JPH06301972A - High-molecular film and manufacture of magnetic recording medium - Google Patents

High-molecular film and manufacture of magnetic recording medium

Info

Publication number
JPH06301972A
JPH06301972A JP8593293A JP8593293A JPH06301972A JP H06301972 A JPH06301972 A JP H06301972A JP 8593293 A JP8593293 A JP 8593293A JP 8593293 A JP8593293 A JP 8593293A JP H06301972 A JPH06301972 A JP H06301972A
Authority
JP
Japan
Prior art keywords
magnetic recording
recording medium
polymer film
film
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8593293A
Other languages
Japanese (ja)
Inventor
Kaji Maezawa
可治 前澤
Kazuyoshi Honda
和義 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8593293A priority Critical patent/JPH06301972A/en
Publication of JPH06301972A publication Critical patent/JPH06301972A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To obtain a magnetic recording medium having an excellent electromagnetic conversion characteristic, durability, and reliability by forming recessed and projecting sections on the front and rear surfaces of a high-molecular film to prescribed depths. CONSTITUTION:After setting a substrate 1 having a flat surface on the take-up shaft 3 of a vacuum device 2, the substrate 1 is wound around a take-up shaft 5 through a plasma treatment device 4 and recessed and projecting sections having depths of 30-350Angstrom are formed on the front and rear surfaces of the substrate 1 by electric discharge machining. When a ferromagnetic metallic film is formed on the surface of the high-molecular film thus obtained by using a vacuum evaporation device, a magnetic recording medium having an excellent electromagnetic conversion characteristic, high durability, and long still life can be obtained due to shape effects produced on the front and rear surfaces of the high-molecular.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、映像機器及び情報機器
分野等に利用される高分子フイルムと磁気記録媒体の製
造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a polymer film and a magnetic recording medium used in the fields of video equipment and information equipment.

【0002】[0002]

【従来の技術】近年、磁気記録媒体は、磁気記録密度の
向上に見られるように、その技術的発展はめざましいも
のがある。従来の磁気記録媒体の例としては、オ−ディ
オ、ビデオ用テ−プ材料に用いられる酸化鉄粉末、酸化
クロム粉末、純鉄粉末等を研磨剤、樹脂等のバインダ−
と共に高分子フイルム上に塗布した、塗布型の磁気記録
媒体がある。
2. Description of the Related Art In recent years, magnetic recording media have made remarkable technological advances, as seen in the improvement of magnetic recording density. As examples of conventional magnetic recording media, iron oxide powder, chromium oxide powder, pure iron powder and the like used in audio and video tape materials are used as abrasives and binders of resins and the like.
There is a coating type magnetic recording medium which is coated on a polymer film together with.

【0003】しかし、従来の塗布型テ−プより保持力、
記録密度電磁変換特性を改良するため、真空蒸着法、イ
オンプレイティイング、スパッタリング法などでFe、
Ni、Co、Cr等の磁性金属を単独もしくは合金で高
分子フイルム上に蒸着する金属薄膜型磁気記録媒体の検
討がなされている。また斜方蒸着法よるオ−ディオ用、
ビデオ用金属薄膜型磁気記録媒体が既に実用化されてい
る。また、コンピュ−タのメモリ−として用いられるハ
−ドディスク用磁気記録媒体は、スパッタ−法によりア
ルミニュウムやガラス基板上にコバルト系酸化物を蒸着
する方法が用いられている。
However, the holding force is higher than that of the conventional coating type tape.
In order to improve recording density electromagnetic conversion characteristics, Fe by vacuum deposition method, ion plating, sputtering method, etc.
Studies have been made on a metal thin film type magnetic recording medium in which a magnetic metal such as Ni, Co or Cr is vapor-deposited on a polymer film alone or as an alloy. Also, for audio by the oblique deposition method,
Metal thin film magnetic recording media for video have already been put to practical use. Further, as a magnetic recording medium for hard disk used as a memory of a computer, a method of depositing a cobalt-based oxide on an aluminum or glass substrate by a sputtering method is used.

【0004】また、これらのメモリ−媒体においては記
録密度の向上と高画質化がますます要望されている。反
面、金属薄膜型磁気記録媒体の弱点である信頼性と走行
安定性の改善が期待されている。
Further, in these memory media, there is an increasing demand for improvement in recording density and image quality. On the other hand, improvement in reliability and running stability, which are weak points of the metal thin film type magnetic recording medium, are expected.

【0005】従来、金属薄膜型磁気記録媒体に使用する
高分子フイルムは、フラットな高分子フイルムの表面に
平均粒子徑200Åの形状を付与したものを用い、金属
薄膜磁気記録媒体を製造する方法としては、(図4)に
示すような高分子フイルム上に磁性金属を真空蒸着機で
蒸着する生産法が薄膜型磁気記録媒体を製造する方法と
して他を凌いでおり、現実的量産方法として非常に有力
である。ここで従来の蒸着テープの製造法と真空蒸着機
について説明する。無機粒子等を形状付与した高分子フ
イルム9を送り軸10にセットし、ク−リングキャン1
2を経て巻取り軸13でまきとる。ク−リングキャンの
下方からセラミックるつぼ15内の磁性金属を電子銃1
4で溶解し蒸発させ、高分子フイルム上に形成する。こ
の時、蒸着に不要な金属蒸気流は遮蔽板16、17でマ
スキングする。通常蒸着テ−プ(ME)は40度から9
0度位の蒸着角成分を使用する。
Conventionally, as a polymer film used for a metal thin film magnetic recording medium, a flat polymer film having a surface with an average particle size of 200Å is used as a method for producing a metal thin film magnetic recording medium. The production method of vapor-depositing a magnetic metal on a polymer film as shown in (FIG. 4) with a vacuum vapor deposition machine is superior to other methods as a method of producing a thin film magnetic recording medium. It is influential. Here, a conventional vapor deposition tape manufacturing method and a vacuum vapor deposition machine will be described. A polymer film 9 having inorganic particles and the like formed thereon is set on the feed shaft 10 to remove the cooling can 1.
After 2 passes, it is wound by the winding shaft 13. The magnetic metal in the ceramic crucible 15 is attached to the electron gun 1 from below the cooling can.
Dissolve and evaporate at 4 to form on polymer film. At this time, the metal vapor flow unnecessary for vapor deposition is masked by the shield plates 16 and 17. Normal evaporation tape (ME) is 40 degrees to 9
The vapor deposition angle component of 0 degree is used.

【0006】[0006]

【発明が解決しようとする課題】磁気記録媒体の場合に
は、ビデオ用テ−プに於いては小型化と高画質化、情報
機器においては高記録密度化が要望され、磁気記録媒体
の磁気特性、電磁変換特性の向上と共に走行耐久性、ス
チル寿命等の信頼性の改善が重要である。
In the case of a magnetic recording medium, downsizing and high image quality are required for video tapes, and high recording density is required for information equipment. It is important to improve running durability and still life as well as characteristics and electromagnetic conversion characteristics.

【0007】しかしながら、従来フイルム基板の表面性
を細かくしスペ−シングによるロスファクターを小さく
すると電磁変換特性は改善できるが、耐久走行やスチル
寿命が短くなり、逆に表面性を粗くすると走行性は改善
できるが、電磁変換特性に問題があった。
However, although the electromagnetic conversion characteristics can be improved by making the surface property of the conventional film substrate fine and reducing the loss factor due to the spacing, durability running and still life are shortened, and conversely when the surface property is rough, the running property becomes poor. Although it can be improved, there was a problem in electromagnetic conversion characteristics.

【0008】そこで本発明は、上記の欠点を解消し、電
磁変換特性の優れた、耐久性、信頼性の高い磁気記録媒
体を提供することを目的とする。
Therefore, an object of the present invention is to solve the above-mentioned drawbacks and to provide a magnetic recording medium having excellent electromagnetic conversion characteristics, high durability and high reliability.

【0009】[0009]

【課題を解決するための手段】この課題を解決するため
本発明は、高分子フイルムの表面に放電加工、あるいは
帯電処理することで30Å以上350Å以下の凹凸をも
うけ、この形状付与した高分子フイルム上に真空蒸着法
で強磁性金属層を形成し、磁気記録媒体を作製する。
In order to solve this problem, the present invention provides a polymer film having this shape provided with irregularities of 30 Å or more and 350 Å or less by subjecting the surface of the polymer film to electric discharge machining or electrification treatment. A ferromagnetic metal layer is formed on the top by a vacuum deposition method to manufacture a magnetic recording medium.

【0010】[0010]

【作用】表面の平坦な高分子フイルム上にプラズマ、グ
ロー、アーク等の放電加工、あるいは電子銃、イオンガ
ン、マイクロ波ガンなどの帯電処理を行い、30Å以上
350Å以下の凹凸形状を付与する。例えば、高分子フ
イルム表面に放電加工することでフイルム表面にランダ
ムの幾何学模様が生じ、これが深さ方向に150Å位の
形状になる。また帯電処理による表面処理では、フイル
ムの走行方向に直線上の模様が深さ方向に200Å位生
じる。この高分子フイルム上に真空蒸着法で磁性金属薄
膜を形成した磁気テープは、フイルム表面に発生した形
状効果により、電磁変換特性を損なわず耐久性、スチル
寿命の長い磁気記録媒体を得ることができる。
[Function] A polymer film having a flat surface is subjected to electric discharge machining such as plasma, glow, arc or the like, or electrification treatment such as electron gun, ion gun, microwave gun and the like to give an uneven shape of 30 Å or more and 350 Å or less. For example, by performing electrical discharge machining on the surface of a polymer film, a random geometric pattern is generated on the film surface, which has a shape of about 150Å in the depth direction. Further, in the surface treatment by the electrification treatment, a pattern on a straight line in the running direction of the film is generated at a depth of about 200Å. The magnetic tape on which a magnetic metal thin film is formed on this polymer film by vacuum deposition can produce a magnetic recording medium with long durability and still life without impairing electromagnetic conversion characteristics due to the shape effect generated on the film surface. .

【0011】[0011]

【実施例】以下、本発明の実施例について詳細に説明す
る。
EXAMPLES Examples of the present invention will be described in detail below.

【0012】(実施例1)(図1)に示すように平坦な
ポリエチレンテレフタレート(PET)フイルム1を真
空装置2の巻き出し軸3にセットし、プラズマ処理装置
4を経て巻き取り軸5で巻き取る。プラズマ処理装置
は、Arガスを導入口6より入れ処理済みガスは排気口
7から出し、電極8は表裏面に設け高周波を用い磁石で
封じ込める構造である。真空装置内の真空度は10ー4To
rr、プラズマ処理装置内は0.1Torrで、電極には0.
2Aで350Vの電圧を印加する。
(Embodiment 1) As shown in FIG. 1, a flat polyethylene terephthalate (PET) film 1 is set on an unwinding shaft 3 of a vacuum device 2 and wound on a winding shaft 5 via a plasma processing device 4. take. The plasma processing apparatus has a structure in which Ar gas is introduced through the inlet port 6 and the treated gas is exhausted through the exhaust port 7, and the electrodes 8 are provided on the front and back surfaces and are confined by a magnet using high frequency. The degree of vacuum in the vacuum device is 10-4 To
rr, 0.1 Torr in the plasma processing apparatus, and 0.
A voltage of 350V is applied at 2A.

【0013】(実施例2)(図2)は実施例1と同様に
PETフイルム表面をプラズマ処理を施し、その表面に
磁性金属薄膜を連続に蒸着する蒸着装置の概略図であ
る。PETフイルム9を巻き出し軸10にセットし、プ
ラズマ処理装置11を経て、回転ドラム12に送られ巻
き取り軸13で巻き取る。この時、回転ドラムの下方か
ら電子ビーム14でセラミック坩堝15内の磁性金属を
溶解し、フイルム上に蒸着する。蒸着に不用な金属蒸気
流はマスク16でカットする。また、遮蔽板17は蒸着
時の金属蒸気流の不必要な部分への回り込みを防ぐ。
(Embodiment 2) (FIG. 2) is a schematic view of a vapor deposition apparatus for subjecting a PET film surface to plasma treatment similarly to Embodiment 1 and continuously depositing a magnetic metal thin film on the surface. The PET film 9 is set on the unwinding shaft 10, sent through the plasma processing device 11 to the rotating drum 12, and wound up by the winding shaft 13. At this time, the magnetic metal in the ceramic crucible 15 is melted by the electron beam 14 from below the rotating drum, and deposited on the film. A mask 16 cuts off a metal vapor flow unnecessary for vapor deposition. Further, the shielding plate 17 prevents the metal vapor flow from flowing into unnecessary portions during vapor deposition.

【0014】高分子フイルム基板として厚さ10μmの
ポリエチレンテレフタレート基板を用い、磁性層を厚
さ、全厚2000Åとした。この時、電子ビーム蒸発源
からの平均膜堆積速度は3000nm/秒とし、蒸着入
射角40度から90度、蒸着時の回転ドラム温度0度で
蒸着した。プラズマ処理条件は実施例1と同様に0.1
Torr、0.5A、350Vで行った。
A polyethylene terephthalate substrate having a thickness of 10 μm was used as the polymer film substrate, and the magnetic layer had a total thickness of 2000Å. At this time, the average film deposition rate from the electron beam evaporation source was 3000 nm / sec, the vapor deposition incident angle was 40 ° to 90 °, and the rotary drum temperature during vapor deposition was 0 °. The plasma treatment condition is 0.1 as in the first embodiment.
Performed at Torr, 0.5A, 350V.

【0015】(実施例3)(図3)は実施例2と同様に
ポリエチレンナフタレート(PEN)フイルム表面に帯
電処理を施し、その表面に磁性金属薄膜を蒸着する蒸着
装置の概略図である。PETフイルム9を巻き出し軸1
0にセットし、回転ドラム12を経て帯電処理装置18
に送られ、巻き取り軸13で巻き取る。この時、回転ド
ラムの下方から電子ビーム14でセラミック坩堝15内
の磁性金属を溶解し、フイルム上に蒸着する。蒸着に不
用な金属蒸気流はマスク16でカットする。また、遮蔽
板17は蒸着時の金属蒸気流の不必要な部分への回り込
みを防ぐ。
(Embodiment 3) (FIG. 3) is a schematic view of a vapor deposition apparatus for subjecting the surface of a polyethylene naphthalate (PEN) film to a charging treatment and vapor depositing a magnetic metal thin film on the surface, as in the case of Embodiment 2. Unwinding PET film 9 1
Set to 0, and then through the rotating drum 12, the charging device 18
And is wound up by the winding shaft 13. At this time, the magnetic metal in the ceramic crucible 15 is melted by the electron beam 14 from below the rotating drum, and deposited on the film. A mask 16 cuts off a metal vapor flow unnecessary for vapor deposition. Further, the shielding plate 17 prevents the metal vapor flow from flowing into unnecessary portions during vapor deposition.

【0016】高分子フイルム基板として厚さ7μmのポ
リエチレンナフタレート基板を用い、磁性層を厚さ、全
厚2000Åとした。この時、電子ビーム蒸発源からの
平均膜堆積速度は3000nm/秒とし、蒸着入射角4
0度から90度、蒸着時の回転ドラム温度0度で蒸着し
た。帯電処理条件は0.1Aで200Vで行った。
A polyethylene naphthalate substrate having a thickness of 7 μm was used as the polymer film substrate, and the magnetic layer had a total thickness of 2000 Å. At this time, the average film deposition rate from the electron beam evaporation source was 3000 nm / sec, and the vapor deposition incident angle was 4
Deposition was carried out at a temperature of 0 to 90 degrees and a rotating drum temperature of 0 degrees at the time of deposition. The charging condition was 0.1 A and 200 V.

【0017】8mmデッキによる電磁変換特性、走行耐
久試験、スチル寿命の評価結果を(表1)に示す。
Table 1 shows the evaluation results of the electromagnetic conversion characteristics, running durability test, and still life of the 8 mm deck.

【0018】[0018]

【表1】 [Table 1]

【0019】以上の様な実施例による金属薄膜型磁気記
録媒体の性能と効果について述べる。金属薄膜型磁気記
録媒体の評価法は蒸着後8mmテ−プにし、市販の8m
mビデオデッキを評価装置に改造し、メタルヘッドを用
いて電磁変換特性を調べた。電磁変換特性は記録周波数
7MHZ近傍の出力、C/Nで評価し、従来例に対する
相対出力として比較した。また、繰り返しの走行耐久性
を比較するため市販の8mmビデオデッキを改良し 、
500パス繰り返し走行後のテープ表面のダメイジを光
学顕微鏡で観察し、スチル寿命は高温低湿40度ー10
%の特殊環境下で30grのテープ荷重で評価した。
The performance and effect of the metal thin film type magnetic recording medium according to the above embodiment will be described. The evaluation method of the metal thin film type magnetic recording medium was 8 mm tape after vapor deposition and was 8 m on the market.
The m-video deck was modified into an evaluation device, and the electromagnetic conversion characteristics were investigated using a metal head. The electromagnetic conversion characteristics were evaluated by the output near the recording frequency 7 MHZ and C / N, and compared as a relative output with respect to the conventional example. In addition, we improved the commercially available 8mm VCR to compare the running durability of repeated,
Damaging on the surface of the tape after repeated running for 500 passes was observed with an optical microscope, and the still life was 40 ° C-10 at high temperature and low humidity.
% Under a special environment, and evaluated with a tape load of 30 gr.

【0020】その結果、電磁変換特性のC/Nは従来例
より1.5dB以上高い。デッキによる500パスの繰
り返し耐久走行後の出力は安定し、テープ表面のダメー
ジを顕微鏡観察で評価した結果、本発明の実施例はいず
れも従来例と比較してテープダメージが少なく優れてい
た。スチル寿命の評価結果も耐久走行テストと同様本発
明の実施例がいずれも優れていた。
As a result, the C / N of the electromagnetic conversion characteristic is higher than the conventional example by 1.5 dB or more. The output of the deck after repeated 500 passes was stable, and the damage on the tape surface was evaluated by microscopic observation. As a result, all of the examples of the present invention were excellent in less tape damage than the conventional examples. The evaluation results of the still life were excellent in all the examples of the present invention as in the durability running test.

【0021】なお、本発明を実施するに当り高分子フイ
ルムは、本発明のポリエチレンテレフタレート、ポリエ
チレンナフタレート以外にもポリアミド、ポリイミド、
ポリ塩化ビニル、ポリカーボネートなど他のフイルムも
使用できる。プラズマ処理法、帯電処理法においても本
発明に限定することなく他の方法も可能である。
In carrying out the present invention, the polymer film is made of polyamide, polyimide, other than polyethylene terephthalate and polyethylene naphthalate of the present invention.
Other films such as polyvinyl chloride and polycarbonate can also be used. The plasma processing method and the charging processing method are not limited to the present invention, and other methods are possible.

【0022】その他、本発明の高分子フイルムを用いて
真空蒸着法で磁気記録媒体を製造する時、磁性金属、蒸
着時の入射角、蒸着温度、蒸着膜厚、酸素ガス導入な
ど、実施するにあたり、本発明の製造法に限定すること
なく他の方法も可能である。本発明は磁気記録媒体に限
らず、液晶配向膜、そのほかの各種機能性薄膜にも応用
できることは言うまでもない。
In addition, when a magnetic recording medium is manufactured by the vacuum deposition method using the polymer film of the present invention, magnetic metal, incident angle during deposition, deposition temperature, deposition film thickness, introduction of oxygen gas, etc. However, other methods are possible without being limited to the manufacturing method of the present invention. Needless to say, the present invention can be applied not only to magnetic recording media but also to liquid crystal alignment films and other various functional thin films.

【0023】本発明を実施するにあたり付与する形状の
大きさ、模様は印加電圧、電流に関係し、プラズマ放電
処理が強すぎると溝の深さが深く形状が細かく走行性能
は改善出来るが電磁変換特性が悪くなる。帯電処理にお
いても同様で印加電圧、電流が高くなると溝の深さが深
く、走行方向の溝の数がおおくなる。この場合もプラズ
マ処理同様形状の大きさと形が重要で、特に溝の深さと
して30Åから350Åの範囲が良く、特に50Åから
200Åが最適である。
The size and pattern of the shape given in carrying out the present invention are related to the applied voltage and the current. If the plasma discharge treatment is too strong, the depth of the groove is deep and the shape is fine and the running performance can be improved, but the electromagnetic conversion is performed. The characteristics deteriorate. Similarly in the charging process, as the applied voltage and the current increase, the depth of the groove becomes deeper and the number of grooves in the traveling direction becomes smaller. Also in this case, the size and shape of the shape are important as in the case of the plasma treatment. Particularly, the depth of the groove is preferably in the range of 30Å to 350Å, and particularly 50Å to 200Å is optimum.

【0024】[0024]

【発明の効果】以上の様に本発明の磁気記録媒体の製造
方法によれば、電磁変換特性、走行耐久性、信頼性のす
ぐれた磁気記録媒体を得ることが出来る。
As described above, according to the method of manufacturing a magnetic recording medium of the present invention, it is possible to obtain a magnetic recording medium excellent in electromagnetic conversion characteristics, running durability and reliability.

【0025】また、真空蒸着法による磁気記録の製造時
に真空層内で連続的に処理が出来、従来のような複雑な
工程を必要としない。
Further, the magnetic recording can be continuously processed in the vacuum layer during the production of the magnetic recording by the vacuum evaporation method, and the complicated process as in the prior art is not required.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1を示すプラズマ放電処理装置
の概略図
FIG. 1 is a schematic diagram of a plasma discharge processing apparatus showing a first embodiment of the present invention.

【図2】本発明の実施例2の磁気記録媒体の製造方法を
示す概略図
FIG. 2 is a schematic view showing a method of manufacturing a magnetic recording medium of Example 2 of the present invention.

【図3】本発明の実施例3の磁気記録媒体の製造装置を
示す概略図
FIG. 3 is a schematic diagram showing an apparatus for manufacturing a magnetic recording medium of Example 3 of the present invention.

【図4】従来例を示す磁気記録媒体の製造装置を示す概
略図
FIG. 4 is a schematic diagram showing a conventional magnetic recording medium manufacturing apparatus.

【符号の説明】[Explanation of symbols]

1 高分子フイルム 2 真空装置 3 巻き出し軸 4 プラズマ処理装置 5 巻き取り軸 6 ガス導入口 7 ガス排気口 8 電極 9 高分子フイルム 10 巻き出し軸 11 プラズマ処理装置 12 回転ドラム 13 巻き取り軸 14 電子銃 15 坩堝 16 マスク 17 遮蔽板 18 帯電処理装置 1 Polymer Film 2 Vacuum Device 3 Unwinding Shaft 4 Plasma Processing Device 5 Winding Shaft 6 Gas Inlet 7 Gas Exhaust 8 Electrode 9 Polymer Film 10 Unwinding Shaft 11 Plasma Processing Device 12 Rotating Drum 13 Winding Shaft 14 Electronic Gun 15 Crucible 16 Mask 17 Shield 18 Charging device

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】表面が平坦な基板の表裏面上に放電加工処
理で30Åから350Åの凹凸をもうけることを特徴と
する高分子フイルムの製造方法。
1. A method for producing a polymer film, characterized in that unevenness of 30Å to 350Å is formed on the front and back surfaces of a substrate having a flat surface by electric discharge machining.
【請求項2】表面が平坦な基板の表裏面上に帯電加工処
理で30Åから350Åの凹凸をもうけることを特徴と
する高分子フイルムの製造方法。
2. A method for producing a polymer film, characterized in that unevenness of 30 Å to 350 Å is formed on the front and back surfaces of a substrate having a flat surface by a charging process.
【請求項3】請求項1の高分子フイルム上に真空蒸着機
で放電加工処理後、強磁性金属を蒸着することを特徴と
する磁気記録媒体の製造方法。
3. A method of manufacturing a magnetic recording medium, comprising the step of subjecting the polymer film of claim 1 to electrical discharge machining with a vacuum evaporator and then depositing a ferromagnetic metal.
【請求項4】請求項1の高分子フイルム上に真空蒸着機
で帯電加工処理後、強磁性金属を蒸着することを特徴と
する磁気記録媒体の製造方法。
4. A method for producing a magnetic recording medium, comprising the steps of: charging a polymer film on a polymer film according to claim 1 with a vacuum vapor deposition machine and then depositing a ferromagnetic metal.
JP8593293A 1993-04-13 1993-04-13 High-molecular film and manufacture of magnetic recording medium Pending JPH06301972A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8593293A JPH06301972A (en) 1993-04-13 1993-04-13 High-molecular film and manufacture of magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8593293A JPH06301972A (en) 1993-04-13 1993-04-13 High-molecular film and manufacture of magnetic recording medium

Publications (1)

Publication Number Publication Date
JPH06301972A true JPH06301972A (en) 1994-10-28

Family

ID=13872539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8593293A Pending JPH06301972A (en) 1993-04-13 1993-04-13 High-molecular film and manufacture of magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH06301972A (en)

Similar Documents

Publication Publication Date Title
JP2563425B2 (en) Method of manufacturing magnetic recording medium
JPH06301972A (en) High-molecular film and manufacture of magnetic recording medium
JPS62185246A (en) Production of magnetic recording medium
JP2002133634A (en) Magnetic recording medium
JPH0581967B2 (en)
JP2703359B2 (en) Magnetic recording medium and method of manufacturing the same
JP2874419B2 (en) Method and apparatus for manufacturing magnetic recording medium
JP2563457B2 (en) Method of manufacturing magnetic recording medium
JP2953138B2 (en) Manufacturing method of magnetic recording medium
JPH03116523A (en) Production of magnetic recording medium
JP2951892B2 (en) Magnetic recording media
JP2976699B2 (en) Magnetic recording medium and manufacturing method thereof
JPH06195672A (en) Magnetic recording medium and its production
JPH01162226A (en) Production of magnetic recording medium
JPH01166332A (en) Production of magnetic recording medium
JP2004039195A (en) Magnetic recording medium
JPH11335838A (en) Production of metallic vapor deposited film type magnetic recording medium and apparatus for its production
JPH06251366A (en) Method and system for forming film
JPS62120470A (en) Manufacture of specular magnetic disk
JPS6154040A (en) Manufacture of magnetic recording medium
JPH0487025A (en) Production of magnetic recording medium
JPH01229419A (en) Magnetic recording medium
JPH07238376A (en) Production of metallic thin film body and device therefor
JPH04147434A (en) Production of magnetic recording medium
JP2004273084A (en) Method for manufacturing magnetic recording medium