculated using the water quality analysis value of the cooling water, but is calculated using the water quality analysis value of the makeup water and the cooling water quality expected from the concentration multiple. . This is because if calcium carbonate or silica has already been deposited in the cooling water, the degree of saturation will be small and it will not be possible to correctly determine the presence or absence of scale deposition.

【0011】従って、本発明ではランジェリア指数の計
算は冷却水の全溶解塩分、カルシウム硬度、Mアルカリ
度の値として補給水のそれぞれの値に濃縮倍数を乗じた
値を用いる。また、冷却水のpHの値は予めMアルカリ
度とpHの関係を実験的に又は化学平衡計算で求めた値
を用いる。温度は熱交換器又は冷凍機の冷却水出口温度
を通常用いるが、これら装置の冷却水出口側金属表面温
度を用いても良い。濃縮倍数は冷却水系の水バランスか
ら計算しても良いが、水中で析出する恐れがない塩化物
イオン等の成分の冷却水と補給水の水質分析値の比を計
算する方が正確である。
Therefore, in the present invention, the Langerian index is calculated by using the values obtained by multiplying the respective values of the makeup water by the concentration multiple as the values of the total dissolved salt content, the calcium hardness and the M alkalinity of the cooling water. As the pH value of the cooling water, a value obtained by experimentally or by chemical equilibrium calculation of the relationship between M alkalinity and pH is used. The cooling water outlet temperature of the heat exchanger or the refrigerator is usually used as the temperature, but the cooling water outlet side metal surface temperature of these devices may be used. The concentration factor may be calculated from the water balance of the cooling water system, but it is more accurate to calculate the ratio of the water quality analysis values of the cooling water and the makeup water of components such as chloride ions that are not likely to precipitate in water.

【0012】また、冷却水のシリカの飽和度はランジェ
リア指数と同様に補給水のシリカの濃度に濃縮倍数を乗
じた冷却水シリカ濃度を無定形シリカの溶解度で除した
値である。ここで無定形シリカの溶解度は参考書(例え
ば「無機化学全書」)等で一般に公知の値を用いる。シ
リカの溶解度は温度で変化することも知られている。本
発明に用いる溶解度の値は熱交換器又は冷凍機の冷却水
出口水温或いはこれら装置の冷却水出口側金属表面温度
の値を用いる。
The saturation degree of the cooling water silica is a value obtained by dividing the concentration of the cooling water silica, which is obtained by multiplying the concentration of the silica of the makeup water by the concentration factor, by the solubility of the amorphous silica, similarly to the Langerian index. Here, as the solubility of the amorphous silica, a generally known value is used in reference books (for example, "Inorganic Chemistry"). It is also known that the solubility of silica changes with temperature. As the solubility value used in the present invention, the cooling water outlet water temperature of the heat exchanger or the refrigerator or the cooling water outlet side metal surface temperature of these devices is used.

【0013】以下に本発明で用いる指標の具体的な計算
方法について説明する。
A specific method of calculating the index used in the present invention will be described below.

【0014】 ランジェリア指数 ランジェリア指数=pH−pHs pHは水系のpH値である。pHsの算出方法には各種
の方法が知られているが、例えば、「工業用水と廃水処
理」(日刊工業新聞社)第20頁〜第23頁に記載され
る方法によれば、次の通りである。即ち、pHsは pHs=(9.3+A+B)−(C+D) で表される。式中A,B,C,Dは夫々全固形分、温
度、カルシウム硬度、Mアルカリ度によって決まる値で
あり、各数値から容易に求めることができ、求められた
A,B,C,Dの値からpHsは容易に算出される。ま
た、「水処理薬品ハンドブック」(栗田工業株式会社)
第123頁〜第124頁に記載される方法によれば、p
Hsは pHs=pCa+pALK+“C” で表され、式中、pCaはカルシウム硬度から、また、
pALKはMアルカリ度から、更に“C”は温度から、
それぞれ飽和指数計算図表により求められる値であり、
各々の値からpHsを容易に算出することができる。そ
して、ランジェリア指数はpHとこのpHsとの差とし
て容易に算出される。いずれの場合においても、カルシ
ウム硬度、Mアルカリ度、全溶解塩分は、補給水の各値
に濃縮倍数を乗じて算出した値を用いる。
Langerian Index Langerian Index = pH-pHs pH is a pH value of an aqueous system. Although various methods are known for calculating pHs, for example, according to the method described in “Industrial water and wastewater treatment” (Nikkan Kogyo Shimbun), pages 20 to 23, the method is as follows. Is. That is, pHs is represented by pHs = (9.3 + A + B)-(C + D). In the formula, A, B, C, and D are values determined by the total solid content, temperature, calcium hardness, and M alkalinity, respectively, and can be easily calculated from each numerical value. The pHs are easily calculated from the values. Also, "Water Treatment Chemicals Handbook" (Kurita Industry Co., Ltd.)
According to the method described on pages 123 to 124, p
Hs is represented by pHs = pCa + pALK + “C”, where pCa is the calcium hardness, and
pALK is from M alkalinity, and "C" is from temperature,
These are the values obtained from the saturation index calculation chart,
The pHs can be easily calculated from each value. Then, the Langeria index is easily calculated as the difference between pH and this pHs. In any case, as the calcium hardness, the M alkalinity, and the total dissolved salt content, the values calculated by multiplying each value of the makeup water by the concentration multiple are used.

【0015】 シリカの飽和度Saturation degree of silica

【0016】[0016]

【数1】 [Equation 1]

【0017】前述の如く、上記式において、シリカの理
論含有量は補給水のシリカ濃度に濃縮倍数を乗じて求め
た値を用い、また、その温度でのシリカの飽和溶解度は
化学便覧等に記載される一般的な数値を用いる。
As described above, in the above formula, the theoretical content of silica is the value obtained by multiplying the concentration of silica in the makeup water by the concentration multiple, and the saturated solubility of silica at that temperature is described in the Chemical Handbook and the like. The general numerical value used is used.

【0018】 スケール指数Scale index

【0019】[0019]

【数2】 [Equation 2]

【0020】上記,の計算値から求める。The value is calculated from the above calculated value.

【0021】本発明においては、上記ランジェリア指
数、シリカの飽和度及びスケール指数について、そ
れぞれ予めある基準値を設定し、例えば次のような判定
を行う。
In the present invention, a certain reference value is set in advance for each of the Langerian index, the saturation degree of silica, and the scale index, and the following judgments are made, for example.

【0022】即ち、算出されたランジェリア指数(以下
「L」と表す。)を予め設定したランジェリア指数の基
準値(以下「L0 」で表す。)と比較し、 L≧L0 であれば、炭酸カルシウム系スケールが付着していると
判定し、 L<L0 であれば炭酸カルシウム系スケールの問題はないと判定
する。
[0022] That is, the calculated lingerie A index (hereinafter referred to as "L".) The preset reference value of lingerie A index (hereinafter represented by "L 0".) As compared to, in L ≧ L 0 if For example, it is determined that the calcium carbonate-based scale is attached, and if L <L 0 , it is determined that there is no problem with the calcium carbonate-based scale.

【0023】また、算出されたシリカの飽和度(以下
「SI」と表す。)を予め設定したシリカの飽和度の基
準値(以下「SI0 」と表す。)と比較して SI≧SI0 であれば、シリカ系スケールが付着していると判定し、 SI<SI0 であればシリカ系スケールの問題はないと判定する。
Further, the calculated silica saturation (hereinafter referred to as "SI") is compared with a preset silica saturation reference value (hereinafter referred to as "SI 0 "), and SI ≥ SI 0. If so, it is determined that the silica-based scale is attached, and if SI <SI 0 , it is determined that there is no problem with the silica-based scale.

【0024】更に、L≧L0 かつSI≧SI0 で、しか
も算出されたスケール指数(以下「SC」と表す。)を
予め設定したスケール指数の基準値(以下「SC0 」と
表す。)と比較した場合、 SC≧SC0 であれば、スケールの主成分は炭酸カルシウムであり、 SC<SC0 であれば、スケールの主成分はシリカ系スケールである
と判定する。
Further, L ≧ L 0 and SI ≧ SI 0 , and the calculated scale index (hereinafter referred to as “SC”) is a preset reference value of the scale index (hereinafter referred to as “SC 0 ”). When SC ≧ SC 0, it is determined that the main component of the scale is calcium carbonate, and when SC <SC 0 , the main component of the scale is a silica-based scale.

【0025】そして、これらの判定に基いて、スケール
の主成分に応じて適切な洗浄方法を選定して洗浄を行う
ことにより、スケールを効率的に洗浄除去して、系内の
熱効率を迅速に回復させることが可能となる。
Based on these judgments, an appropriate cleaning method is selected according to the main component of the scale to perform cleaning, so that the scale is efficiently cleaned and removed, and the thermal efficiency in the system is quickly increased. It will be possible to recover.

【0026】なお、本発明において、各基準値は、その
水系毎に実験的に容易に求めることができる。
In the present invention, each reference value can be easily obtained experimentally for each water system.

【0027】[0027]

【作用】冷却水系のランジェリア指数、シリカの飽和
度、及び、ランジェリア指数に対するシリカの飽和度の
比であるスケール指数の各値は、当該冷却水系のスケー
ル析出の有無又はスケール成分の種類に良好に対応する
ことから、スケール析出の有無又はスケール成分の判定
のための指標として有効であり、これらの値を予め設定
した基準値と比較することにより、スケール析出の有無
又はスケール成分の判定を容易かつ適確に行うことがで
きる。
[Function] Each value of the cooling water system Langerian index, the degree of silica saturation, and the scale index, which is the ratio of the degree of silica saturation to the Langerian index, depends on the presence or absence of scale precipitation in the cooling water system or the type of scale component. Since it responds well, it is effective as an index for determining the presence or absence of scale precipitation or scale components, and by comparing these values with preset reference values, the presence or absence of scale precipitation or the determination of scale components can be determined. It can be done easily and accurately.

【0028】しかして、冷却水系のランジェリア指数、
シリカの飽和度及びスケール指数は、当該水系の補給水
の水質と濃縮倍数から容易に計算で求めることができ
る。
Thus, the Langerian index of the cooling water system,
The degree of saturation and the scale index of silica can be easily calculated from the water quality and the concentration multiple of the makeup water of the water system.

【0029】従って、本発明によれば、運転の継続中に
補給水の水質の測定を行うと共に、濃縮倍数を求めるこ
とにより、容易に系内のスケール析出の有無又はスケー
ル成分を知ることができる。
Therefore, according to the present invention, the presence or absence of scale precipitation in the system or the scale component can be easily known by measuring the water quality of the makeup water during the continuation of operation and determining the concentration multiple. .

【0030】[0030]

【実施例】以下に実施例を挙げて本発明をより具体的に
説明するが、本発明はその要旨を超えない限り、以下の
実施例に限定されるものではない。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to the following examples as long as the gist thereof is not exceeded.

【0031】実施例1 全国16ケ所の冷凍機を含む開放循環冷却水系A〜Pに
ついて、本発明方法を適用した。この場合、冷凍機の冷
却水出口水温は一律40℃であった。各水系の水質を表
1に示す(なお、pHはMアルカリ度から実験的に求め
た)。
Example 1 The method of the present invention was applied to open circulating cooling water systems A to P including refrigerators at 16 locations nationwide. In this case, the cooling water outlet water temperature of the refrigerator was uniformly 40 ° C. The water quality of each water system is shown in Table 1 (the pH was experimentally determined from the M alkalinity).

【0032】表1の水質からランジェリア指数、シリカ
の飽和度(40℃におけるシリカの飽和溶解度は150
mg/l)及びスケール指数を算出し、各基準値と比較
した。
From the water quality in Table 1, the Langerian index and the degree of silica saturation (the saturated solubility of silica at 40 ° C. is 150
mg / l) and scale index were calculated and compared with each reference value.

【0033】この結果、シリカの飽和度、ランジェリア
指数からいずれの水系もスケールが析出する水系と判断
された。更に、スケール指数と基準値とを比較すること
により、表1に記載の通り、スケール成分(主成分)を
判定した。
As a result, it was judged from the degree of saturation of silica and the Langerian index that any of the water systems was a water system in which scale was deposited. Further, the scale component (main component) was determined as shown in Table 1 by comparing the scale index with the reference value.

【0034】その後、この判定に基いて、各水系運転継
続中にブロー弁を閉め、カルシウム系スケールの場合に
はEDTA(エチレンジアミン四酢酸)を1,000m
g/l水系に添加し、一方、シリカ系スケールの場合に
はNaOHを500mg/l水系に添加し、各々20時
間循環洗浄した。その後、ブロー弁を開放し、通常の運
転に戻した。その結果、いずれの水系においても熱効率
が改善され、適確に洗浄されたことがわかった。
Thereafter, based on this judgment, the blow valve was closed during the operation of each water system, and in the case of the calcium-based scale, EDTA (ethylenediaminetetraacetic acid) was added to 1,000 m.
g / l water system, while in the case of silica-based scale, NaOH was added to 500 mg / l water system, and each was circulated and washed for 20 hours. After that, the blow valve was opened and the operation was returned to normal. As a result, it was found that the thermal efficiency was improved and the cleaning was performed properly in any of the water systems.

【0035】[0035]

【表1】 [Table 1]

【0036】[0036]

【発明の効果】以上詳述した通り、本発明のスケール成
分の推定方法によれば、開放循環冷却水系の熱交換器や
冷凍機の運転を停止して開放点検、スケールの採取、化
学分析などの煩雑な作業を要することなく、これらの機
器に付着しているスケールの有無及び付着スケールの成
分を容易に判定することができる。このため、この判定
結果に基いて、これらの機器に適切な洗浄方法を速やか
に選択して洗浄を行うことにより、迅速かつ効率的な洗
浄を行って、機器の熱効率を早期に回復させることが可
能とされる。
As described in detail above, according to the scale component estimating method of the present invention, the operation of the heat exchanger or the refrigerator of the open circulating cooling water system is stopped to perform the open inspection, the sampling, the chemical analysis, etc. It is possible to easily determine the presence / absence of scale adhering to these devices and the components of the adhering scale without the need for complicated work. Therefore, based on this determination result, by quickly selecting an appropriate cleaning method for these devices and performing cleaning, quick and efficient cleaning can be performed, and the thermal efficiency of the device can be recovered early. Made possible.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小野 雄壱 東京都新宿区西新宿3丁目4番7号 栗田 工業株式会社内 (72)発明者 小倉 和美 東京都新宿区西新宿3丁目4番7号 栗田 工業株式会社内 (72)発明者 百崎 勝彦 東京都新宿区西新宿3丁目4番7号 栗田 工業株式会社内 (72)発明者 種子野 真明 東京都新宿区西新宿3丁目4番7号 栗田 工業株式会社内 (72)発明者 百崎 久美 東京都新宿区西新宿3丁目4番7号 栗田 工業株式会社内 (72)発明者 楠 雅子 東京都新宿区西新宿3丁目4番7号 栗田 工業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yuichi Ono 3-4-7 Nishishinjuku, Shinjuku-ku, Tokyo Kurita Industry Co., Ltd. (72) Kazumi Ogura 3-4-7 Nishishinjuku, Shinjuku-ku, Tokyo No. Kurita Kogyo Co., Ltd. (72) Inventor Katsuhiko Hyakuzaki 3-4-7 Nishishinjuku, Shinjuku-ku, Tokyo No. 3 Kurita Kogyo Co., Ltd. (72) Masaaki Taneno 3-47, Nishishinjuku, Shinjuku-ku, Tokyo No. Kurita Industry Co., Ltd. (72) Inventor Kumi Hyakusaki 3-4-7 Nishi-Shinjuku, Shinjuku-ku, Tokyo Kurita Industry Co., Ltd. (72) Masako Kusunoki 3-4-7 Nishi-Shinjuku, Shinjuku-ku, Tokyo Kurita Industry Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 開放循環冷却水系の補給水水質と濃縮倍
数から、冷却水のランジェリア指数、冷却水のシリカの
飽和度、及び、ランジェリア指数に対するシリカの飽和
度の比であるスケール指数から成る群から選ばれる少な
くとも1つの指標を求め、この指標に基いて冷却水系内
のスケール析出の有無又はスケール成分を判定すること
を特徴とするスケール成分の推定方法。
1. From the makeup water quality and concentration factor of an open circulation cooling water system, from the Langeria index of the cooling water, the saturation degree of the cooling water silica, and the scale index which is the ratio of the saturation degree of the silica to the Langereria index. A method of estimating a scale component, characterized in that at least one index selected from the group consisting of the following is obtained, and the presence or absence of scale precipitation in the cooling water system or the scale component is determined based on this index.
JP10077993A 1993-04-27 1993-04-27 Scale component estimation method Expired - Lifetime JP3172727B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10077993A JP3172727B2 (en) 1993-04-27 1993-04-27 Scale component estimation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10077993A JP3172727B2 (en) 1993-04-27 1993-04-27 Scale component estimation method

Publications (2)

Publication Number Publication Date
JPH06304594A true JPH06304594A (en) 1994-11-01
JP3172727B2 JP3172727B2 (en) 2001-06-04

Family

ID=14282957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10077993A Expired - Lifetime JP3172727B2 (en) 1993-04-27 1993-04-27 Scale component estimation method

Country Status (1)

Country Link
JP (1) JP3172727B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003290791A (en) * 2002-03-29 2003-10-14 Miura Co Ltd Method for judging scale occurrence tendency in boiler apparatus and method for restraining occurrence of scale in boiler apparatus
WO2011045878A1 (en) * 2009-10-15 2011-04-21 三菱電機株式会社 Method for examining water qulaity and heat-pump type hot-water supply system operated using the method
JP6142937B1 (en) * 2016-03-18 2017-06-07 栗田工業株式会社 Reverse osmosis membrane device operation management method and reverse osmosis membrane treatment system
WO2019093183A1 (en) * 2017-11-08 2019-05-16 栗田工業株式会社 Method for suppressing silica scale growth

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003290791A (en) * 2002-03-29 2003-10-14 Miura Co Ltd Method for judging scale occurrence tendency in boiler apparatus and method for restraining occurrence of scale in boiler apparatus
WO2011045878A1 (en) * 2009-10-15 2011-04-21 三菱電機株式会社 Method for examining water qulaity and heat-pump type hot-water supply system operated using the method
JP5672237B2 (en) * 2009-10-15 2015-02-18 三菱電機株式会社 Operation method of hot water supply system using heat pump using water quality diagnosis
JP6142937B1 (en) * 2016-03-18 2017-06-07 栗田工業株式会社 Reverse osmosis membrane device operation management method and reverse osmosis membrane treatment system
WO2017158887A1 (en) * 2016-03-18 2017-09-21 栗田工業株式会社 Method for operating and managing reverse osmosis membrane device, and reverse osmosis membrane treatment system
JP2017170273A (en) * 2016-03-18 2017-09-28 栗田工業株式会社 Operation control method of reverse osmosis membrane device and reverse osmosis membrane processing system
CN108698859A (en) * 2016-03-18 2018-10-23 栗田工业株式会社 The running management method and reverse osmosis membrane treatment system of reverse osmosis membrane apparatus
WO2019093183A1 (en) * 2017-11-08 2019-05-16 栗田工業株式会社 Method for suppressing silica scale growth
JP2019084507A (en) * 2017-11-08 2019-06-06 栗田工業株式会社 Silica scale growth suppression method

Also Published As

Publication number Publication date
JP3172727B2 (en) 2001-06-04

Similar Documents

Publication Publication Date Title
Edwards et al. Alkalinity, pH, and copper corrosion by‐product release
AU2001272969B2 (en) Dynamic optimization of chemical additives in a water treatment system
JP4171329B2 (en) Scale cleaner
Puckorius et al. A new practical index for calcium carbonate scale prediction in cooling tower systems
JP3172727B2 (en) Scale component estimation method
EP0212894B1 (en) Removal of iron fouling in cooling water systems
US4576722A (en) Scale and sludge compositions for aqueous systems
JPS5852486A (en) Deoxidizer
Pisigan Jr et al. Effects of water quality parameters on the corrosion of galvanized steel
NO176928B (en) Procedure for sealing anodized oxide layers on aluminum and aluminum alloys
JPH06277695A (en) Method of solubilizing silica
CN104129862A (en) Cleaning agent for removing boiler silicon scale
JP7042030B2 (en) How to clean the heat exchanger
WO2022071206A1 (en) Water quality management device for heat exchanger equipment, heat exchanger equipment, and water quality management method for heat exchanger equipment
Frommell et al. Aluminum residual control using orthophosphate
Ferguson Mineral scale prediction and control at extreme TDS
EP0047724A1 (en) A method of controlling or regulating the composition of pickling bath solutions for acid pickling metallic materials
CN110554147A (en) method for comparing cleaning effect of cleaning agent on unknown scale sample in reverse osmosis system
JPS5912799A (en) Antiscaling agent
Olczak et al. Eco-innovative method of cleaning heat exchangers from boiler scale
JP3832887B2 (en) Circulator
JPH07117355B2 (en) How to control dirt on copper alloy parts
SU1117441A1 (en) Method of cleaning surface of heat-exchange equipment from scale
Harding et al. Chemical descaling of acid dosed desalination plants
US20230279313A1 (en) Cleaning agent, cleaning method of water treatment apparatus, and cleaning method of silica-based scale

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20080330

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090330

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20090330

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20100330

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20110330

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20110330

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20130330

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20130330

EXPY Cancellation because of completion of term