JPH0630267A - Image reader - Google Patents

Image reader

Info

Publication number
JPH0630267A
JPH0630267A JP4202032A JP20203292A JPH0630267A JP H0630267 A JPH0630267 A JP H0630267A JP 4202032 A JP4202032 A JP 4202032A JP 20203292 A JP20203292 A JP 20203292A JP H0630267 A JPH0630267 A JP H0630267A
Authority
JP
Japan
Prior art keywords
image
minimum output
image input
scanning direction
mtf correction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4202032A
Other languages
Japanese (ja)
Other versions
JP3255971B2 (en
Inventor
Toshiaki Kamishiro
敏昭 神代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP20203292A priority Critical patent/JP3255971B2/en
Publication of JPH0630267A publication Critical patent/JPH0630267A/en
Application granted granted Critical
Publication of JP3255971B2 publication Critical patent/JP3255971B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Facsimile Image Signal Circuits (AREA)

Abstract

PURPOSE:To improve picture quality by preventing lateral fine lines from being cut off by MTF correction at an image processing part. CONSTITUTION:An image input part 1 is composed of a photoelectric conversion element such as a CCD and a driving part to scan the photoelectric conversion element, analog image information from the image input part 1 is converted into digital information, and an image processing part 2 performs MTF correction, edge detection and white/black binarizing or the like. The read image information is outputted to an output part 3 by a CPU 5, which controls an entire system, and transmitted through a communication control part 4. When a minimum lateral fine line output is larger than a minimum longitudinal fine line output in a minimum output characteristic to line width at the image input part 1 of a device provided with the image input part 1 of a facsimile or the like, a weight coefficient to a picture element in a sub scanning direction is made larger than the weight coefficient of a picture element in a main scanning direction by the MTF correction at the image processing part 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【技術分野】本発明は、画像読取装置に関し、より詳細
には、横細線の細線切れを防ぎ、画質の向上を図るよう
にした画像読取装置に関する。例えば、ファクシミリや
スキャナ等に適用されるものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an image reading apparatus, and more particularly, to an image reading apparatus which prevents breakage of thin horizontal lines and improves image quality. For example, it is applied to a facsimile or a scanner.

【0002】[0002]

【従来技術】ファクシミリ等の画像入力装置(スキャ
ナ)によって読み取られた画像は、空間周波数特性が劣
化している。この劣化画像を修復させる手段、すなわ
ち、MTF(Modulation Transfer Function)補正とし
てコンボリューションフィルタによる信号補正法があ
る。このフィルタの数値を誤差最小法によって求め、実
時間MTF補正回路によるボケ修正画像を得るものは、
「実時間MTF補正回路によるボケ画像の修正」(江尻
公一 外2名 Ricoh Technical Report No.6,NOVEMB
ER,1981)に記載されている。
2. Description of the Related Art An image read by an image input device (scanner) such as a facsimile has deteriorated spatial frequency characteristics. There is a signal correction method using a convolution filter as a means for restoring this deteriorated image, that is, MTF (Modulation Transfer Function) correction. What obtains the blur correction image by the real-time MTF correction circuit by obtaining the numerical value of this filter by the minimum error method is
"Correction of blurred image by real-time MTF correction circuit" (Koichi Ejiri and 2 others Ricoh Technical Report No.6, NOVEMB
ER, 1981).

【0003】また、特開平2−226378号公報に提
案されている「エッジ画像処理方式」のものは、情景画
像や人物画像等エッジを多く含むディジタル化された濃
淡画像の特徴解析を行うもので、濃淡画像からのエッジ
画像の算出において、濃度値の設差の大きい部分からは
強い(値の大きい)エッジが抽出され、逆に濃度値の段
差の小さい部分からはエッジがほとんど抽出されないよ
うにするために、それぞれの場合に適したエッジ検出オ
ペレータを用いるとともに、それぞれのオペレータで得
られるエッジ画像を合成するものである。
The "edge image processing method" proposed in Japanese Patent Laid-Open No. 2-226378 is for performing feature analysis of a digitized grayscale image including many edges such as a scene image and a human image. , When calculating an edge image from a grayscale image, a strong (large value) edge is extracted from a portion with a large difference in density value, and conversely, an edge is hardly extracted from a portion with a small difference in density value. In order to do so, an edge detection operator suitable for each case is used, and the edge images obtained by the respective operators are combined.

【0004】一方、同じ線幅の縦細線と横細線を読み取
った際の出力分布は、原稿が停止している場合では変わ
らない。しかし、原稿が移動している場合は、原稿が移
動しているために、図4のように、小さな字モードでは
縦細線最小出力よりも横細線最小出力の方が高い。この
ため、従来のMTF補正(E′= 3*E-(B+D+F+H)/2)で
も、縦細線を読み取った時より横細線を読み取ったとき
の方が出力が高くなり、2値化した場合、副走査方向に
対して弱い補正となるので、横細線の細線切れなどの画
質劣化が発生していた。
On the other hand, the output distribution when reading vertical thin lines and horizontal thin lines having the same line width does not change when the document is stopped. However, when the original is moving, the horizontal thin line minimum output is higher than the vertical thin line minimum output in the small character mode as shown in FIG. 4 because the original is moving. Therefore, even with the conventional MTF correction (E ′ = 3 * E- (B + D + F + H) / 2), the output is higher when the horizontal thin line is read than when the vertical thin line is read. In the case of binarization, the correction is weak in the sub-scanning direction, so image quality deterioration such as thin horizontal line breakage occurs.

【0005】また、横細線最小出力特性は各読み取りモ
ードにおいて出力特性が異なっており、従来のMTF補
正1つで全ての読み取りモードをカバーすることは補正
に片寄りが生じ、あるモードにおいて線が欠けるなどの
画像劣化が生じていた。さらに、横細線最小出力特性は
各読み取りモードにおいて出力特性が異なっているの
で、1つのエッジ検出で全ての読み取りモードをカバー
することは処理に片寄りが生じ、あるモードにおいて線
が欠けるなどの画像劣化が生じていた。
The output characteristic of the horizontal thin line minimum output characteristic is different in each reading mode. Covering all the reading modes with one conventional MTF correction causes a deviation in the correction, and the line becomes unclear in a certain mode. Image deterioration such as chipping occurred. Furthermore, since the horizontal thin line minimum output characteristics are different in each reading mode, covering all reading modes with one edge detection causes a deviation in processing, and an image such as a line being cut in a certain mode. Deterioration had occurred.

【0006】[0006]

【目的】本発明は、上述のごとき実情に鑑みてなされた
もので、画像入力部での線幅に対する最小出力特性にお
いて、縦細線最小出力より横細線最小出力が高い場合、
画像処理部でのMTF補正で、副走査方向の画素への重
み係数を主走査方向の画素の重み係数よりも大きくする
ことにより、横細線の細線切れを防ぎ、画質の向上を図
るようにした画像読取装置を提供することを目的として
なされたものである。
The present invention has been made in view of the above circumstances, and in the minimum output characteristic with respect to the line width in the image input unit, when the horizontal fine line minimum output is higher than the vertical fine line minimum output,
In the MTF correction in the image processing unit, the weighting coefficient for the pixel in the sub-scanning direction is made larger than the weighting coefficient for the pixel in the main-scanning direction, so that the thin horizontal line is prevented from being broken and the image quality is improved. The purpose of the present invention is to provide an image reading device.

【0007】[0007]

【構成】本発明は、上記目的を達成するために、(1)
CCDなどの光電変換素子と該光電変換素子を駆動する
駆動部を有する画像入力部と、該画像入力部からのアナ
ログ画情報をディジタル画情報に変換し、MTF補正を
行う画像処理部とから成る画像読取装置において、前記
画像入力部での線幅に対する最小出力特性において、縦
細線最小出力より横細線最小出力が高い場合、前記画像
処理部でのMTF補正で、副走査方向の画素への重み係
数を主走査方向の画素の重み係数よりも大きくするこ
と、更には、(2)前記画像入力部での線幅に対する最
小出力特性において、各読み取りモードでの縦細線最小
出力と横細線最小出力の関係により、前記画像処理部で
のMTF補正で副走査方向の画素への重み係数と主走査
方向の画素の重み係数の最適化を行うこと、更には、
(3)前記画像入力部での線幅に対する最小出力特性に
おいて、各読み取りモードでの縦細線最小出力と横細線
最小出力の関係により、前記画像処理部でのエッジ検出
で最適化を行うことを特徴としたものである。以下、本
発明の実施例に基づいて説明する。
In order to achieve the above object, the present invention provides (1)
It comprises a photoelectric conversion element such as a CCD and an image input section having a drive section for driving the photoelectric conversion element, and an image processing section for converting analog image information from the image input section into digital image information and performing MTF correction. In the image reading apparatus, when the horizontal thin line minimum output is higher than the vertical thin line minimum output in the minimum output characteristic with respect to the line width in the image input unit, the pixel in the sub-scanning direction is weighted by the MTF correction in the image processing unit. The coefficient is made larger than the weighting coefficient of the pixel in the main scanning direction, and further, (2) in the minimum output characteristic with respect to the line width in the image input section, the minimum output of vertical fine lines and the minimum output of horizontal fine lines in each reading mode. According to the above relationship, the weighting coefficient for the pixel in the sub-scanning direction and the weighting coefficient for the pixel in the main-scanning direction are optimized by MTF correction in the image processing unit.
(3) In the minimum output characteristic with respect to the line width in the image input unit, optimization is performed by edge detection in the image processing unit depending on the relationship between the minimum vertical thin line output and the minimum horizontal thin line output in each reading mode. It is a feature. Hereinafter, description will be given based on examples of the present invention.

【0008】図1は、本発明による画像読取装置の一実
施例を説明するための構成図で、図中、1は画像入力
部、2は画像処理部、3は出力部、4は通信制御部、5
はCPU(中央処理装置)、6はRAM(Random Access
Memory)、7は操作部である。画像入力部1は、CCD
などの光電変換素子及び該光電変換素子を走査する駆動
部により構成されており、該画像入力部1からのアナロ
グ画情報をディジタル情報に変換し、MTF補正,エッ
ジ検出,白黒2値化などを行う部分が画像処理部2であ
る。読み取られた画情報は、システム全体を制御してい
るCPU5により出力部3に出力されたり、通信制御部
4を介して送信されたりする。他に、キー入力などを検
知する操作部7や画情報のバッファなどのはたらきをす
るRAM6などで構成される。
FIG. 1 is a block diagram for explaining an embodiment of an image reading apparatus according to the present invention. In the figure, 1 is an image input section, 2 is an image processing section, 3 is an output section, and 4 is communication control. Division 5,
Is a CPU (Central Processing Unit), 6 is a RAM (Random Access)
Memory) and 7 are operation units. The image input unit 1 is a CCD
And the like, and a driving unit that scans the photoelectric conversion device. The analog image information from the image input unit 1 is converted into digital information, and MTF correction, edge detection, black and white binarization, etc. are performed. The part to be performed is the image processing unit 2. The read image information is output to the output unit 3 by the CPU 5 controlling the entire system, or transmitted via the communication control unit 4. In addition, it is composed of an operation unit 7 that detects a key input and the like, a RAM 6 that functions as a buffer for image information, and the like.

【0009】以下、請求項1記載の発明について説明す
る。画像入力部での光電変換素子としてCCDなどが用
いられている。前述した図4は、細線を読み取ったとき
のCCDの最小出力特性であり、横軸は細線の線幅を示
しており、縦軸はCCD出力を示している。データとし
ては、大きく分けて縦細線最小出力(主走査:8本/m
m)と横細線最小出力の2つがあり、横細線最小出力に
は、各読み取りモードの普通字(副走査方向1ライン送
り幅=1/3.85mm),小さな字(副:1/7.7mm),微
細字(副:1/15.4mm≒65μm)のデータを示してあ
る。
The invention according to claim 1 will be described below. A CCD or the like is used as a photoelectric conversion element in the image input section. FIG. 4 described above shows the minimum output characteristics of the CCD when a thin line is read. The horizontal axis shows the line width of the thin line, and the vertical axis shows the CCD output. The data can be roughly divided into the minimum output of vertical fine lines (main scanning: 8 lines / m
m) and minimum output of horizontal fine line. The minimum output of horizontal fine line is normal character of each reading mode (1 line feed width in sub-scanning direction = 1 / 3.85mm), small character (secondary: 1 / 7.7mm). , The data of fine characters (sub: 1 / 15.4mm ≒ 65μm) are shown.

【0010】小さな字モードにおいて、主走査方向と副
走査方向の読み取り密度はほぼ変わらないが、図4のよ
うに細線読み取り出力特性は副走査方向の出力の方が高
くなっている。これは、図2の(c)を見るとわかるよ
うに、副走査方向の読み取り細線出力は原稿自体が移動
することにより、蓄積時間内での情報量が変化するた
め、出力が高くなるからである。図3に示す3×3マト
リクスを用いた場合、従来のMTF補正 E′=3E-(B+D+
F+H)/2 では、縦細線を読み取った時より横細線を読み
取ったときの方が出力が高くなり、2値化した場合、線
が欠け安くなり、画質が劣化する。請求項1記載の実施
例では、MTF補正(小さな字モード)E′=3E-(1.5
B+0.5D+0.5F+1.5H)/2 のように注目画素Eに対して、副
走査方向の上下に位置するB,H画素への重みをD,F画
素よりも大きくすることにより、横細線読み取り時の線
の欠けを防止する。
In the small character mode, the reading densities in the main scanning direction and the sub scanning direction are almost the same, but as shown in FIG. 4, the fine line reading output characteristic is higher in the output in the sub scanning direction. As can be seen from FIG. 2C, the reading fine line output in the sub-scanning direction is high because the amount of information within the storage time changes due to the movement of the document itself. is there. When the 3 × 3 matrix shown in FIG. 3 is used, the conventional MTF correction E ′ = 3E− (B + D +
With F + H) / 2, the output is higher when reading horizontal fine lines than when reading vertical fine lines, and when binarized, the lines are cut off and the image quality deteriorates. In the embodiment described in claim 1, MTF correction (small character mode) E '= 3E- (1.5
B + 0.5D + 0.5F + 1.5H) / 2 such that the weight for B and H pixels located above and below in the sub-scanning direction with respect to the pixel of interest E is larger than that for D and F pixels. Prevents line breakage when reading horizontal thin lines.

【0011】以下、請求項2記載の発明について説明す
る。図4において、横細線最小出力特性は、各読み取り
モードにおいて出力特性が異なっており、従来のMTF
補正1つで全ての読み取りモードをカバーすることは細
正に片寄が生じ、あるモードにおいて、線が欠けるなど
の画像劣化が生じることとなる。請求項2記載の実施例
では、各読み取りモードに応じて使用するMTF補正を
選択し、適正な処理を行うものである。実施例として
は、細かい字モードの時は、縦細線最小出力と横細線最
小出力がほぼ等しいので、MTF補正(細かい字モー
ド)E′=3E-(0.5B+1.5D+1.5F+0.5H)/2 を選択する。ま
た、ふつう字モードの時は、縦細線最小出力より横細線
最小出力の方が高いので、MTF補正(ふつう字モー
ド)E′=3E=(1.8B+0.2D+0.2F+1.8H)/2 を選択する。副
走査方向の画素への重み係数は、小さな字モードの場合
よりも大きくする。
The invention according to claim 2 will be described below. In FIG. 4, the horizontal thin line minimum output characteristic is different in each reading mode.
Covering all the reading modes with one correction causes a fine deviation, and in a certain mode, image deterioration such as a line drop occurs. In the second embodiment, the MTF correction to be used is selected according to each reading mode, and appropriate processing is performed. As an embodiment, in the fine character mode, the vertical fine line minimum output and the horizontal fine line minimum output are substantially equal, so MTF correction (fine character mode) E '= 3E- (0.5B + 1.5D + 1.5F + 0.5H ) / 2 is selected. Also, in the normal character mode, the horizontal fine line minimum output is higher than the vertical fine line minimum output, so MTF correction (normal character mode) E ′ = 3E = (1.8B + 0.2D + 0.2F + 1.8H) / Select 2. The weighting factor for the pixel in the sub-scanning direction is made larger than that in the small character mode.

【0012】以下、請求項3記載の発明について説明す
る。図4において、横細線最小出力特性は各読み取りモ
ードにおいて出力特性が異なっているので、1つのエッ
ジ検出で全ての読み取りモードをカバーすることは処理
に片寄りが生じ、あるモードにおいて線が欠けるなどの
画像劣化が生じることとなる。 (黒側)16 ≧ B,D,E,F,H ≧ 0(白側) のとき、従来の場合、OR演算;(E−B,E−D,E
−F,E−H)≧4の時はEは黒で、≧4でない時はE
は白である。請求項3記載の実施例では、具体的なエッ
ジ検出として、小さな字モードで特性図からわかるよう
に、縦細線最小出力より横細線最小出力の方が高いの
で、エッジ検出(E-B≧3,E-H≧3,E-D≧4,E-F≧4
の少なくとも1つが成り立つときEを黒とする)が適用
される。同様にして、細かい字モードではエッジ検出
(E-B≧4,E-H≧4,E-D≧4,E-F≧4 の少なくとも1つ
が成り立つときEを黒とする)を、ふつう字モードでは
エッジ検出(E-B≧2,E-H≧2,E-D≧4,E-F≧4の少な
くとも1つが成り立つときEを黒とする)を選択する。
各読み取りモードに応じて、最適なエッジ検出を行うこ
とで、細線切れなどの画質劣化を防ぐことが可能とな
る。以上のことを表1にまとめてある。
The invention according to claim 3 will be described below. In FIG. 4, the output characteristics of the horizontal thin line minimum output characteristics are different in each reading mode, so that covering all reading modes with one edge detection causes deviation in processing, and lines are missing in a certain mode. The image deterioration will occur. When (black side) 16 ≥ B, D, E, F, H ≥ 0 (white side), the OR operation in the conventional case; (EB, ED, E)
-F, E-H) E is black when ≧ 4 and E when not ≧ 4
Is white. In the embodiment according to claim 3, as a specific edge detection, as can be seen from the characteristic diagram in the small character mode, the horizontal thin line minimum output is higher than the vertical thin line minimum output, so edge detection (EB ≧ 3, EH ≧ 3, ED ≧ 4, EF ≧ 4
And E is black when at least one of Similarly, in fine character mode, edge detection (when at least one of EB ≧ 4, EH ≧ 4, ED ≧ 4, EF ≧ 4 is satisfied, E is black), and in normal character mode, edge detection (EB ≧ 2) is performed. , EH ≧ 2, ED ≧ 4, and EF ≧ 4 are satisfied, E is black).
By optimally detecting the edge according to each reading mode, it is possible to prevent the image quality from being deteriorated such as a broken thin line. The above is summarized in Table 1.

【0013】[0013]

【表1】 [Table 1]

【0014】[0014]

【効果】以上の説明から明らかなように、本発明による
と、以下のような効果がある。 (1)請求項1に対する効果:ファクシミリなどの画像
入力部を備えた装置で、画像入力部での線幅に対する最
小出力特性において、縦細線最小出力より横細線最小出
力が高い場合、画像処理部でのMTF補正で、副走査方
向の画素への重み係数を主走査方向の画素の重み係数よ
りも大きくするので、横細線の細線切れが防げ画質が向
上する。 (2)請求項2に対する効果:ファクシミリなどの画像
入力部を備えた装置で、画像入力部での線幅に対する最
小出力特性において、各読み取りモードでの縦細線最小
出力と横細線最小出力の関係により、画像処理部でのM
TF補正で、副走査方向の画素への重み係数と主走査方
向の画素の重み係数の最適化を行うので、横細線の細線
切れが防げ画質が向上する。 (3)請求項3に対する効果:ファクシミリなどの画像
入力部を備えた装置で、画像入力部での線幅に対する最
小出力特性において、各読み取りモードでの縦細線最小
出力と横細線最小出力の関係により、画像処理部でのエ
ッジ検出で最適化を行うので、横細線の細線切れが防げ
画像が向上する。
As is apparent from the above description, the present invention has the following effects. (1) Effect to claim 1: In a device including an image input unit such as a facsimile, when the minimum output characteristic with respect to the line width in the image input unit has a horizontal thin line minimum output higher than a vertical thin line minimum output, an image processing unit Since the weighting coefficient for the pixels in the sub-scanning direction is made larger than the weighting coefficient for the pixels in the main-scanning direction by the MTF correction in (1), thin horizontal lines can be prevented from being broken and the image quality is improved. (2) Effect on claim 2: In a device having an image input unit such as a facsimile, in the minimum output characteristic with respect to the line width in the image input unit, the relationship between the vertical fine line minimum output and the horizontal fine line minimum output in each reading mode. Therefore, M in the image processing unit
Since the weighting coefficient for pixels in the sub-scanning direction and the weighting coefficient for pixels in the main scanning direction are optimized by the TF correction, thin horizontal lines can be prevented from being broken and the image quality can be improved. (3) Effect to claim 3: In a device having an image input unit such as a facsimile, in the minimum output characteristic with respect to the line width in the image input unit, the relationship between the vertical fine line minimum output and the horizontal fine line minimum output in each reading mode. By this, since the optimization is performed by the edge detection in the image processing unit, it is possible to prevent the horizontal thin lines from being broken and to improve the image.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明による画像読取装置の一実施例を説明
するための構成図である。
FIG. 1 is a configuration diagram for explaining an embodiment of an image reading apparatus according to the present invention.

【図2】 本発明による一蓄積時間内での各読取モード
のCCD読取移動距離を示す図である。
FIG. 2 is a diagram showing a CCD reading movement distance in each reading mode within one storage time according to the present invention.

【図3】 本発明に用いられる3×3マトリクスを示す
図である。
FIG. 3 is a diagram showing a 3 × 3 matrix used in the present invention.

【図4】 従来の画像読取装置を説明するための線幅に
対する最小出力を示す図である。
FIG. 4 is a diagram showing a minimum output with respect to a line width for explaining a conventional image reading apparatus.

【符号の説明】[Explanation of symbols]

1…画像入力部、2…画像処理部、3…出力部、4…通
信制御部、5…CPU(中央処理装置)、6…RAM
(Random Access Memory)、7…操作部。
1 ... Image input unit, 2 ... Image processing unit, 3 ... Output unit, 4 ... Communication control unit, 5 ... CPU (central processing unit), 6 ... RAM
(Random Access Memory), 7 ... Operation part.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 CCDなどの光電変換素子と該光電変換
素子を駆動する駆動部を有する画像入力部と、該画像入
力部からのアナログ画情報をディジタル画情報に変換
し、MTF補正を行う画像処理部とから成る画像読取装
置において、前記画像入力部での線幅に対する最小出力
特性において、縦細線最小出力より横細線最小出力が高
い場合、前記画像処理部でのMTF補正で、副走査方向
の画素への重み係数を主走査方向の画素の重み係数より
も大きくすることを特徴とする画像読取装置。
1. An image input section having a photoelectric conversion element such as a CCD and a drive section for driving the photoelectric conversion element, and an image for converting analog image information from the image input section into digital image information and performing MTF correction. In the image reading apparatus including a processing unit, in the minimum output characteristic with respect to the line width in the image input unit, when the horizontal thin line minimum output is higher than the vertical thin line minimum output, the image processing unit performs MTF correction in the sub-scanning direction. The image reading apparatus is characterized in that the weighting coefficient for each pixel is set to be larger than the weighting coefficient for the pixel in the main scanning direction.
【請求項2】 前記画像入力部での線幅に対する最小出
力特性において、各読み取りモードでの縦細線最小出力
と横細線最小出力の関係により、前記画像処理部でのM
TF補正で副走査方向の画素への重み係数と主走査方向
の画素の重み係数の最適化を行うことを特徴とする請求
項1記載の画像読取装置。
2. In the minimum output characteristic with respect to the line width in the image input unit, M in the image processing unit is determined by the relationship between the minimum output of vertical fine lines and the minimum output of horizontal fine lines in each reading mode.
The image reading apparatus according to claim 1, wherein the weighting coefficient for pixels in the sub-scanning direction and the weighting coefficient for pixels in the main-scanning direction are optimized by TF correction.
【請求項3】 前記画像入力部での線幅に対する最小出
力特性において、各読み取りモードでの縦細線最小出力
と横細線最小出力の関係により、前記画像処理部でのエ
ッジ検出で最適化を行うことを特徴とする請求項1記載
の画像読取装置。
3. The minimum output characteristic with respect to the line width in the image input unit is optimized by edge detection in the image processing unit according to the relationship between the vertical thin line minimum output and the horizontal thin line minimum output in each reading mode. The image reading apparatus according to claim 1, wherein:
JP20203292A 1992-07-06 1992-07-06 Image reading device Expired - Fee Related JP3255971B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20203292A JP3255971B2 (en) 1992-07-06 1992-07-06 Image reading device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20203292A JP3255971B2 (en) 1992-07-06 1992-07-06 Image reading device

Publications (2)

Publication Number Publication Date
JPH0630267A true JPH0630267A (en) 1994-02-04
JP3255971B2 JP3255971B2 (en) 2002-02-12

Family

ID=16450803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20203292A Expired - Fee Related JP3255971B2 (en) 1992-07-06 1992-07-06 Image reading device

Country Status (1)

Country Link
JP (1) JP3255971B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8355175B2 (en) 2006-11-29 2013-01-15 Konica Minolta Business Technologies, Inc. Image forming apparatus capable of reproducing fine line of high quality

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8355175B2 (en) 2006-11-29 2013-01-15 Konica Minolta Business Technologies, Inc. Image forming apparatus capable of reproducing fine line of high quality

Also Published As

Publication number Publication date
JP3255971B2 (en) 2002-02-12

Similar Documents

Publication Publication Date Title
AU761896B2 (en) Image reconstruction architecture
US4447830A (en) Image scanning apparatus and method
US6222641B1 (en) Method and apparatus for image descreening
JPH0818764A (en) Device for rectangular processing in intra-frame area
JP3255971B2 (en) Image reading device
EP1416715A1 (en) System and method for transformation of an input image to produce an output image
US6411735B1 (en) Method and apparatus for distinguishing between noisy continuous tone document types and other document types to maintain reliable image segmentation
US7336390B2 (en) Method and apparatus for reducing multi-bit image data
US7570394B2 (en) System for determining the size of an original image, such as in a digital copier
JP3177508B2 (en) Image processing device
US7130064B1 (en) Image processing apparatus and method selectively utilizing lower than normal image recording density
JP2962742B2 (en) Image processing device
JPH1098614A (en) Picture processor
JPH09233323A (en) Digital image reader
JP2900343B2 (en) Image processing device
JP3791895B2 (en) Image reduction processing method and apparatus
JPH1098613A (en) Picture processor
JP3095767B2 (en) Image processing device
JP3220217B2 (en) Facsimile machine
JP3488477B2 (en) Image processing device
JP2976386B2 (en) Binary image scaling device
JPS63191475A (en) Image data compressing device
JP3620699B2 (en) Scanner system and facsimile apparatus and computer apparatus used therefor
JP2002247310A (en) Image reader, its control method, storage medium and program
JP3589268B2 (en) Image processing device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071130

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081130

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081130

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091130

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees