JPH06300663A - Total scattering measuring equipment for x-ray region - Google Patents

Total scattering measuring equipment for x-ray region

Info

Publication number
JPH06300663A
JPH06300663A JP8726293A JP8726293A JPH06300663A JP H06300663 A JPH06300663 A JP H06300663A JP 8726293 A JP8726293 A JP 8726293A JP 8726293 A JP8726293 A JP 8726293A JP H06300663 A JPH06300663 A JP H06300663A
Authority
JP
Japan
Prior art keywords
scattering
integrating sphere
rays
hole
visible light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8726293A
Other languages
Japanese (ja)
Other versions
JP2984733B2 (en
Inventor
Kazuhiko Ito
和彦 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Aviation Electronics Industry Ltd
Original Assignee
Japan Aviation Electronics Industry Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Aviation Electronics Industry Ltd filed Critical Japan Aviation Electronics Industry Ltd
Priority to JP5087262A priority Critical patent/JP2984733B2/en
Publication of JPH06300663A publication Critical patent/JPH06300663A/en
Application granted granted Critical
Publication of JP2984733B2 publication Critical patent/JP2984733B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To allow evaluation of roughness of mirror face in X-ray region. CONSTITUTION:A layer 12 for scattering visible light is formed on the inner face of an integrating sphere 11 filled with a fluorescent material 25 for absorbing X-rays to emit visible light. X-rays 32 from an X-ray source 31 passes through an incident hole 17 and an incident spatial path 26 to impinge on a test mirror 14 which reflects the X-rays 33 through an outlet spatial path 27 and an outlet hole 19 to the outside. X-rays 34 scattered on the test mirror 14 impinges on the fluorescent material 25 and converted into visible light 35 which repeats scattering in the scattering layer 12 within the integrating sphere 11 and arrives at an optical detector 22. The quantity of light detected by the optical detector 22 corresponds to total scattering quantity of the test mirror 14.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は鏡面の粗さの評価に用
いられ、X線に対する全散乱量を測定するX線領域全散
乱測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an X-ray region total scattering measuring device used for evaluating the roughness of a mirror surface and measuring the total amount of scattering with respect to X-rays.

【0002】[0002]

【従来の技術】従来において、鏡面の粗さを評価するた
めにその鏡面に可視光を入射し、その時生じる散乱光の
全光量を測定していた。この可視光領域全散乱測定装置
は図2に示す構成をしていた。積分球11の内面に散乱
層12が形成されている。積分球11の一部に試験鏡取
付け穴13が形成され、この試験鏡取付け穴13を塞ぐ
ように、鏡面の粗さが測定されるべき試験鏡14が取付
けられる。試験鏡14の測定されるべき鏡面14aは積
分球11の内面側とされ、この鏡面14aに積分球11
の外部の光源15からの可視光16を入射させる。この
可視光16を通過させるため積分球11に入射穴17が
形成されている。鏡面14aに入射した可視光16の反
射光18を外部へ出射させるため出射穴19が積分球1
1に形成されている。鏡面14aで生じた散乱光21を
受光する光検出器22が積分球11にその検出面を挿入
して取付けられている。
2. Description of the Related Art Conventionally, in order to evaluate the roughness of a mirror surface, visible light is incident on the mirror surface and the total amount of scattered light generated at that time is measured. This visible light region total scattering measuring device had the structure shown in FIG. A scattering layer 12 is formed on the inner surface of the integrating sphere 11. A test mirror mounting hole 13 is formed in a part of the integrating sphere 11, and a test mirror 14 whose mirror surface roughness is to be measured is mounted so as to close the test mirror mounting hole 13. The mirror surface 14a of the test mirror 14 to be measured is the inner surface side of the integrating sphere 11, and the integrating sphere 11 is placed on this mirror surface 14a.
Visible light 16 from a light source 15 outside An entrance hole 17 is formed in the integrating sphere 11 to pass the visible light 16. The emitting hole 19 is provided for emitting the reflected light 18 of the visible light 16 that has entered the mirror surface 14a to the outside.
1 is formed. A photodetector 22 for receiving the scattered light 21 generated on the mirror surface 14a is attached to the integrating sphere 11 with its detection surface inserted.

【0003】つまり鏡面14aに凹凸や付着物などがあ
って、不完全な鏡面であると、反射光18以外の方向に
向う散乱光21が生じる。この散乱光21は反射光18
の方向以外の全周方向に生じ、この散乱光の量を測定す
ることにより、鏡面14aの凹凸の度合、つまり粗さな
どの評価を行うことができる。この散乱光21は、反射
光18のように定まった方向へは、出射せず、全周方向
へ出るのでそれを効率良く集光するため、積分球11が
用いられる。積分球11の内壁には、散乱層12があ
り、理想的な散乱層は、入射した光を全周方向へ100
%散乱させる。鏡面14aで散乱された光21は積分球
11内で散乱され、さらにそれも散乱され、多数回散乱
された光21は、光検出器22に到達して電気信号とし
て検出される。全周方向に出た光は積分球11内部で散
乱を繰り返しいつかは光検出器22に到達する。
In other words, if the mirror surface 14a has irregularities or deposits and is an imperfect mirror surface, scattered light 21 that is directed in a direction other than the reflected light 18 is generated. This scattered light 21 is reflected light 18
It is possible to evaluate the degree of unevenness of the mirror surface 14a, that is, the roughness, etc., by measuring the amount of this scattered light that occurs in the entire circumferential direction other than the above direction. The scattered light 21 does not go out in a fixed direction like the reflected light 18 but goes out in the entire circumferential direction, so that the integrating sphere 11 is used to efficiently collect it. There is a scattering layer 12 on the inner wall of the integrating sphere 11, and the ideal scattering layer is 100% of the incident light in all directions.
% Scatter. The light 21 scattered by the mirror surface 14a is scattered in the integrating sphere 11 and further scattered, and the light 21 scattered many times reaches the photodetector 22 and is detected as an electric signal. The light emitted in the entire circumferential direction repeats scattering inside the integrating sphere 11 and eventually reaches the photodetector 22.

【0004】今光源11からの光量が時間的に一定で試
験鏡面14aでの散乱も時間的に変化しないならば、光
検出器22で検出される光量の時間的飽和値は、試験鏡
面14aでの全散乱光量に等しい。現実的な積分球11
では、内壁に散乱層12として白色の直径数十μm程度
の微粒子が無数はりつけられている。この微粒子は、硫
酸バリウムや、有機高分子の微粒子などが用いられ、散
乱効率は90%以上となる。散乱効率が100%でない
と鏡面14aで散乱された光21の一部は光検出器22
に到達しないが、このように90%以上といった高効率
であれば光検出器22での検出光量は、鏡面14aでの
散乱光に、積分球11の散乱層12の散乱効率を乗じた
ものにほぼ等しい。また入射穴17、出射穴19、試験
鏡取付け穴14等は、積分球11の効率を下げるのでで
きるだけ小さくする。
If the amount of light from the light source 11 is constant with time and the scattering on the test mirror surface 14a does not change with time, the time-saturated value of the amount of light detected by the photodetector 22 is measured on the test mirror surface 14a. Is equal to the total scattered light amount of. Realistic integrating sphere 11
In the above, innumerable white fine particles having a diameter of several tens of μm are adhered to the inner wall as the scattering layer 12. As the fine particles, barium sulfate, fine particles of an organic polymer, or the like is used, and the scattering efficiency is 90% or more. If the scattering efficiency is not 100%, a part of the light 21 scattered by the mirror surface 14a will be part of the photodetector 22.
However, with such a high efficiency of 90% or more, the amount of light detected by the photodetector 22 is obtained by multiplying the scattered light on the mirror surface 14a by the scattering efficiency of the scattering layer 12 of the integrating sphere 11. Almost equal. Further, the entrance hole 17, the exit hole 19, the test mirror mounting hole 14, etc. are made as small as possible in order to reduce the efficiency of the integrating sphere 11.

【0005】[0005]

【発明が解決しようとする課題】従来においては、鏡面
14aからの全散乱量を測定することは主として可視光
程度の波長領域の光に限られていた。近年、もっと波長
の短い領域の光に対する鏡面が作られるようになり、特
にX線領域の光に対する鏡面の開発がなされるようにな
ってきた。X線は良く知られているように物質表面での
反射が少なく、表面の凹凸に非常に敏感であるので、X
線用の反射鏡を開発するためには、鏡面における全散乱
量を計測し、鏡面の評価を行うことは重要である。しか
しながら従来X線領域で使用できる積分球がなかったた
め測定できなかった。X線領域の光は、ほとんど物質中
へ透過吸収され、表面での散乱効率がきわめて低い
(0.1%以下)ため積分球の内壁に散乱層を形成する
ことができないためである。
In the past, the measurement of the total amount of scattering from the mirror surface 14a was mainly limited to light in the wavelength range of visible light. In recent years, a mirror surface for light in a shorter wavelength region has been made, and particularly, a mirror surface for light in an X-ray region has been developed. As is well known, X-rays have little reflection on the material surface and are very sensitive to surface irregularities.
In order to develop a reflector for rays, it is important to measure the total amount of scattering on the mirror surface and evaluate the mirror surface. However, it could not be measured because there was no integrating sphere that can be used in the X-ray region. This is because most of the light in the X-ray region is transmitted and absorbed in the substance and the scattering efficiency on the surface is extremely low (0.1% or less), so that the scattering layer cannot be formed on the inner wall of the integrating sphere.

【0006】[0006]

【課題を解決するための手段】この発明によれば、積分
球内にX線を吸収して可視光を放射する蛍光物質体が充
填され、積分球には従来と同様に試験鏡を取付けること
ができるようにされ、また入射穴、出射穴がそれぞれ形
成され、かつ散乱層が内面に形成されている。また前記
蛍光物質体には、入射穴から試験鏡へ入射光が通る入射
用空間路と、試験鏡から出射穴へ反射光が通る出射用空
間路とがそれぞれ形成されている。積分球の外部に設け
られたX線源からのX線を入射穴を通じて試験鏡に入射
させることができるようにされる。蛍光物質体より放射
した可視光が積分球内を繰り返し散乱してついには光検
出器に受光されるようにされている。
According to the present invention, a fluorescent substance body that absorbs X-rays and emits visible light is filled in the integrating sphere, and a test mirror is attached to the integrating sphere as in the conventional case. In addition, an entrance hole and an exit hole are formed respectively, and a scattering layer is formed on the inner surface. Further, the fluorescent substance body is formed with an incident space path through which incident light passes from the entrance hole to the test mirror and an exit space path through which reflected light passes from the test mirror to the exit hole. X-rays from an X-ray source provided outside the integrating sphere can be made incident on the test mirror through the entrance hole. The visible light emitted from the fluorescent material is repeatedly scattered in the integrating sphere and finally received by the photodetector.

【0007】[0007]

【作用】試験鏡の鏡面にX線が入射されると、その反射
光(X線)が出射口から外部へ出射されると共に、その
鏡面で生じた散乱X線が蛍光物質体内に入射され、蛍光
物質体から可視光が放射され、この可視光は積分球内を
散乱層で散乱を繰り返し光検出器へ達する。この光検出
器に達した光量は、試験鏡で散乱したX線の全散乱量と
対応する。
When X-rays are incident on the mirror surface of the test mirror, the reflected light (X-rays) is emitted from the emission port to the outside, and the scattered X-rays generated on the mirror surface are incident on the phosphor body. Visible light is emitted from the fluorescent substance body, and this visible light repeatedly scatters in the integrating sphere in the scattering layer and reaches the photodetector. The amount of light reaching this photodetector corresponds to the total amount of X-ray scattering by the test mirror.

【0008】[0008]

【実施例】図1にこの発明の実施例を示し、図2と対応
する部分に同一符号を付けてある。この発明では積分球
11内にX線を吸収して可視光を放射する蛍光物質体2
5が充填される。その蛍光物質体25には、入射穴17
からの入射光が試験鏡14に達する通路は空間とされ、
つまり入射用空間路26が形成され、また試験鏡14か
らの反射光が出射穴19に達する通路は空間とされ、つ
まり出射用空間路27が形成されている。試験鏡14の
鏡面14aと対向する部分も蛍光物質体25がわずか除
去され、小空間28とされている。更にこの例では入射
用空間路26、出射用空間路27及び小空間28の各内
面にも全体にわたって散乱層12が形成されている。積
分球11の外部に光源15の代りにX線源31が設けら
れ、X線源31からのX線32を、入射穴17を通じて
試験鏡14に入射させることができるようにされてい
る。蛍光物質体25の材料としてはX線を可視光に変換
するものであればよく、ヨウ化ナトリウムにタリウムを
混入したもの、ビスマス、ゲルマニウムの酸化物の化合
物などを用いる。
FIG. 1 shows an embodiment of the present invention, in which parts corresponding to those in FIG. 2 are designated by the same reference numerals. In the present invention, the phosphor body 2 that absorbs X-rays and emits visible light in the integrating sphere 11
5 is filled. The phosphor material 25 has an entrance hole 17
The path through which the incident light from reaches the test mirror 14 is defined as a space,
That is, the incident space passage 26 is formed, and the passage through which the reflected light from the test mirror 14 reaches the emission hole 19 is a space, that is, the emission space passage 27 is formed. The portion of the test mirror 14 facing the mirror surface 14a is also made small by removing the fluorescent substance body 25 slightly. Further, in this example, the scattering layer 12 is also formed over the entire inner surfaces of the incident space path 26, the emission space path 27, and the small space 28. An X-ray source 31 is provided outside the integrating sphere 11 in place of the light source 15, and X-rays 32 from the X-ray source 31 can be made incident on the test mirror 14 through the incident hole 17. As the material of the fluorescent substance body 25, any substance that converts X-rays into visible light may be used, and a substance obtained by mixing thallium with sodium iodide, a compound of an oxide of bismuth, germanium, or the like is used.

【0009】この構成によればX線32が入射用空間路
26を通じて試験鏡14の鏡面14aに入射され、その
反射光(X線)33は出射空間路27を通じて外部へ放
射される。鏡面14aで散乱したX線(散乱光)34は
蛍光物質体25内に入射し、蛍光物質体25内でX線は
吸収され、可視光(蛍光)35を発する。このX線より
変換された可視光35は各壁面、つまり散乱層12で散
乱を繰り返しながら光検出器22に到達する。
According to this structure, the X-ray 32 is incident on the mirror surface 14a of the test mirror 14 through the incident space path 26, and the reflected light (X-ray) 33 is emitted to the outside through the emission space path 27. The X-rays (scattered light) 34 scattered by the mirror surface 14a enter the fluorescent substance body 25, the X-rays are absorbed in the fluorescent substance body 25, and the visible light (fluorescent light) 35 is emitted. The visible light 35 converted from the X-rays reaches the photodetector 22 while being repeatedly scattered on each wall surface, that is, the scattering layer 12.

【0010】X線源31からの線量が時間的に一定で、
試験鏡14での散乱も時間的に変化しないならば、散乱
層12の散乱効率の他に、X線の可視光への変換効率、
X線の蛍光物質体25内での透過効率を考慮すれば、従
来の可視光を利用した場合と同様に、光検出器22の検
出光量から試験鏡14の鏡面14aでの全散乱X線量を
測定することができる。
The dose from the X-ray source 31 is constant over time,
If the scattering at the test mirror 14 does not change with time, in addition to the scattering efficiency of the scattering layer 12, the conversion efficiency of X-rays into visible light,
Considering the transmission efficiency of X-rays in the fluorescent substance body 25, the total scattered X-ray dose on the mirror surface 14a of the test mirror 14 can be calculated from the amount of light detected by the photodetector 22 as in the case of using conventional visible light. Can be measured.

【0011】なお、入射用空間路26、出射用空間路2
7、及び小空間28の各内面の散乱層12は省略しても
よい。
The incident space path 26 and the exit space path 2
7 and the scattering layer 12 on each inner surface of the small space 28 may be omitted.

【0012】[0012]

【発明の効果】以上述べたようにこの発明によれば、X
線を被評価鏡面に入射し、その散乱X線を可視光に変換
し、その可視光の光量を測定することにより、可視光よ
りも微小な凹凸など、つまり細かい粗面の度合を評価す
ることができる。
As described above, according to the present invention, X
A ray is incident on the mirror surface to be evaluated, the scattered X-rays are converted into visible light, and the amount of visible light is measured to evaluate the degree of unevenness that is smaller than visible light, that is, the degree of a fine rough surface. You can

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例を示す断面図。FIG. 1 is a sectional view showing an embodiment of the present invention.

【図2】従来の可視光を用いた全散乱測定装置を示す断
面図。
FIG. 2 is a cross-sectional view showing a conventional total scattering measuring device using visible light.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 面の粗さが評価されるべき試験鏡が取付
けられて塞がれる試験鏡取付け穴と、光検出器用穴と、
入射穴と、出射穴とを有する積分球と、 その積分球内に満され、X線を吸収して可視光を出す蛍
光物質体と、 その蛍光物質体内において、上記入射穴と上記試験鏡と
の間、及び上記出射穴と上記試験鏡との間にそれぞれ形
成された入射用空間路及び出射用空間路と、 上記積分球及び上記蛍光物質体間に形成され、上記可視
光を散乱させる散乱層と、 上記積分球の外部に設けられ、上記入射穴より上記入射
用空間路を通って上記試験鏡にX線を入射させるX線源
と、 上記光検出器用穴にこれを塞ぐように一端が取付けら
れ、上記可視光の光量を検出する光検出器と、 を具備するX線領域全散乱測定装置。
1. A test mirror mounting hole in which a test mirror whose surface roughness is to be evaluated is mounted and closed, and a photodetector hole.
An integrating sphere having an entrance hole and an exit hole, a fluorescent substance body that fills the integrating sphere and emits visible light by absorbing X-rays, and in the fluorescent substance body, the entrance hole and the test mirror. And a space for incidence and a space for emission formed respectively between the emission hole and the test mirror, and between the integrating sphere and the fluorescent substance body, and scattering for scattering the visible light. A layer, an X-ray source that is provided outside the integrating sphere, and that makes X-rays enter the test mirror through the incident space path from the incident hole, and one end so as to close the photodetector hole. An X-ray region total scattering measurement apparatus comprising: a photodetector, which is attached to the photodetector, and which detects the amount of visible light.
JP5087262A 1993-04-14 1993-04-14 X-ray total scattering measurement system Expired - Fee Related JP2984733B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5087262A JP2984733B2 (en) 1993-04-14 1993-04-14 X-ray total scattering measurement system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5087262A JP2984733B2 (en) 1993-04-14 1993-04-14 X-ray total scattering measurement system

Publications (2)

Publication Number Publication Date
JPH06300663A true JPH06300663A (en) 1994-10-28
JP2984733B2 JP2984733B2 (en) 1999-11-29

Family

ID=13909866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5087262A Expired - Fee Related JP2984733B2 (en) 1993-04-14 1993-04-14 X-ray total scattering measurement system

Country Status (1)

Country Link
JP (1) JP2984733B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011030156A3 (en) * 2009-09-10 2011-05-05 University Of Sheffield Collection of electromagnetic radiation emitted from particle-irradiated samples

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011030156A3 (en) * 2009-09-10 2011-05-05 University Of Sheffield Collection of electromagnetic radiation emitted from particle-irradiated samples

Also Published As

Publication number Publication date
JP2984733B2 (en) 1999-11-29

Similar Documents

Publication Publication Date Title
JP2565278B2 (en) Radiation detector
US4492869A (en) Radiation detector
US4317037A (en) Radiation detection apparatus
US5155366A (en) Method and apparatus for detecting and discriminating between particles and rays
JPH10132941A (en) Radiation detection for radioactive clad scintillating fiber
US5125017A (en) Compton backscatter gage
US6124595A (en) Gamma ray imaging detector with three dimensional event positioning and method of calculation
JP3027886B2 (en) Scintillation detector for radioactive gas monitor
JP2984733B2 (en) X-ray total scattering measurement system
JPH09500447A (en) Fluorescence detector and device for supporting replaceable sample cuvettes on the fluorescence detector
US4956556A (en) Radiation scintillation detector
JP4724007B2 (en) Radiation detector
JP4060483B2 (en) Radiation detector
US3798448A (en) Scintillation meter-type spectrometer
JP3873631B2 (en) Radiation detector
CA2017031A1 (en) Apparatus for the measurement of aerosols and dust or the like distributed in air
JP2003149125A (en) Scattered light measuring device
JP2003057355A (en) Semiconductor radiation detector for alpha-ray dust monitor
CN108428706B (en) Image sensor
JPH0219901Y2 (en)
JPH0755490Y2 (en) Device for measuring fine particles in liquid
JPH0676970B2 (en) Optical inspection device
US3717402A (en) Light collector for gamma ray cameras
JPS5816585A (en) Semiconductor laser device
JP2002341041A (en) Radiation detecting optical transmission device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990803

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees