JPH06304550A - Water purifier - Google Patents

Water purifier

Info

Publication number
JPH06304550A
JPH06304550A JP12067693A JP12067693A JPH06304550A JP H06304550 A JPH06304550 A JP H06304550A JP 12067693 A JP12067693 A JP 12067693A JP 12067693 A JP12067693 A JP 12067693A JP H06304550 A JPH06304550 A JP H06304550A
Authority
JP
Japan
Prior art keywords
water
valve
microorganisms
water purifier
flexible pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12067693A
Other languages
Japanese (ja)
Inventor
Mitsusachi Nakazono
光幸 中園
Hisaaki Miyaji
寿明 宮地
Kunio Kimura
邦夫 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP12067693A priority Critical patent/JPH06304550A/en
Publication of JPH06304550A publication Critical patent/JPH06304550A/en
Pending legal-status Critical Current

Links

Landscapes

  • Water Treatment By Sorption (AREA)
  • Bathtub Accessories (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To prevent the slime in a piping and to suppress the propagation of microorganisms without exerting a burden on a purifier body by forming a flexible pipe connecting the purifier body and a purified water discharge port of polyethylene, etc., and providing the discharge port of this pipe with a backflow preventive valve. CONSTITUTION:City water flows from the flexible pipe 6 through a water inlet 4 of the purifier into the purifier body 1 when a faucet connected to a water feed port 7 of the purifier is opened. After the chlorine in the city water is removed by an active carbon layer 2, the greater part of impurities are removed by a hollow yarn membrane 3. The treated water after the purification flows out through the flexible pipe 8 from a water outlet 5. The discharge port 9 of the flexible pipe 8 is internally provided with the backflow preventive valve which forms a water flow path between ribs and a valve disk by movement of this valve disk against a spring when the valve disk receives the water pressure above the min. valve opening pressure. The flexible pipes 6, 8 are formed of polyethylene, polypropylene or ethylene-vinyl acetate copolymer which does not substantially contain plasticizers to be the cause for propagation of the microorganisms.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、浄水器に関するもの
で、特にシステムキッチンなどに組込まれるビルトイン
タイプの浄水器に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water purifier, and more particularly to a built-in type water purifier incorporated in a system kitchen or the like.

【0002】[0002]

【従来の技術】近年、河川の富栄養化や農薬の混入など
の汚染が、徐々に高濃度かつ広範囲に広がっている。そ
のため、汚染された河川を飲料水源としているところで
は、水道水がカルキ臭いまたはカビ臭いなどの問題があ
った。そこで、活性炭を用いて悪臭成分を除去できる浄
水器が開発され、一般家庭に急速に普及してきた。しか
し、活性炭のみの浄水器は、活性炭の内部で微生物が増
殖してこれが処理水とともに流出してしまう欠点があっ
た。最近になって、活性炭の後に中空糸膜を利用しその
濾過作用により微生物はもとより他の不純物をも除去で
きる浄水器が開発されている。
2. Description of the Related Art In recent years, pollution such as eutrophication of rivers and contamination of pesticides has gradually spread to high concentrations and spread over a wide range. Therefore, there is a problem that tap water smells like scaly or musty when drinking water from a polluted river. Therefore, a water purifier that can remove offensive odor components using activated carbon has been developed and rapidly spread to general households. However, the water purifier using only activated carbon has a drawback in that microorganisms grow inside the activated carbon and this flows out together with the treated water. Recently, a water purifier has been developed which utilizes a hollow fiber membrane after activated carbon and can remove not only microorganisms but also other impurities by its filtering action.

【0003】[0003]

【発明が解決しようとする課題】通常水道水は、浄水場
で塩素投入により殺菌されている。また、送水中は水中
の残留塩素により微生物の増殖が抑制される。しかしな
がら、従来の浄水器では、活性炭により塩素が吸着除去
されるため、微生物が増殖しやすい環境となる。特に、
浄水器使用後の放置により、浄水器の吐出口からの微生
物の侵入と水道水中に微量含まれる微生物の増殖によ
り、浄水器内の滞留水及び浄水器用接続配管内からの微
生物が認められる場合が多い。特に、浄水器用接続配管
部材に合成樹脂を用いると、この樹脂が微生物の増殖基
材になるという問題がある。
[Problems to be Solved by the Invention] Usually, tap water is sterilized by introducing chlorine at a water purification plant. Further, during the water supply, residual chlorine in the water suppresses the growth of microorganisms. However, in the conventional water purifier, since chlorine is adsorbed and removed by the activated carbon, the environment becomes easy for microorganisms to grow. In particular,
If left after use of the water purifier, infiltration of microorganisms from the outlet of the water purifier and growth of a small amount of microorganisms in the tap water may cause retention of water in the water purifier and microorganisms in the water purifier connection pipe. Many. In particular, when a synthetic resin is used for the connecting pipe member for the water purifier, there is a problem that this resin becomes a base material for the growth of microorganisms.

【0004】浄水器は、通常活性炭及び中空糸濾過膜を
収容した浄水器本体と、その水入口及び水出口を給水口
及び浄水吐出口にそれぞれ接続する管とから構成されて
いる。そして、特にシステムキッチンなどに組込まれる
ビルトインタイプの浄水器では、その取付けの自由度を
増すため、前記の接続管は可撓性であることが望まし
い。この可撓性接続管として、ステンレス鋼などの金属
材料を用いる方法もあるが、高価となる欠点がある。本
発明は、上記課題を解決するものであり、接続用配管に
合成樹脂を用い、なおかつ微生物の増殖を抑制できる浄
水器を提供することを目的とする。
The water purifier usually comprises a water purifier body containing activated carbon and a hollow fiber filtration membrane, and pipes for connecting the water inlet and the water outlet thereof to the water supply port and the water purification discharge port, respectively. In particular, in a built-in type water purifier incorporated in a system kitchen or the like, it is desirable that the connecting pipe be flexible in order to increase the degree of freedom in its attachment. There is also a method of using a metal material such as stainless steel as the flexible connecting pipe, but it has a drawback of being expensive. The present invention is intended to solve the above problems, and an object of the present invention is to provide a water purifier that uses a synthetic resin for a connecting pipe and that can suppress the growth of microorganisms.

【0005】[0005]

【課題を解決するための手段】本発明は、浄水器本体と
浄水吐出口とが可撓性管で接続されている浄水器におい
て、前記可撓性管をポリエチレン、ポリプロピレンまた
はエチレン−酢酸ビニル共重合体で構成するとともに、
前記管の浄水吐出口側に逆流防止弁を設たことを特徴と
する。
The present invention is a water purifier in which a water purifier body and a purified water discharge port are connected by a flexible pipe, wherein the flexible pipe is made of polyethylene, polypropylene or ethylene-vinyl acetate. In addition to being composed of a polymer,
A backflow prevention valve is provided on the purified water outlet side of the pipe.

【0006】ここで、前記のエチレン−酢酸ビニル共重
合体は、酢酸ビニルの共重合比率が20wt%以下であ
ることが好ましい。また、前記の逆流防止弁は、弁体が
回転しないで弁体の弁座との接触部分が実質的に常に同
じであることが好ましい。さらに、前記可撓性管を抗菌
剤を含む合成樹脂で構成することがより好ましい。
Here, it is preferable that the ethylene-vinyl acetate copolymer has a vinyl acetate copolymerization ratio of 20 wt% or less. Further, in the above-described check valve, it is preferable that the valve body does not rotate and the contact portion of the valve body with the valve seat is substantially always the same. Further, it is more preferable that the flexible tube is made of a synthetic resin containing an antibacterial agent.

【0007】[0007]

【作用】本発明の浄水器は、可撓性管の浄水吐出口側に
逆流防止弁を設置しているので、管のぬめりの原因とな
る微生物が管内へ侵入するのを遮断する。本発明はま
た、たとえ微生物が管内に侵入したとしても、管の材質
が微生物の増殖要因である可塑剤を実質的に含まない樹
脂なので、管内壁における微生物の増殖を抑制する作用
がある。可塑剤なしに可撓性管にするには、例えばエチ
レン−酢酸ビニル共重合体では可塑剤の代わりに酢酸ビ
ニルの共重合割合を増すことで可撓性を増すことができ
る。さらに、逆流防止弁として、弁体が回転しないで、
弁体と弁座との接触部分が実質的に常に同じとなる構成
にすると、弁体の回転による微生物の侵入がなくなり、
微生物遮断作用がより確実となる。また、逆流防止弁及
び可撓性管の材料に抗菌剤を添加することにより、微生
物の増殖をより抑制する作用がある。そのための抗菌剤
としては、安全性が高く、かつ環境を汚染しにくいオチ
スルファト銀錯塩を用いた材料が適当である。
In the water purifier of the present invention, since the backflow prevention valve is installed on the side of the water purification outlet of the flexible pipe, the microorganisms causing the slimy pipe are prevented from entering the pipe. The present invention also has the effect of suppressing the growth of microorganisms on the inner wall of the tube because the material of the tube is a resin that does not substantially contain the plasticizer, which is a factor for the growth of microorganisms, even if the microorganisms enter the tube. To obtain a flexible tube without a plasticizer, for example, in an ethylene-vinyl acetate copolymer, flexibility can be increased by increasing the copolymerization ratio of vinyl acetate instead of the plasticizer. Furthermore, as a check valve, the valve does not rotate,
When the contact portion between the valve body and the valve seat is substantially always the same, invasion of microorganisms due to rotation of the valve body is eliminated,
The microorganism blocking action becomes more reliable. In addition, the addition of an antibacterial agent to the material of the check valve and the flexible tube has the effect of further suppressing the growth of microorganisms. As the antibacterial agent for that purpose, a material using otisulfato silver complex salt, which is highly safe and hardly pollutes the environment, is suitable.

【0008】[0008]

【実施例】以下に、本発明をその実施例を示す図面に基
づいて説明する。図1は、本発明の一実施例の浄水器の
配管図である。その動作原理を図1を用いて説明する。
浄水器本体1は、内部に活性炭層2と中空糸濾過膜3を
収容し、水入口4と水出口5を有する。6は給水口7を
有する合成樹脂製の可撓性管、8は吐出口9を有する合
成樹脂製の可撓性管であり、これらはそれぞれ浄水器本
体の水入口4及び水出口5に接続されている。可撓性管
8と吐出口9との接続部は、図2に示すように、管8と
吐出口取付金具10とが両者にそれぞれ螺合する継手1
1で接続された構成で、さらに逆流防止弁12を設けて
いる。給水口7を連結した蛇口を開けると、水道水は、
給水口7から管6を通り浄水器の水入口4から浄水器本
体1に入る。このとき水道水にはまだ塩素が含まれてい
るが、活性炭層2により塩素が除去される。さらに、中
空糸膜3によって不純物を大部分除去された処理水は、
浄水器の水出口5から出て管8に入る。そして、逆流防
止弁12と浄水器用の吐出口9を経由して吐出される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings showing its embodiments. FIG. 1 is a piping diagram of a water purifier according to an embodiment of the present invention. The operating principle will be described with reference to FIG.
The water purifier body 1 houses the activated carbon layer 2 and the hollow fiber filtration membrane 3 inside, and has a water inlet 4 and a water outlet 5. 6 is a synthetic resin flexible pipe having a water supply port 7, and 8 is a synthetic resin flexible pipe having a discharge port 9, which are respectively connected to the water inlet 4 and the water outlet 5 of the water purifier body. Has been done. As shown in FIG. 2, the connecting portion between the flexible pipe 8 and the discharge port 9 is a joint 1 in which the pipe 8 and the discharge port mounting metal fitting 10 are respectively screwed together.
In addition, the check valve 12 is further provided with the structure connected by 1. When you open the faucet that connects the water supply port 7, tap water
From the water inlet 7 through the pipe 6, the water inlet 4 of the water purifier enters the water purifier body 1. At this time, tap water still contains chlorine, but the activated carbon layer 2 removes chlorine. Furthermore, the treated water from which most of the impurities have been removed by the hollow fiber membrane 3 is
From the water outlet 5 of the water purifier, enter the pipe 8. Then, the water is discharged through the check valve 12 and the discharge port 9 for the water purifier.

【0009】図3及び図4は、逆流防止弁12の構成を
示している。逆流防止弁12の本体16は、上方の水入
口側で内方に突出する環状のリブ13と、水出口側で連
結片14により連結した小径の筒部15とを設けた筒状
体で構成されている。弁体19は、外周にOリング17
を装着するとともに、下部には筒部15に嵌合する棒状
の案内片18を有し、筒部15と弁体19との間に装着
したばね20により、常時はOリング17が弁座となる
リブ13に圧接されて通水路を遮断している。そして、
弁の一次側である弁体19の頭部側に最低開弁圧力以上
の水圧を受けると、弁体19はばね20に抗して下方に
移動し、リブ13と弁体との間に通水路を形成するか
ら、水は弁の二次側へ流れる。最低開弁圧力以下になる
と、ばね20の力により弁が閉じる。弁体19は、案内
片18により動きを制御されているので、弁座との接触
部分が常に同じになる。なお、逆流防止弁本体16の外
壁にあるOリング21は、逆流防止弁本体16を管8に
挿入するときの密閉性を高めるものである。
3 and 4 show the structure of the check valve 12. The main body 16 of the check valve 12 is a tubular body provided with an annular rib 13 projecting inward on the upper water inlet side and a small-diameter tubular portion 15 connected by a connecting piece 14 on the water outlet side. Has been done. The valve body 19 has an O-ring 17 on the outer circumference.
And has a rod-shaped guide piece 18 that fits in the tubular portion 15 at the bottom, and the O-ring 17 serves as a valve seat at all times by a spring 20 mounted between the tubular portion 15 and the valve body 19. The rib 13 is pressed against the rib 13 to block the water passage. And
When the head side of the valve body 19, which is the primary side of the valve, receives water pressure equal to or higher than the minimum valve opening pressure, the valve body 19 moves downward against the spring 20 and passes between the rib 13 and the valve body. Water flows to the secondary side of the valve because it forms a channel. When the pressure becomes equal to or lower than the minimum valve opening pressure, the valve is closed by the force of the spring 20. Since the movement of the valve body 19 is controlled by the guide piece 18, the contact portion with the valve seat is always the same. The O-ring 21 on the outer wall of the check valve body 16 enhances the airtightness when the check valve body 16 is inserted into the pipe 8.

【0010】上記のように、この浄水器は可撓性管8の
浄水吐出口9側に逆流防止弁12を設けているので、合
成樹脂製管6や8のぬめりの原因となる微生物が、吐出
口9から管8内へ侵入するのを遮断する。また、管6お
よび8の材質として、微生物の増殖の要因となる可塑剤
を実質的に含まないポリエチレン、ポリプロピレンまた
はエチレン−酢酸ビニル共重合体を用いているので、逆
流防止弁から微生物が侵入することがあってもその増殖
を抑制することができる。
As described above, since this water purifier is provided with the check valve 12 on the side of the purified water discharge port 9 of the flexible pipe 8, the microorganisms that cause slimming of the synthetic resin pipes 6 and 8 are The entry from the discharge port 9 into the pipe 8 is blocked. In addition, since polyethylene, polypropylene or ethylene-vinyl acetate copolymer, which does not substantially contain a plasticizer that causes the growth of microorganisms, is used as the material of the pipes 6 and 8, microorganisms enter through the check valve. Even if it happens, the proliferation can be suppressed.

【0011】次に、逆流防止弁の構成、および可撓性管
の材質について検討した結果を説明する。最初に、逆流
防止弁の最低開弁圧力を変化させて、微生物の侵入防止
試験をした。その結果を表1に示す。試験方法は、滅菌
試験管に滅菌水を入れ、次に逆流防止弁を一次側を下に
して試験管に挿入する。そして、逆流防止弁の二次側に
従来の浄水器から採取したぬめり発生菌104個/ml
の菌液を入れる。3日間室温で培養した後、一次側と二
次側の水中の微生物数を数える。なお、以下に示す微生
物の測定は、いずれも初期菌数を2×104個/mlと
一定にして行った。弁は、弁体と弁座との接触部分が常
に同じであり、接触部分のOリングがブチルゴム製で、
最低開弁圧力が水頭圧で5、15、30、60、90c
m−H2Oのものを用いた。
Next, the results of an examination of the structure of the check valve and the material of the flexible pipe will be described. First, the minimum opening pressure of the check valve was changed to perform a microbial invasion prevention test. The results are shown in Table 1. The test method is to put sterile water into a sterile test tube, and then insert the check valve into the test tube with the primary side down. And 10 4 bacteria / ml of slime-producing bacteria collected from the conventional water purifier on the secondary side of the check valve
Add the bacterial solution. After culturing at room temperature for 3 days, the numbers of microorganisms in the water on the primary side and the secondary side are counted. The microorganisms shown below were all measured with the initial number of bacteria being kept constant at 2 × 10 4 cells / ml. In the valve, the contact part between the valve body and the valve seat is always the same, and the O-ring of the contact part is made of butyl rubber,
Minimum valve opening pressure is hydraulic head pressure of 5, 15, 30, 60, 90c
It was used for m-H 2 O.

【0012】[0012]

【表1】 [Table 1]

【0013】表1の結果から、最低開弁圧力が15cm
−H2O以上の弁を用いると、微生物の侵入を実質的に
遮断できることがわかる。なお、最低開弁圧力が90c
m−H2O以上の弁は、水圧がかかりすぎるため浄水器
に接続するには不適切である。また、実用試験として、
次のような試験をした。管に上記逆流防止弁を一次側を
中にして接続する。そして、管内に滅菌水を通水して弁
の二次側を菌液に浸す。1日1回管の先端を菌液から取
り出して10リットル通水する。こうして通水する前の
弁直前の滞留水の微生物数を数えた。その結果を表2に
示す。
From the results shown in Table 1, the minimum valve opening pressure is 15 cm.
It can be seen that the invasion of microorganisms can be substantially blocked by using a valve of -H 2 O or higher. The minimum valve opening pressure is 90c
Valves above m-H 2 O are not suitable for connecting to a water purifier as they are too water pressure. Also, as a practical test,
The following tests were conducted. Connect the above check valve to the pipe with the primary side inside. Then, sterilized water is passed through the pipe to immerse the secondary side of the valve in the bacterial solution. Once a day, remove the tip of the tube from the bacterial solution and pass 10 liters of water. In this way, the number of microorganisms in the accumulated water immediately before the valve was counted. The results are shown in Table 2.

【0014】[0014]

【表2】 [Table 2]

【0015】表2の結果から、実際に弁が開閉する場合
においても、最低開弁圧力が15cm−H2O以上の弁
は、微生物の侵入を実質的に遮断できることがわかる。
弁体が回転して、本体の弁座との接触部分がたえず変化
するボール弁を用いた逆流防止弁について、上記と同様
の微生物の侵入防止試験の実用試験をした。その結果を
表3に示す。試験方法は、上記試験方法と同様である。
From the results shown in Table 2, it can be seen that even when the valve is actually opened and closed, the valve having a minimum valve opening pressure of 15 cm-H 2 O or more can substantially block the invasion of microorganisms.
With respect to a check valve using a ball valve in which the valve body rotates and the contact portion of the main body with the valve seat constantly changes, a practical test of the same microorganism invasion prevention test as described above was conducted. The results are shown in Table 3. The test method is the same as the above test method.

【0016】[0016]

【表3】 [Table 3]

【0017】表3の結果から、弁体が回転して、本体の
弁座との接触部分が常に同じでない逆流防止弁は、微生
物の侵入を実質的に遮断することができないことが確認
された。次に、可撓性管に用いるための各種合成樹脂に
ついて微生物付着試験をした。用いた合成樹脂はポリエ
チレン(以後PEと略す)、ポリプロピレン(PP)、
酢酸ビニルの共重合比率7wt%のエチレン−酢酸ビニ
ル共重合体(EVA)、可塑剤入りの軟質ポリ塩化ビニ
ル(PVC)のそれぞれの単体シ−トとPVCの可塑剤
として使用されているジオクチルフタレ−ト(DOP)
を20wt%添加したPPおよびEVAのシ−トを用い
た。
From the results shown in Table 3, it was confirmed that the check valve, which rotates the valve body and the contact portion of the main body with the valve seat is not always the same, cannot substantially block the invasion of microorganisms. . Next, a microbial adhesion test was performed on various synthetic resins for use in flexible pipes. The synthetic resin used is polyethylene (hereinafter abbreviated as PE), polypropylene (PP),
Vinyl acetate copolymerization ratio 7 wt% ethylene-vinyl acetate copolymer (EVA), plasticizer-containing soft polyvinyl chloride (PVC) single sheet, and dioctylphthalate used as plasticizer for PVC Rate (DOP)
The sheet of PP and EVA added with 20 wt% was used.

【0018】微生物付着試験は、菌液をシ−ト状に加工
した樹脂上に滴下し、37℃で3日間培養して、微生物
の付着具合を測定する試験である。微生物の付着具合
は、付着した微生物を染色液によって染めて付着の有無
を調べる染色法と、寒天培地にプレ−トを付着面を下に
して押しつけて微生物を培地に移し、微生物の付着の有
無を調べるスタンプ法により測定した。そして、染色
法、スタンプ法いずれの方法によっても菌付着の認めら
れなかった場合を◎、一方では菌付着が認められない
が、他方では菌付着が認められた場合を○、両方で菌付
着が認められた場合を×で表した。この結果を表4に示
す。
The microorganism adhesion test is a test in which a bacterial solution is dropped on a sheet-shaped resin and incubated at 37 ° C. for 3 days to measure the degree of adhesion of microorganisms. The degree of adhesion of microorganisms is determined by a staining method in which the adhered microorganisms are dyed with a staining solution to check for adherence, and a plate is pressed onto the agar medium with the adhered surface facing down to transfer the microorganisms to the medium, and the presence or absence of adherence of the microorganisms. Was measured by the stamp method. Then, when the bacterial adhesion was not observed by any of the staining method and the stamp method, ◎, when the bacterial adhesion was not observed on the one hand, but when the bacterial adhesion was observed on the other, ○, the bacterial adhesion was observed on both. When it was recognized, it was represented by x. The results are shown in Table 4.

【0019】[0019]

【表4】 [Table 4]

【0020】表4の結果から、EVA,PE,PPはP
VCより微生物が付着しにくい樹脂であることがわか
る。また、酢酸ビニルの共重合比率を変化させたエチレ
ン−酢酸ビニル共重合体について前記と同様の微生物付
着試験をした。その結果を表5に示す。
From the results in Table 4, EVA, PE and PP are P
It can be seen that it is a resin to which microorganisms are less likely to adhere than VC. Further, the same microbial adhesion test as described above was carried out on ethylene-vinyl acetate copolymers having different vinyl acetate copolymerization ratios. The results are shown in Table 5.

【0021】[0021]

【表5】 [Table 5]

【0022】表5の結果から、酢酸ビニルの共重合比率
が20wt%以下のEVAは微生物が付着しにくい樹脂
であることがわかる。次に、抗菌剤による効果を示す。
酢酸ビニルの共重合比率7wt%のエチレン−酢酸ビニ
ル共重合体に、抗菌剤として特願平3−310382号
に記載されているシリカゲル担体と銀塩との複合体を各
種の割合で添加したものについて抗菌試験を行った。抗
菌試験は、菌数既知の菌液をシ−ト状に加工した樹脂上
に滴下し、37℃18時間後の菌液中の菌数と初期の菌
数を比較する試験であり、菌数の減少率が高いほど抗菌
効果が高い。菌数の減少率が80%以上を効果大
(◎)、菌数の減少率が60%以上80%未満を効果あ
り(○)、菌数の減少率が60%未満を効果なし(×)
で表した。その結果を表6に示す。
From the results shown in Table 5, it can be seen that EVA having a vinyl acetate copolymerization ratio of 20 wt% or less is a resin to which microorganisms hardly adhere. Next, the effect of the antibacterial agent will be shown.
A mixture of an ethylene-vinyl acetate copolymer having a vinyl acetate copolymerization ratio of 7 wt% with various ratios of a complex of a silica gel carrier and a silver salt described in Japanese Patent Application No. 3-310382 as an antibacterial agent. The antibacterial test was carried out. The antibacterial test is a test in which a bacterial solution with a known bacterial count is dropped on a sheet-processed resin and the bacterial count in the bacterial liquid after 18 hours at 37 ° C. is compared with the initial bacterial count. The higher the rate of decrease, the higher the antibacterial effect. A decrease in bacterial count of 80% or more is very effective (◎), a decrease in bacterial count of 60% or more and less than 80% is effective (○), and a decrease of bacterial count is less than 60% is ineffective (×)
Expressed as The results are shown in Table 6.

【0023】[0023]

【表6】 [Table 6]

【0024】表6の結果から、浄水器用接続配管部材の
樹脂に対する抗菌剤の添加比率は、1wt%以上がよ
い。また、抗菌剤添加の上限としては、抗菌剤を3wt
%添加した樹脂ですでに抗菌効果大である。また、樹脂
の加工性から見ると、配管部材の樹脂にもよるが、5w
t%までは加工上問題はないが、それ以上添加すると成
型した管の強度が著しく低下するために加工が難しい。
他の樹脂についても同様の結果が得られた。なお、抗菌
剤は銀系抗菌剤を用いたが、他の金属無機系抗菌剤また
はカンゾウエキス、ケイ皮油等の有機系抗菌剤であって
もよい。
From the results shown in Table 6, it is preferable that the addition ratio of the antibacterial agent to the resin of the connecting pipe member for the water purifier is 1 wt% or more. In addition, the upper limit of addition of antibacterial agent is 3 wt% of antibacterial agent.
% Added resin already has a great antibacterial effect. Also, from the viewpoint of resin processability, it depends on the resin of the piping member, but 5w
Up to t%, there is no problem in processing, but if it is added more than this, the strength of the molded pipe remarkably decreases, so that processing is difficult.
Similar results were obtained with other resins. Although the silver-based antibacterial agent is used as the antibacterial agent, other metal-inorganic antibacterial agents or organic antibacterial agents such as licorice extract and cinnamon oil may be used.

【0025】[0025]

【発明の効果】本発明によれば、衛生的であり、浄水器
本体に負担をかけずに配管内のぬめりを防止して微生物
の増殖を抑制することができる。
According to the present invention, it is hygienic, and it is possible to prevent slimming in the pipe and suppress the growth of microorganisms without burdening the body of the water purifier.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の浄水器の配管を示す一部を
断面にした側面図である。
FIG. 1 is a side view with a partial cross section showing a pipe of a water purifier according to an embodiment of the present invention.

【図2】本発明の一実施例の可撓性管の吐出口側の断面
図である。
FIG. 2 is a cross-sectional view of a flexible pipe according to an embodiment of the present invention on a discharge port side.

【図3】本発明の一実施例の逆流防止弁の縦断面図であ
る。
FIG. 3 is a vertical sectional view of a check valve according to an embodiment of the present invention.

【図4】同逆流防止弁の底面図である。FIG. 4 is a bottom view of the check valve.

【符号の説明】[Explanation of symbols]

1 浄水器本体 4 水入口 5 水出口 6,8 可撓性管 7 給水口 9 吐出口 12 逆流防止弁 13 リブ(弁座) 17 Oリング 19 弁体 20 ばね 1 Water Purifier Main Body 4 Water Inlet 5 Water Outlet 6,8 Flexible Pipe 7 Water Supply Port 9 Discharge Port 12 Backflow Prevention Valve 13 Rib (Valve Seat) 17 O Ring 19 Valve Body 20 Spring

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 // C02F 1/00 J ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location // C02F 1/00 J

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 浄水器本体と浄水吐出口とを接続する可
撓性管をポリエチレン、ポリプロピレンまたはエチレン
−酢酸ビニル共重合体により構成するとともに、前記管
の浄水吐出口側に逆流防止弁を設けたことを特徴とする
浄水器。
1. A flexible pipe connecting a water purifier body and a purified water discharge port is made of polyethylene, polypropylene or ethylene-vinyl acetate copolymer, and a check valve is provided on the purified water discharge port side of the pipe. A water purifier characterized by that.
【請求項2】 逆流防止弁における弁体と弁座との接触
部分が実質的に常に同じである請求項1記載の浄水器。
2. The water purifier according to claim 1, wherein the contact portion between the valve body and the valve seat in the check valve is substantially always the same.
【請求項3】 エチレン−酢酸ビニル共重合体が、酢酸
ビニル共重合比率20wt%以下のものである請求項1
記載の浄水器。
3. The ethylene-vinyl acetate copolymer having a vinyl acetate copolymerization ratio of 20 wt% or less.
Water purifier as described.
【請求項4】 可撓性管が抗菌剤を含む合成樹脂で構成
された請求項1記載の浄水器。
4. The water purifier according to claim 1, wherein the flexible pipe is made of a synthetic resin containing an antibacterial agent.
JP12067693A 1993-04-23 1993-04-23 Water purifier Pending JPH06304550A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12067693A JPH06304550A (en) 1993-04-23 1993-04-23 Water purifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12067693A JPH06304550A (en) 1993-04-23 1993-04-23 Water purifier

Publications (1)

Publication Number Publication Date
JPH06304550A true JPH06304550A (en) 1994-11-01

Family

ID=14792188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12067693A Pending JPH06304550A (en) 1993-04-23 1993-04-23 Water purifier

Country Status (1)

Country Link
JP (1) JPH06304550A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970065419A (en) * 1996-03-13 1997-10-13 우시구보 마사요시 Water supply
KR970065418A (en) * 1996-03-07 1997-10-13 우시구보 마사요시 water purifier
CN104478110A (en) * 2014-11-23 2015-04-01 成都市飞龙水处理技术研究所 Water making machine capable of rapidly changing filter plate and filter element and manufacture method of water making machine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970065418A (en) * 1996-03-07 1997-10-13 우시구보 마사요시 water purifier
KR970065419A (en) * 1996-03-13 1997-10-13 우시구보 마사요시 Water supply
CN104478110A (en) * 2014-11-23 2015-04-01 成都市飞龙水处理技术研究所 Water making machine capable of rapidly changing filter plate and filter element and manufacture method of water making machine

Similar Documents

Publication Publication Date Title
Armstrong et al. Selection of antibiotic-resistant standard plate count bacteria during water treatment
Tobin et al. Effects of activated carbon and bacteriostatic filters on microbiological quality of drinking water
Payment et al. A prospective epidemiological study of gastrointestinal health effects due to the consumption of drinking water
Palmer et al. Detection of Legionella species in reclaimed water and air with the EnviroAmp Legionella PCR kit and direct fluorescent antibody staining
LeChevallier et al. Disinfection of bacteria attached to granular activated carbon
Chauret et al. Detection of Aeromonas hydrophila in a drinking-water distribution system: a field and pilot study
CA2080562C (en) Faucet with microbial filter
US5556279A (en) Water purification system for dental instrument
Edelstein et al. Efficacy of ozone in eradication of Legionella pneumophila from hospital plumbing fixtures
Grabow et al. Comparison of m-Endo LES, MacConkey, and Teepol media for membrane filtration counting of total coliform bacteria in water
Geldreich Drinking water microbiology—new directions toward water quality enhancement
Snyder et al. Reduction in Legionella pneumophila through heat flushing followed by continuous supplemental chlorination of hospital hot water
Hudson et al. Coliforms in a water distribution system: a remedial approach
RU2344085C2 (en) Water-treatment system
JPH06304550A (en) Water purifier
Asano et al. Virus risk analysis in wastewater reclamation and reuse
Zacheus et al. Effect of heat flushing on the concentrations of Legionella pneumophila and other heterotrophic microbes in hot water systems of apartment buildings
Chaudhuri et al. Performance evaluation of ceramic filter candles
Osono et al. Sodium hypochlorite is effective against biofilms in dialysis equipment
Muyima et al. Indicator bacteria and regrowth potential of the drinking water in Alice, Eastern Cape
Geldreich et al. Home treatment devices and water quality
Witherell et al. Investigation of Legionella pneumophila in drinking water
Lin Evaluation of fecal streptococci tests for chlorinated secondary sewage effluents
van der Kooij et al. Multiple barriers against micro-organisms in water treatment and distribution in the Netherlands
Seyfried et al. Impact of sewage treatment plants on surface waters