JPH06304191A - Method for designing bite plate for plate denture - Google Patents

Method for designing bite plate for plate denture

Info

Publication number
JPH06304191A
JPH06304191A JP12213593A JP12213593A JPH06304191A JP H06304191 A JPH06304191 A JP H06304191A JP 12213593 A JP12213593 A JP 12213593A JP 12213593 A JP12213593 A JP 12213593A JP H06304191 A JPH06304191 A JP H06304191A
Authority
JP
Japan
Prior art keywords
shape
denture
coordinate data
plate
occlusal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12213593A
Other languages
Japanese (ja)
Inventor
Shin Okayama
伸 岡山
Katsumi Kawashiri
克己 河尻
Miharu Hata
美治 秦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advance Co Ltd
Original Assignee
Advance Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advance Co Ltd filed Critical Advance Co Ltd
Priority to JP12213593A priority Critical patent/JPH06304191A/en
Publication of JPH06304191A publication Critical patent/JPH06304191A/en
Pending legal-status Critical Current

Links

Landscapes

  • Dental Prosthetics (AREA)
  • Dental Tools And Instruments Or Auxiliary Dental Instruments (AREA)

Abstract

PURPOSE:To provide the bite plate meeting an individual patient by designing the bite plate for production of the plate denture from a noninvasively obtd pyramid form and intraoral mucosa form. CONSTITUTION:The shape coordinate data measured with or without contact in accordance with a gypsum model having, for example, the shape of the intraoral mucosa is used as intraoral mucosa information and the analog and digital three-dimensional coordinate data obtd. noninvasively by CT or X-ray photography, etc., is used as the maxillary shape information. Both sets of the data are inputted to a three-dimensional coordinate computer, such as device for executing image analysis, correction, display, etc., by which an anatomical target point is detected from the shape coordinate data and the three- dimensional coordinate data and thereafter, the representative design values 1 to 5 of the bite plate are calculated. As a result, the time for prepn. of the bite plate at the time of occlusal registration is shortened and, therefore, the patient's burden at the time of treatment is decreased and simultaneously, the variations in the adaptability of the finished denture by variations in the techniques of a dentist and technician are decreased.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、有床義歯作製過程にお
ける有床義歯の基本形状を決定するのに使用されている
咬合床の設計方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for designing an occlusal bed used to determine the basic shape of a plate denture in the process of preparing a plate denture.

【0002】[0002]

【従来例】従来の咬合床の設計作製方法は、患者の口腔
内の型取りを行い、この型に基づき患者個人の型取り用
のトレーを技工士が作製する。この個人トレーを用い
て、歯科医が再度口腔内の型を取り、この型から技工士
が作業用石膏模型を作製し、該作業用石膏模型上にて平
均値的数値を基に咬合床を作製する。この場合出来上が
りの咬合床は患者個人の口腔内粘膜面の形状は有するも
のの、有床義歯を口腔内に装着した際に咬合機能の善し
悪しに大きな影響をもつ咬合高径および咬合平面の上下
顎粘膜面に対する空間的角度が平均値によるものである
ため、咬合採得時の咬合床の調整(削りと盛り上げ)の
過程が患者個人個人により大きく異なっていた。この咬
合床を用いた咬合採得が完成有床義歯の適合度に大きく
影響するため、いかに患者個人に適った咬合床を臨床に
提供できるかが重要なポイントとなっていた。また、咬
合床作製用の作業用模型を作製するためには、口腔内の
型取りを2回行う必要があった。
2. Description of the Related Art In a conventional occlusal floor design and manufacturing method, a technician prepares a mold for the patient's mouth, and a technician prepares a tray for molding the individual patient based on this mold. Using this personal tray, the dentist takes the mold in the oral cavity again, and the technician creates a working plaster model from this mold, and creates an occlusal floor based on the average value on the working plaster model. Create. In this case, although the finished occlusal bed has the shape of the mucous membrane surface of the patient's oral cavity, it has a large influence on the occlusal function when the denture is placed in the oral cavity Since the spatial angle with respect to the plane is based on the average value, the process of adjusting the occlusal bed (shaving and raising) during occlusal sampling varied greatly depending on the individual patient. Since occlusal sampling using this occlusal bed greatly affects the fitness of the completed denture, it was an important point how clinically an occlusal bed suitable for each patient could be provided. Further, in order to produce a working model for producing an occlusal floor, it was necessary to mold the oral cavity twice.

【0003】[0003]

【課題を解決するための手段】本発明の目的は、従来の
平均値的形態およびサイズの咬合床を臨床的により優れ
たものに改善するために、患者個人の顎骨形態および口
腔内粘膜形態から咬合床を製造するための設計方法を提
供する。
The object of the present invention is to improve the occlusal bed of the conventional average value form and size to a clinically superior one from the jaw bone form and the oral mucosa form of the individual patient. Provided is a design method for manufacturing an occlusal floor.

【0004】[0004]

【実施例】本発明の具体的な方法は以下の通りである。
図1に示したような咬合床を、口腔内粘膜情報と顎骨形
態情報とから設計する。(a)は斜視図、(b)は上
顎、(c)は下顎を示す。口腔内粘膜情報は、従来法に
よって、作成された口腔内粘膜表面形状を有する石膏模
型に基づき接触的乃至非接触的に測定された形状座標デ
ータでも、その他の表面形状測定装置あるいは軟組織形
状測定装置で口腔内を直接測定した形状座標データで
も、いずれでもよい。顎骨形態情報は、CTあるいはX
線撮影等による非侵襲的に得られたアナログ乃至デジタ
ル状の三次元形状座標データが望ましい。この際の図1
(b)でしめす上顎に対する図1(c)でしめす下顎の
相対的位置関係は下顎安静位において測定されることが
望ましい。該両データは画像解析、修正、表示を行う装
置等の三次元座標データ計算機に自動的乃至手動的に入
力される。次に該形状座標データと、該三次元座標デー
タより図2で示す解剖標点を検出した後、これら解剖標
点(たとえば図2の21〜26)に基づき、咬合床の代
表的な設計値を算出する。代表的な設計値とは、たとえ
ば図1の(a),(b)および(c)の1〜5に示した
ような部位の値である。図1(b),(c)の2は咬合
床の湾曲度であり、図1(a)の5は咬合床の高さの代
表値である。これらの値は、図2の顎骨(200)の解
剖学的標点(図2の21〜26等)により決定される。
たとえば図2において咬合床粘膜側面に対する仮想咬合
平面(図2のa−b平面)の空間的な角度は図2の21
と22(21は下顎の左右にある)から決まる。咬合床
(201)の全体的な高さ(たとえば代表的には、図2
のeとfの距離)は、上顎骨口腔内側面と下顎骨口腔内
側面との距離で代表できる。咬合床(201)の高さに
関する精度は、粘膜面の厚み(1mm以下)程度の誤差は
許容できるからである。a−b平面の上顎面に対する距
離は、望ましいのは患者の下顎安静位における口唇線を
基準にして導く。尚、CTあるいはX線撮影等による顎
骨情報を収集する場合には、撮影時に口唇線部にX線不
透過性物質を付与しておくことで容易に上記と同様の基
準が得られる。この口唇線部を基準として、これに図2
のaを合わせる。また、図1(b)、(c)でしめす2
の咬合床(201)の湾曲度は図1(a)の粘膜頂線1
から近似的に決定していたが、顎骨の歯槽頂線に合わせ
ることで理想的な湾曲度を決定できる。また、図1
(b)(c)の3および4の仮想咬合平面の2に対して
の直交幅は顎骨の幅の80〜110%が望ましい。さらに、
図2における義歯床の顔面前方への突き出し度合い(図
2のe−fとa−bとの交点gからの距離a−g)は、
上下顎の歯槽頂最前部を結んだ24−25とa−bとの
交点(gとほぼ一致)から5〜15mmとするのが望まし
い。以上の行程から得られた代表的な設計値に基づいた
サイズ乃至形態を有する咬合床(201)が製造され
る。製造装置としては、上述した設計値がCAD等のコ
ンピュータによるアルゴリズム処理によって得られた場
合、NC工作機械等のCAM等が好適に利用される又、
顎骨形状並びに解剖学的標点等のデータは、電子的記憶
装置に記憶されているので、同じ有床義歯用咬合床を数
限りなく作ることが可能となる。
EXAMPLES The concrete method of the present invention is as follows.
An occlusal bed as shown in FIG. 1 is designed based on oral mucosa information and jaw bone morphology information. (A) is a perspective view, (b) shows an upper jaw, (c) shows a lower jaw. Oral mucous membrane information is the shape coordinate data measured by contact or non-contact based on the plaster model having the oral mucosa surface shape created by the conventional method, or other surface shape measuring apparatus or soft tissue shape measuring apparatus. Either shape coordinate data obtained by directly measuring the inside of the oral cavity may be used. Jaw bone morphology information is CT or X
Non-invasively obtained analog or digital three-dimensional shape coordinate data by radiography or the like is desirable. Figure 1 at this time
It is desirable that the relative positional relationship of the lower jaw shown in FIG. 1 (c) with respect to the upper jaw shown in (b) is measured in the mandibular rest position. Both data are automatically or manually input to a three-dimensional coordinate data calculator such as a device for image analysis, correction and display. Next, after detecting the anatomical landmarks shown in FIG. 2 from the shape coordinate data and the three-dimensional coordinate data, based on these anatomical landmarks (for example, 21 to 26 in FIG. 2), representative design values of the occlusal floor are obtained. To calculate. Typical design values are, for example, the values of the parts shown in 1 to 5 of (a), (b) and (c) of FIG. 2 in FIGS. 1 (b) and 1 (c) is the curvature of the occlusal bed, and 5 in FIG. 1 (a) is a representative value of the height of the occlusal bed. These values are determined by the anatomical landmarks (21-26, etc. of FIG. 2) of the jaw bone (200) of FIG.
For example, in FIG. 2, the spatial angle of the virtual occlusal plane (ab plane in FIG. 2) with respect to the occlusal floor mucosa side surface is 21 in FIG.
And 22 (21 on the left and right of the lower jaw). The overall height of the occlusal bed (201) (eg, typically in FIG.
The distance between e and f) can be represented by the distance between the oral surface of the maxilla and the oral surface of the mandible. This is because the accuracy of the height of the occlusal bed (201) can tolerate an error in the thickness of the mucous membrane surface (1 mm or less). The distance from the ab plane to the maxillary plane is preferably derived with reference to the lip line in the patient's mandibular rest position. When collecting jawbone information by CT or X-ray imaging, the same criteria as above can be easily obtained by adding an X-ray opaque substance to the lip line portion at the time of imaging. Based on this lip line part,
Match a. In addition, as shown in FIGS. 1 (b) and 1 (c),
The degree of curvature of the occlusal bed (201) of FIG.
However, the ideal degree of curvature can be determined by matching it with the alveolar vertex line of the jawbone. Also, FIG.
(B) The orthogonal width of the virtual occlusion planes 3 and 4 in (c) to 2 is preferably 80 to 110% of the width of the jaw bone. further,
The degree of protrusion of the denture base toward the front of the face in FIG. 2 (distance a-g from the intersection point g between ef and a-b in FIG. 2) is
It is preferable that the distance is 5 to 15 mm from the intersection point (almost coincident with g) of ab and 24-25 connecting the alveolar apex frontmost portions of the upper and lower jaws. The occlusal bed (201) having a size or form based on the typical design value obtained from the above process is manufactured. As the manufacturing apparatus, when the above-mentioned design values are obtained by algorithm processing by a computer such as CAD, a CAM such as an NC machine tool is preferably used.
Since the data such as the jaw bone shape and the anatomical reference points are stored in the electronic storage device, it is possible to create the same number of occlusal beds for dentures with the same floor.

【0005】[0005]

【発明の効果】以上の実施例における効果は、咬合採得
時の咬合床の調整時間が短縮できるため、患者の診療時
の負担が少ないと同時に、歯科医および技工士の技術の
ばらつきによる完成義歯の適合性のばらつきが、少なく
なる。加えて、適合性が全体的に大きく向上する。又、
患者個人の口腔形態に応じた咬合床を設計できるもので
ある。
EFFECTS OF THE INVENTION The effects of the above-described embodiments can be completed by adjusting the occlusal bed during occlusal sampling, which reduces the burden on the patient during medical treatment and at the same time improves the dentist and technician skills. Variability in denture compatibility is reduced. In addition, the compatibility is greatly improved overall. or,
The occlusal bed can be designed according to the individual oral morphology of the patient.

【図面の簡単な説明】[Brief description of drawings]

【図1】[Figure 1]

【図2】本発明を説明する為の図FIG. 2 is a diagram for explaining the present invention.

【符号の説明】[Explanation of symbols]

21〜26 解剖学的標点 21-26 Anatomical Marks

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 非侵襲的に得られた顎骨形態および口腔
内粘膜形態とから有床義歯製造用の咬合床を設計する方
法。
1. A method for designing an occlusal floor for producing a denture with a jaw bone shape and an intraoral mucosa shape obtained non-invasively.
【請求項2】 非侵襲的に得られた前記顎骨形態から、
1つあるいは複数からなる解剖学的標点に基づき、咬合
床のサイズ乃至形態を設計する請求項1に記載の有床義
歯用咬合床の設計方法。
2. From the jaw bone morphology obtained non-invasively,
The method for designing an occlusal bed for a denture having a denture according to claim 1, wherein the size or shape of the occlusal bed is designed based on one or more anatomical reference points.
JP12213593A 1993-04-27 1993-04-27 Method for designing bite plate for plate denture Pending JPH06304191A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12213593A JPH06304191A (en) 1993-04-27 1993-04-27 Method for designing bite plate for plate denture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12213593A JPH06304191A (en) 1993-04-27 1993-04-27 Method for designing bite plate for plate denture

Publications (1)

Publication Number Publication Date
JPH06304191A true JPH06304191A (en) 1994-11-01

Family

ID=14828487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12213593A Pending JPH06304191A (en) 1993-04-27 1993-04-27 Method for designing bite plate for plate denture

Country Status (1)

Country Link
JP (1) JPH06304191A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112168396A (en) * 2020-10-21 2021-01-05 成都登特牙科技术开发有限公司 Occluding plate, digital design method of occluding plate and 3D printing production method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112168396A (en) * 2020-10-21 2021-01-05 成都登特牙科技术开发有限公司 Occluding plate, digital design method of occluding plate and 3D printing production method
CN112168396B (en) * 2020-10-21 2021-08-10 成都登特牙科技术开发有限公司 Occluding plate, digital design method of occluding plate and 3D printing production method

Similar Documents

Publication Publication Date Title
US11510759B2 (en) Modeling and manufacturing the superstructure for a denture
US11633265B2 (en) Dynamic virtual articulator for simulating occlusion of teeth
US10179034B2 (en) Bracket system and method for planning and producing a bracket system for the correction of tooth malpositions
Infante et al. Fabricating complete dentures with CAD/CAM technology
KR101590330B1 (en) Method for deriving shape information
CN113412098B (en) Digital three-dimensional tooth model dental system
WO2011103876A1 (en) Dynamic virtual articulator
US20170165042A1 (en) Determining jaw and facial movement
AlRumaih Clinical applications of intraoral scanning in removable prosthodontics: a literature review
Huang et al. Effect of distance between the abutment and the adjacent teeth on intraoral scanning: An in vitro study
JP7065668B2 (en) 3D image data creation method using auxiliary equipment and auxiliary equipment
KR20140012880A (en) Method of making denture
Sánchez-Monescillo et al. All-on-four rehabilitation using photogrammetric impression technique
CN102988114A (en) Method for manufacturing home-made digital operation guide plate based on cone beam computed tomography (CT) data
WO2004082511A1 (en) Dental face bow
CN114343906B (en) Method and device for acquiring occlusion vertical distance, medium and electronic equipment
Di Fiore et al. Influence of three different scanning techniques in full-arch implants digital impression using intraoral scanners: A randomized controlled cross-over trial
JPH06304191A (en) Method for designing bite plate for plate denture
JPH09238959A (en) Making of complete denture
JPH09238960A (en) Making of complete denture
JP6341842B2 (en) Method and program for determining occlusal two planes
US20230225839A1 (en) Methods and systems for obtaining hinge axis position and condyle guide inclination from a patient
Abduo et al. Precision of digital prosthodontic planning for oral rehabilitation
Elabbassy Cone-Beam Computed Tomography scans versus study models to assess the total maxillary arch constriction in patients with unilateral cleft lip and palate
JPH09238958A (en) Making of complete denture

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20031225