JPH06303196A - Optical transmission system - Google Patents

Optical transmission system

Info

Publication number
JPH06303196A
JPH06303196A JP5085964A JP8596493A JPH06303196A JP H06303196 A JPH06303196 A JP H06303196A JP 5085964 A JP5085964 A JP 5085964A JP 8596493 A JP8596493 A JP 8596493A JP H06303196 A JPH06303196 A JP H06303196A
Authority
JP
Japan
Prior art keywords
optical
frequency
signal
optical transmission
digital signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5085964A
Other languages
Japanese (ja)
Inventor
Kuniaki Uchiumi
邦昭 内海
Manabu Tanabe
学 田辺
Hideaki Takechi
秀明 武知
Hiroyuki Sasai
裕之 笹井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP5085964A priority Critical patent/JPH06303196A/en
Publication of JPH06303196A publication Critical patent/JPH06303196A/en
Pending legal-status Critical Current

Links

Landscapes

  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Optical Communication System (AREA)

Abstract

PURPOSE:To obtain an optical transmission system which is capable of determining both the setting conditions of the optical modulation degree for attaining a desired code error ratio and the number of frequency multiple channel and a technique setting the conditions automatically, in an optical transmission where a direct intensity modulation is performed by a frequency multiple digital signal. CONSTITUTION:In a transmission side, the signal source 10 of a frequency multiple digital signal, an adjusting part 11 adjusting an optical modulation degree, the number of frequency multiple channel or the both of them, and an optical transmission part 12 converting the signal into an optical signal and transmitting it to an optical reception part are provided. In a reception side, an optical reception part 13 and a detection part 14 detecting the instantaneous worst value of the distortion of a signal converted into an electrical signal and delivering the information to the transmission side are provided. Then in the reception side, the instantaneous worst value of the distortion of the reception signal is detected and the information is delivered to the transmission side. In the transmission side, the setting conditions of the optical modulation degree for attaining a desired code error ratio and the number of frequency multiple channel are determined based on the information, the conditions are realized in the adjusting part and they are outputted to the optical transmission part.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光CATVや携帯電話
信号光伝送システムに用いられるような周波数多重ディ
ジタル信号を伝送する光伝送システムに関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical transmission system for transmitting frequency-multiplexed digital signals such as those used in optical CATV and portable telephone signal optical transmission systems.

【0002】[0002]

【従来の技術】周波数多重信号の光伝送は、田辺他、
「80チャンネル AM−FDMTV信号光伝送装
置」,ナショナルテクニカルレポートVol.36 N
o.6 Dec.1990や、C.J.Chung a
nd I.Jacobs,”TV channel c
apacity of lightwave mult
ichannel AM SCM systems a
s limited by laser thresh
old nonlinearity”,in Opti
cal Comminication Confere
nce,March 1992,pp.18−19に示
されているように非常によい歪特性を有する。このよう
な特徴により、ディジタル変調信号を含む周波数多重光
伝送システムにおいて、各チャンネルの信号の光変調度
の和が1以上となるような場合でも、I.M.I.Ha
bbab,”Multichannel M−QAM
For CATV Distribution”,LE
OS Summer Topical Meeting
Digest,Wednesday,July 2
9,1992 WB4 pp.21−22にあるように
高品質な伝送が可能と考えられている。
2. Description of the Related Art Optical transmission of frequency-multiplexed signals is described in Tanabe et al.
"80-channel AM-FDM TV optical signal transmitter", National Technical Report Vol. 36 N
o. 6 Dec. 1990, C.I. J. Chung a
nd I.n. Jacobs, "TV channel c
apacity of lightwave mult
ichannel AM SCM systems a
s limited by laser thresh
old nonlinearity ”, in Opti
cal Communication Center
nce, March 1992, pp. It has very good strain characteristics as shown in 18-19. Due to such characteristics, in the frequency-multiplexed optical transmission system including the digital modulation signal, even if the sum of the optical modulation degrees of the signals of the respective channels is 1 or more, the I. M. I. Ha
bbab, "Multichannel M-QAM
For CATV Distribution ”, LE
OS Summer Topical Meeting
Digest, Wednesday, July 2
9, 1992 WB4 pp. It is considered that high quality transmission is possible as described in 21-22.

【0003】ディジタル変調信号は、小さな搬送波対雑
音比(以下、CNRとする)でも高品質な伝送が可能で
ある。したがって、光変調度を小さく設定して光伝送し
ても、J.G.Proakis ”Digital C
ommunications” Second Edi
tion, McGraw−Hill Book Co
mpany,pp.234−285で与えられる所要の
CNRと符号誤り率の関係におけるCNRが得られれ
ば、伝送品質を確保できると考えられている。
Digitally modulated signals can be transmitted with high quality even with a small carrier to noise ratio (hereinafter referred to as CNR). Therefore, even if the optical modulation degree is set to be small and optical transmission is performed, J. G. Proakis "Digital C
communications "Second Edi
section, McGraw-Hill Book Co
mpany, pp. It is considered that the transmission quality can be secured if the CNR in the relationship between the required CNR and the code error rate given by H.234-285 is obtained.

【0004】[0004]

【発明が解決しようとする課題】一方、半導体レーザ
(以下、LDとする)光を周波数多重信号で直接強度変
調し、光伝送する場合の歪量はLDの特性により決ま
る。特に、周波数多重信号のLD変調電流値がLDの閾
値電流値以下になることによる波形クリッピングのため
瞬時的な歪が発生する。この波形クリッピングはLD光
を直接強度変調して信号を伝送する場合、多重信号の各
チャンネルの光変調度の和(以下、最大光変調度とす
る)が1以上(以下、過変調と呼ぶ)となれば、原理的
に発生する現象であり、回避することはできない。この
波形クリッピングによる歪は、瞬時的なものであり、し
たがって平均値で考えると符号誤り率に影響する値では
ないが、瞬時的なものであるため、その符号誤り率への
影響は無視できないと考えられる。
On the other hand, a semiconductor laser (hereinafter referred to as LD) light is directly intensity-modulated by a frequency-multiplexed signal, and the amount of distortion in optical transmission is determined by the characteristics of the LD. In particular, instantaneous distortion occurs due to waveform clipping caused by the LD modulation current value of the frequency-multiplexed signal being equal to or less than the LD threshold current value. This waveform clipping is such that when the LD light is directly intensity-modulated and a signal is transmitted, the sum of the optical modulation degrees of each channel of the multiplexed signal (hereinafter referred to as the maximum optical modulation degree) is 1 or more (hereinafter referred to as overmodulation). If so, it is a phenomenon that occurs in principle and cannot be avoided. Distortion due to this waveform clipping is instantaneous, and therefore it is not a value that affects the code error rate when considered as an average value, but since it is instantaneous, its effect on the code error rate cannot be ignored. Conceivable.

【0005】このような歪については従来はほとんど考
慮されていなかったが、実験的には次のように観測され
る。すなわち、図5は33チャンネルのπ/4シフトQ
PSK信号を光伝送したときの符号誤り率特性である。
但し、符号誤り率を測定する1つのチャンネルを除く他
の32チャンネルは変調されていない正弦波である。縦
軸は符号誤り率、横軸は符号誤り率を測定する中央のチ
ャンネルであるπ/4シフトQPSK信号の他の32チ
ャンネルに対する相対的な光変調度(以下、QPSK相
対変調度とする)である。32チャンネルの光変調度は
すべて等しく、その1チャンネル当りの光変調度mがパ
ラメータである。QPSK相対変調度が0dBの時、3
3チャンネルすべてが等しい光変調度となる。
Conventionally, such a distortion has hardly been considered, but it is experimentally observed as follows. That is, FIG. 5 shows the π / 4 shift Q of 33 channels.
It is a code error rate characteristic when a PSK signal is optically transmitted.
However, the other 32 channels except the one for measuring the bit error rate are unmodulated sine waves. The vertical axis represents the code error rate, and the horizontal axis represents the relative optical modulation index (hereinafter referred to as QPSK relative modulation index) to the other 32 channels of the π / 4 shift QPSK signal which is the central channel for measuring the code error rate. is there. The optical modulation degrees of the 32 channels are all equal, and the optical modulation degree m per channel is a parameter. 3 when QPSK relative modulation is 0 dB
All three channels have the same degree of optical modulation.

【0006】各チャンネル配置は822.8〜829.
2MHzで200kHz間隔で33チャンネルあり、そ
の中央チャンネルのπ/4シフトQPSK信号の周波数
は826MHzである。正確にはπ/4シフト差動QP
SK変調でルートナイキストフィルタ特性、ロールオフ
率α=0.5で42kbpsの15段の疑似ランダム信
号で変調されている。
The respective channel arrangements are 822.8 to 829.
There are 33 channels at 200 MHz intervals at 2 MHz, and the frequency of the π / 4 shift QPSK signal of the central channel is 826 MHz. To be exact, π / 4 shift differential QP
SK modulation is performed with a root Nyquist filter characteristic and a pseudo-random signal of 15 stages of 42 kbps with a roll-off rate α = 0.5.

【0007】図5からわかるように、1チャンネル当り
の変調度mが4.2%より大きくなると、符号誤り率特
性が悪くなり、1チャンネル当りの変調度mが大きくな
ればなるほど特性が悪くなることがわかる。1チャンネ
ル当りの変調度mが約3.3%までは過変調とはならな
く(3.3%×32=1.06)、1チャンネル当りの
変調度mが4.2%程度までは過変調が起きても確率的
に小さくその影響がほとんど符号誤り率特性に変化を与
えないが、それ以上では過変調の影響により、急激に符
号誤り率特性が劣化している。この条件ではCNRは十
分大きく、符号誤り率特性の劣化は過変調によるもので
あることは明かである。
As can be seen from FIG. 5, when the modulation factor m per channel exceeds 4.2%, the code error rate characteristic deteriorates, and as the modulation factor m per channel increases, the characteristic deteriorates. I understand. Overmodulation does not occur until the modulation factor m per channel is approximately 3.3% (3.3% × 32 = 1.06), and the modulation factor m per channel does not exceed 4.2%. Even if modulation occurs, it is stochastically small and its influence hardly changes the code error rate characteristic, but beyond that, the code error rate characteristic deteriorates rapidly due to the effect of overmodulation. Under this condition, the CNR is sufficiently large, and it is clear that the deterioration of the code error rate characteristic is due to overmodulation.

【0008】狭帯域信号であるので、符号誤り率特性へ
主たる影響を与えるのはCNRとCTB(コンポジット
トリプルビート)であり、通常はこれらを測定すること
によってアナログ的伝送特性を評価している。混変調歪
はCTBと同様の考え方で扱えるのでここでは歪はCT
Bだけを考える。上記の符号誤り率を測定した実験系で
のCNRとCTBの測定結果である光変調度特性を図6
に示す。縦軸はCNRとCTB、横軸は1チャンネル当
りの変調度mであり、この測定時は中央チャンネルのπ
/4シフトQPSK信号は入力せず、このチャンネルの
周波数である826MHzでCNRとCTBを測定し
た。ただし、両者ともスペクトラムアナライザを用いて
時間平均して測定した値である。先に示した図5からわ
かるように、過変調の影響がない場合は前記文献に示さ
れた従来の理論でCNRと符号誤り率特性の関係を考え
ることはできるが、過変調の影響が出始めると、変調度
mが大きくなるにしたがって符号誤り率特性は劣化し、
たとえば符号誤り率10-6を達成するためのQPSK相
対変調度(以下、m(QPSK)とする)は、1チャン
ネル当りの変調度mが4.2%から7.3%に増加する
のにしたがって約−53dBから約−16dBに約37
dB劣化している。ところが図6に示したCTBはその
ような大きな劣化は示していない。CNRにいたっては
当然のことながら変調度mが大きくなるにしたがって良
くなっている。
Since it is a narrow band signal, it is CNR and CTB (composite triple beat) that mainly affect the code error rate characteristic, and the analog transmission characteristic is usually evaluated by measuring these. Intermodulation distortion can be treated in the same way as CTB, so here the distortion is CT
Consider only B. FIG. 6 shows the optical modulation index characteristics which are the measurement results of CNR and CTB in the experimental system in which the code error rate is measured.
Shown in. The vertical axis represents CNR and CTB, and the horizontal axis represents the modulation factor m per channel.
The / 4 shift QPSK signal was not input, and the CNR and CTB were measured at 826 MHz which is the frequency of this channel. However, both are values measured by time average using a spectrum analyzer. As can be seen from FIG. 5 described above, when there is no influence of overmodulation, the relationship between CNR and code error rate characteristics can be considered by the conventional theory shown in the above literature, but the influence of overmodulation appears. Once started, the code error rate characteristic deteriorates as the modulation degree m increases,
For example, the QPSK relative modulation factor (hereinafter referred to as m (QPSK)) for achieving the code error rate of 10 -6 is that the modulation factor m per channel increases from 4.2% to 7.3%. Therefore, from about -53 dB to about -16 dB, about 37
It is degraded by dB. However, the CTB shown in FIG. 6 does not show such a large deterioration. Naturally, the CNR is improved as the modulation degree m is increased.

【0009】上記のようにCNRとCTBから符号誤り
率特性を推定することはできず、前記文献に示された従
来の理論でCNRと符号誤り率特性の関係を考えること
は過変調の影響がある場合できない。したがって、符号
誤り率測定装置を送信側と受信側に設置し、直接符号誤
り率を測定する以外伝送性能を評価することができず、
また最適な光変調度や周波数多重チャンネル数を設定で
きないという課題があった。
As described above, the code error rate characteristic cannot be estimated from the CNR and CTB, and considering the relationship between the CNR and the code error rate characteristic in the conventional theory shown in the above-mentioned document has an influence of overmodulation. If there is, you can't. Therefore, it is not possible to evaluate the transmission performance except to install the code error rate measuring device on the transmitting side and the receiving side and directly measure the code error rate.
In addition, there is a problem that the optimum degree of optical modulation and the number of frequency-multiplexed channels cannot be set.

【0010】本発明はこれらの課題を解決し、周波数多
重ディジタル信号で半導体レーザ光を直接強度変調して
伝送する光伝送において、所望の符号誤り率を達成する
ための前記周波数多重ディジタル信号の光変調度および
周波数多重チャンネル数の設定条件を過変調の場合も歪
の瞬時最悪値から決定できる光伝送方式および上記動作
を自動的に行う手法を提供することを目的とする。
The present invention solves these problems, and in the optical transmission in which the semiconductor laser light is directly intensity-modulated with a frequency-multiplexed digital signal and transmitted, the optical signal of the frequency-multiplexed digital signal for achieving a desired code error rate is transmitted. An object of the present invention is to provide an optical transmission system capable of determining the setting conditions of the degree of modulation and the number of frequency-multiplexed channels from the instantaneous worst value of distortion even in the case of overmodulation, and a method for automatically performing the above operation.

【0011】[0011]

【課題を解決するための手段】送信側には周波数多重デ
ィジタル信号の信号源と、前記周波数多重ディジタル信
号の光変調度または周波数多重チャンネル数または両者
を調整する調整部と、前記調整部出力を光信号に変換し
て光受信部に送信する光送信部とが設けられ、受信側に
は光受信部と、光受信部で電気信号に変換された信号の
歪の瞬時最悪値を検出し、送信側にその情報を送る検出
部が設けられた構成とする。
On the transmitting side, a signal source of a frequency-multiplexed digital signal, an adjusting unit for adjusting the optical modulation degree of the frequency-multiplexing digital signal or the number of frequency-multiplexed channels or both, and an output of the adjusting unit are provided. An optical transmission unit that converts the optical signal and transmits the optical signal to the optical reception unit is provided, and the optical reception unit on the reception side and the instantaneous worst value of the distortion of the signal converted into the electric signal by the optical reception unit are detected, A configuration is provided in which a detection unit that sends the information is provided on the transmission side.

【0012】[0012]

【作用】周波数多重ディジタル信号で半導体レーザ光を
直接強度変調して伝送する光伝送において、受信側にお
いては受信した信号の歪の瞬時最悪値を検出し、その情
報を送信側へ送る。送信側においてはその情報をもとに
所望の符号誤り率を達成するための前記周波数多重ディ
ジタル信号の光変調度および周波数多重チャンネル数の
設定条件を決定し、調整部でその条件を実現し光送信部
へ出力する。これにより所望の符号誤り率特性で光伝送
を実現する。
In optical transmission in which semiconductor laser light is directly intensity-modulated and transmitted by a frequency-multiplexed digital signal, the receiving side detects the instantaneous worst value of distortion of the received signal and sends the information to the transmitting side. On the transmitting side, the setting conditions of the optical modulation degree and the number of frequency-multiplexed channels of the frequency-multiplexed digital signal for achieving a desired code error rate are determined on the basis of the information, and the adjustment section realizes the conditions and realizes the optical Output to the transmitter. This realizes optical transmission with a desired code error rate characteristic.

【0013】装置作製時においてLD等の性能に応じて
周波数多重ディジタル信号の光変調度および周波数多重
チャンネル数の設定条件を決定する際、スペクトラムア
ナライザで光伝送後の歪の瞬時最悪値を測定し、所望の
符号誤り率特性を実現できる値となるように決定すれば
よい。
When deciding the setting conditions of the optical modulation degree of the frequency-multiplexed digital signal and the number of frequency-multiplexed channels in accordance with the performance of the LD or the like when manufacturing the device, a spectrum analyzer measures the instantaneous worst value of distortion after optical transmission. , May be determined so that the desired bit error rate characteristic can be realized.

【0014】[0014]

【実施例】以下、本発明の実施例について図面を参照し
ながら説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0015】図1は本発明の第1の実施例における光伝
送装置のブロック図を示すものである。
FIG. 1 is a block diagram of an optical transmission device according to the first embodiment of the present invention.

【0016】図1において、10は周波数多重ディジタ
ル信号の信号源、11は前記周波数多重ディジタル信号
の光変調度または周波数多重チャンネル数または両者を
調整する調整部、12は前記調整部出力を光信号に変換
して光受信部に送信する光送信部、13は光受信部、1
4は光受信部で電気信号に変換された信号の歪の瞬時最
悪値を検出し、送信側にその情報を送る検出部、15は
検出部出力、16は伝送出力である。
In FIG. 1, 10 is a signal source of a frequency-multiplexed digital signal, 11 is an adjusting unit for adjusting the optical modulation degree of the frequency-multiplexing digital signal or the number of frequency-multiplexing channels, or both, and 12 is an optical signal for the output of the adjusting unit. An optical transmission unit for converting the light into an optical reception unit and transmitting the optical transmission to the optical reception unit.
Reference numeral 4 is a detection unit that detects an instantaneous worst value of distortion of a signal converted into an electric signal by the optical reception unit and sends the information to the transmission side, 15 is a detection unit output, and 16 is a transmission output.

【0017】以上のように構成された本実施例の光伝送
装置について、以下その動作を説明する。
The operation of the optical transmission apparatus of this embodiment having the above-mentioned structure will be described below.

【0018】信号源10からの周波数多重ディジタル信
号は調整部11でその光変調度または周波数多重チャン
ネル数または両者を調整され、光送信部12に入力す
る。光送信部12で光信号に変換され、伝送後前記光信
号は光受信部13で電気信号に変換される。光受信部1
3の出力が本光伝送装置の伝送出力16である。検出部
14は伝送出力16における歪の瞬時最悪値を検出し、
その情報を検出部出力15として送信側の調整部11に
送る。検出部出力15の送信方法は光ファイバや同軸ケ
ーブル等伝送路に依存しない。調整部11は検出部出力
15に応じて所望の符号誤り率特性を達成するために、
周波数多重ディジタル信号の光変調度または周波数多重
チャンネル数または両者を調整し光送信部に出力する。
この光変調度および周波数多重チャンネル数の調整に関
する詳細を以下に示す。
The frequency-multiplexed digital signal from the signal source 10 is adjusted in its optical modulation degree, the number of frequency-multiplexed channels, or both by the adjusting section 11, and is input to the optical transmitting section 12. The optical transmitter 12 converts the optical signal into an optical signal, and after the transmission, the optical signal is converted into an electric signal in the optical receiver 13. Optical receiver 1
The output 3 is the transmission output 16 of the present optical transmission device. The detection unit 14 detects the instantaneous worst value of the distortion in the transmission output 16,
The information is sent to the adjustment unit 11 on the transmission side as the detection unit output 15. The transmission method of the detector output 15 does not depend on the transmission path such as an optical fiber or a coaxial cable. In order to achieve a desired bit error rate characteristic according to the detector output 15, the adjuster 11
The optical modulation degree of the frequency-multiplexed digital signal or the number of frequency-multiplexed channels or both are adjusted and output to the optical transmitter.
Details regarding the adjustment of the optical modulation degree and the number of frequency-multiplexed channels will be described below.

【0019】図6にCNRとCTBの光変調度特性を示
したが、両者ともスペクトラムアナライザを用いて時間
平均して測定した値であるが、前記のようにこれらから
符号誤り率特性の劣化を推定することはできなかった。
これに対し、CTBの瞬時最悪値[CTBWORST]の光
変調度特性の測定結果を図2に示す。瞬時最悪値とは今
回の測定ではアドバンテスト社製スペクトラムアナライ
ザTR4172のマックスホールドモードで測定した値
であり、この時の測定条件はスパン100kHz、スイ
ープ時間500ms、分解能3kHz、ビデオ帯域幅3
kHzで10分間の最悪値である。図2からわかるよう
に1チャンネル当りの変調度mが4.2%から7.3%
に増加するのにしたがってCTB瞬時最悪値は約−65
dBから約−28dBに約37dB劣化している。この
劣化量は前記の符号誤り率10-6を達成するためのQP
SK相対変調度m(QPSK)の劣化量に等しい。この
m(QPSK)とCTB瞬時最悪値を共に図3に示す。
この図から両者がほとんど同じ劣化傾向を示しているこ
とがわかる。参考にこの両者の差を光変調度mに対して
図示すると、図4となる。このように両者の差は1チャ
ンネル当りの変調度mが4.2%以上では12dB程度
でほとんど一定である。
FIG. 6 shows the optical modulation index characteristics of CNR and CTB, both of which are values measured by time averaging using a spectrum analyzer. As described above, the deterioration of the code error rate characteristics is caused by these. It could not be estimated.
On the other hand, FIG. 2 shows the measurement result of the optical modulation degree characteristic of the instantaneous worst value [CTB WORST ] of CTB. The instantaneous worst value is the value measured in the Max Hold mode of the spectrum analyzer TR4172 manufactured by Advantest, and the measurement conditions at this time are: span 100 kHz, sweep time 500 ms, resolution 3 kHz, video bandwidth 3
It is the worst value for 10 minutes at kHz. As can be seen from FIG. 2, the modulation factor m per channel is 4.2% to 7.3%.
The worst case value of CTB is about -65.
There is a deterioration of about 37 dB from dB to about -28 dB. This deterioration amount is the QP for achieving the above-mentioned code error rate of 10 -6.
It is equal to the deterioration amount of the SK relative modulation factor m (QPSK). Both m (QPSK) and the CTB instantaneous worst value are shown in FIG.
From this figure, it can be seen that both show almost the same deterioration tendency. For reference, the difference between the two is illustrated in FIG. 4 with respect to the optical modulation index m. Thus, the difference between the two is almost constant at about 12 dB when the modulation degree m per channel is 4.2% or more.

【0020】以上述べたように、m(QPSK)とCT
B瞬時最悪値とはほとんと一定の関係を有しているの
で、CTB瞬時最悪値がある値となるようにすれば自動
的に符号誤り率特性が設定できることになる。たとえ
ば、目標仕様として符号誤り率10-6をマージン20d
Bで達成しようとすると、m(QPSK)が−20dB
となるようにすればよい。そのための光変調度mは図3
から約6.7%であることがわかる。同時にこの時のC
TB瞬時最悪値は約−33dBとなることがわかる。し
たがって、CTB瞬時最悪値を測定しながらその値が−
33dBとなるように光変調度mを設定すれば、自動的
に光変調度mが6.7%となり、目標仕様が達成され
る。この動作を自動的に行うのが図1の光伝送装置であ
る。目標仕様を下回ったことを発見するだけでよいので
あれば、検出部14はCTB瞬時最悪値をモニターして
おき、目標仕様に対応するCTB瞬時最悪値より悪い値
を検出した場合、警報を出すようにすればよい。
As described above, m (QPSK) and CT
Since the B instantaneous worst value has a substantially constant relationship, if the CTB instantaneous worst value is set to a certain value, the code error rate characteristic can be automatically set. For example, as a target specification, a code error rate of 10 -6 and a margin of 20 d
When trying to achieve with B, m (QPSK) is -20 dB
It should be so. The light modulation degree m for that is shown in FIG.
It can be seen that it is about 6.7%. At the same time C
It can be seen that the worst value for TB instant is about -33 dB. Therefore, while measuring the CTB instantaneous worst value,
If the light modulation degree m is set to 33 dB, the light modulation degree m automatically becomes 6.7%, and the target specification is achieved. The optical transmission device of FIG. 1 automatically performs this operation. If it suffices to find out that the target specification has been exceeded, the detection unit 14 monitors the CTB instantaneous worst value, and issues an alarm if a value worse than the CTB instantaneous worst value corresponding to the target specification is detected. You can do it like this.

【0021】周波数多重信号の光変調度mと周波数多重
チャンネル数の平方根の積、これを総合変調度と呼ぶ
が、これを一定にしておけばLDを変調する信号全体の
電流振幅分布は同じであるのでLDを変調する条件は同
じとなる。本実施例では光変調度mを調整する場合の数
値条件を示したが、総合変調度で考えれば、所望の符号
誤り率特性を達成するために総合変調度を設定すればよ
いことになる。つまり、光変調度mを変更する代わりに
周波数多重チャンネル数を変えてもよいことになる。た
だし、周波数多重チャンネル数を変える場合、その平方
根で効くので光変調度に対して2乗の割合で変える必要
がある。
The product of the optical modulation factor m of the frequency-multiplexed signal and the square root of the number of frequency-multiplexed channels is called the total modulation factor. If this is kept constant, the current amplitude distribution of the entire signal that modulates the LD is the same. Because of this, the conditions for modulating the LD are the same. Although the numerical conditions for adjusting the optical modulation index m are shown in this embodiment, considering the overall modulation index, it is sufficient to set the overall modulation index in order to achieve a desired code error rate characteristic. That is, the number of frequency-multiplexed channels may be changed instead of changing the optical modulation degree m. However, when changing the number of frequency-multiplexed channels, the square root is effective, so it is necessary to change at a ratio of the square to the optical modulation degree.

【0022】本実施例においては検出部14を受信側に
設けて送信側に情報をフィードバックする構成とした
が、検出部14を送信側に設け、光送信部12の光出力
の一部を取り出し、そこでの歪の瞬時最悪値を検出し、
その情報を調整部11へフィードバックする構成として
もよい。
In the present embodiment, the detector 14 is provided on the receiving side to feed back information to the transmitting side. However, the detecting section 14 is provided on the transmitting side and a part of the optical output of the optical transmitting unit 12 is extracted. , Detect the instantaneous worst value of the distortion there,
The information may be fed back to the adjusting unit 11.

【0023】なお本実施例においては変調方式をQPS
KとしたがQAM(直交振幅変調)等他のディジタル変
調信号に対しても有効である。
In this embodiment, the modulation method is QPS.
Although K is used, it is also effective for other digital modulation signals such as QAM (quadrature amplitude modulation).

【0024】[0024]

【発明の効果】本発明によれば、周波数多重ディジタル
信号で半導体レーザ光を直接強度変調して伝送する光伝
送において、所望の符号誤り率を達成するための前記周
波数多重ディジタル信号の光変調度および周波数多重チ
ャンネル数の設定条件を歪の瞬時最悪値から決定でき、
またその動作を自動的に実現でき、その実用的効果は大
きい。
According to the present invention, the degree of optical modulation of the frequency-multiplexed digital signal for achieving a desired code error rate in optical transmission in which the semiconductor laser light is directly intensity-modulated and transmitted by the frequency-multiplexed digital signal. And the setting condition of the frequency multiplex channel number can be determined from the instantaneous worst value of distortion,
Moreover, the operation can be automatically realized, and its practical effect is great.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例における光伝送装置のを
示すブロック図
FIG. 1 is a block diagram showing an optical transmission device according to a first embodiment of the present invention.

【図2】CTBの瞬時最悪値[CTBWORST]の光変調
度特性図
FIG. 2 is an optical modulation degree characteristic diagram of an instantaneous worst value [CTB WORST ] of CTB.

【図3】符号誤り率10-6を達成するためのQPSK相
対変調度m(QPSK)とCTB瞬時最悪値[CTB
WORST]の光変調度特性図
FIG. 3 shows a QPSK relative modulation factor m (QPSK) and a CTB instantaneous worst value [CTB] for achieving a code error rate of 10 −6.
WORST ]

【図4】QPSK相対変調度m(QPSK)とCTB瞬
時最悪値[CTBWORST]の差の光変調度特性図
FIG. 4 is an optical modulation degree characteristic diagram of a difference between a QPSK relative modulation degree m (QPSK) and a CTB instantaneous worst value [CTB WORST ].

【図5】符号誤り率特性図[Fig. 5] Bit error rate characteristic diagram

【図6】CNRとCTBの光変調度特性図FIG. 6 is an optical modulation degree characteristic diagram of CNR and CTB.

【符号の説明】[Explanation of symbols]

10 周波数多重ディジタル信号の信号源 11 調整部 12 光送信部 13 光受信部 14 検出部 16 伝送出力 10 signal source of frequency-multiplexed digital signal 11 adjusting unit 12 optical transmitting unit 13 optical receiving unit 14 detecting unit 16 transmission output

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H04J 14/02 H04L 27/18 Z 9297−5K 9372−5K H04B 9/00 E (72)発明者 笹井 裕之 大阪府門真市大字門真1006番地 松下電器 産業株式会社内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Office reference number FI technical display location H04J 14/02 H04L 27/18 Z 9297-5K 9372-5K H04B 9/00 E (72) Inventor Hiroyuki Sasai 1006 Kadoma, Kadoma-shi, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】周波数多重ディジタル信号で半導体レーザ
光を直接強度変調して伝送する光伝送において、 所望の符号誤り率を達成するための前記周波数多重ディ
ジタル信号の光変調度および周波数多重チャンネル数の
設定条件を、 前記周波数多重ディジタル信号による歪の瞬時最悪値か
ら決定することを特徴とする光伝送方式。
1. In optical transmission in which a semiconductor laser light is directly intensity-modulated and transmitted by a frequency-multiplexed digital signal, the optical modulation degree and the number of frequency-multiplexed channels of the frequency-multiplexed digital signal for achieving a desired code error rate are set. An optical transmission system, wherein setting conditions are determined from an instantaneous worst value of distortion due to the frequency-multiplexed digital signal.
【請求項2】周波数多重ディジタル信号の変調方式がπ
/4シフトQPSK(4値位相変調)信号であることを
特徴とする請求項1記載の光伝送方式。
2. A frequency multiplexing digital signal modulation method is π.
The optical transmission system according to claim 1, wherein the optical transmission system is a / 4 shift QPSK (Quaternary Phase Modulation) signal.
【請求項3】周波数多重ディジタル信号で半導体レーザ
光を直接強度変調して伝送する光伝送において、前記周
波数多重ディジタル信号による歪の瞬時最悪値を検出
し、前記歪の瞬時最悪値が所定の値以上となった場合、
警告を出すことを特徴とする光伝送方式。
3. In optical transmission in which a semiconductor laser light is directly intensity-modulated and transmitted by a frequency-multiplexed digital signal, an instantaneous worst value of distortion due to the frequency-multiplexed digital signal is detected, and the instantaneous worst value of the distortion is a predetermined value. If more than
An optical transmission method characterized by issuing a warning.
【請求項4】周波数多重ディジタル信号で半導体レーザ
光を直接強度変調して伝送する光伝送において、受信側
で前記周波数多重ディジタル信号による歪の瞬時最悪値
を検出し、送信側にその情報を送り、送信側においては
前記情報に応じて前記周波数多重ディジタル信号の光変
調度または周波数多重チャンネル数または両者を調整す
ることを特徴とする光伝送方式。
4. In optical transmission in which a semiconductor laser light is directly intensity-modulated and transmitted by a frequency-multiplexed digital signal, the receiving side detects an instantaneous worst value of distortion due to the frequency-multiplexed digital signal and sends the information to the transmitting side. The optical transmission system is characterized in that the transmitting side adjusts the optical modulation degree of the frequency-multiplexed digital signal or the number of frequency-multiplexed channels or both according to the information.
JP5085964A 1993-04-13 1993-04-13 Optical transmission system Pending JPH06303196A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5085964A JPH06303196A (en) 1993-04-13 1993-04-13 Optical transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5085964A JPH06303196A (en) 1993-04-13 1993-04-13 Optical transmission system

Publications (1)

Publication Number Publication Date
JPH06303196A true JPH06303196A (en) 1994-10-28

Family

ID=13873427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5085964A Pending JPH06303196A (en) 1993-04-13 1993-04-13 Optical transmission system

Country Status (1)

Country Link
JP (1) JPH06303196A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7200344B1 (en) 2001-05-10 2007-04-03 Fujitsu Limited Receiver and method for a multichannel optical communication system
JP2007166678A (en) * 1998-06-30 2007-06-28 Toshiba Corp Optical analog transmission equipment
US7483639B2 (en) 2001-05-10 2009-01-27 Fujitsu Limited Method and system for transmitting information in an optical communication system using distributed amplification
US10027408B2 (en) 2013-12-13 2018-07-17 Fujitsu Limited Multi-carrier optical transmission system, optical transmitter, and optical receiver
JP2022049154A (en) * 2020-09-16 2022-03-29 Dxアンテナ株式会社 Signal measuring instrument
WO2023032141A1 (en) * 2021-09-03 2023-03-09 日本電信電話株式会社 Optical reception device, optical transmission device, optical transmission system, feedback method, and adjustment method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007166678A (en) * 1998-06-30 2007-06-28 Toshiba Corp Optical analog transmission equipment
US7200344B1 (en) 2001-05-10 2007-04-03 Fujitsu Limited Receiver and method for a multichannel optical communication system
US7483639B2 (en) 2001-05-10 2009-01-27 Fujitsu Limited Method and system for transmitting information in an optical communication system using distributed amplification
US10027408B2 (en) 2013-12-13 2018-07-17 Fujitsu Limited Multi-carrier optical transmission system, optical transmitter, and optical receiver
JP2022049154A (en) * 2020-09-16 2022-03-29 Dxアンテナ株式会社 Signal measuring instrument
WO2023032141A1 (en) * 2021-09-03 2023-03-09 日本電信電話株式会社 Optical reception device, optical transmission device, optical transmission system, feedback method, and adjustment method

Similar Documents

Publication Publication Date Title
US5351148A (en) Optical transmission system
US5680238A (en) Hybrid SCM optical transmission apparatus
US8467676B2 (en) Sparing for multi-wavelength optical transmitter
US5654816A (en) Performance monitoring and fault location in optical transmission
JP3003575B2 (en) Optical transmission method and optical transmission device for subcarrier multiplexed signal
EP3132548B1 (en) Smart receivers and transmitters for catv networks
US20080031621A1 (en) Controlling optical signal transmission to reduce optical signal degradation
US6271942B1 (en) Optical transmission device and system
US20020126351A1 (en) Apparatus for monitoring polarization-mode dispersion and chromatic dispersion and transmitting means for transmitting optical signal in optical network
US20070134001A1 (en) Polarization division multiplexed optical transmission system
KR20060021813A (en) Optical transmission system, and transmitter, receiver and signal level adjustment method for use therein
JPH06303196A (en) Optical transmission system
CN102823160A (en) Use of the same set of wavelengths for uplink and downlink signal transmission
Lu et al. Clipping-induced impulse noise and its effect on bit-error performance in AM-VSB/64QAM hybrid lightwave systems
JPH09200129A (en) Method for improving noise ratio in optical wave transmission system
US5657143A (en) Optical transmission system suitable for video-communication cable networks
AU1222701A (en) Method, apparatus and system for high-speed transmission on fiber optic channel
EP1109336B1 (en) A method of initialisation of an optical transmitter
EP1011215A2 (en) Optical communication system combining both baseband and passband signals
Ovadia et al. Bit-error-rate impairment in hybrid AM-VSB/16-QAM multichannel video lightwave transmission systems
Aureli et al. Effect of clipping impulsive noise in a hybrid optical‐fiber/coaxial network for transmission of subcarrier‐multiplexing (SCM) analog and digital channels
US20220385370A1 (en) Method for Determining Actual Values of One or More Characteristics of a Phase-Modulated Optical Signal
US11451297B2 (en) Upstream optical input power auto alignment in an HPON network
US20070134000A1 (en) Polarization division multiplexed optical transmission system
JPH10215223A (en) Optical transmitter and system