JPH06300589A - Photoelectric encoder - Google Patents

Photoelectric encoder

Info

Publication number
JPH06300589A
JPH06300589A JP5087191A JP8719193A JPH06300589A JP H06300589 A JPH06300589 A JP H06300589A JP 5087191 A JP5087191 A JP 5087191A JP 8719193 A JP8719193 A JP 8719193A JP H06300589 A JPH06300589 A JP H06300589A
Authority
JP
Japan
Prior art keywords
signals
output
light
light receiving
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5087191A
Other languages
Japanese (ja)
Other versions
JP3277597B2 (en
Inventor
Koichi Katsura
公一 桂
Yuji Yamazaki
雄二 山▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP08719193A priority Critical patent/JP3277597B2/en
Publication of JPH06300589A publication Critical patent/JPH06300589A/en
Application granted granted Critical
Publication of JP3277597B2 publication Critical patent/JP3277597B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Optical Transform (AREA)

Abstract

PURPOSE:To provide an output signal of duty ratio by adjusting the phase of received signals of respective light receiving elements using adjustment signals obtained from the four light receiving elements. CONSTITUTION:A signal processing circuit is provided with first differential amplifiers 1-4 connected to respective light receiving elements 21-24 impressed by reverse bias voltage, the amplifiers 1-4 convert current generated by the elements 21-24 to voltage through respective feedback resistances, and converted signals 50-53 containing direct current components and alternating current components are output. A second differential amplifier 5 input by the signals 50, 51 lets the variation center levels of the signals 50, 51 coincide with each other, and adjusts them into sine wave signals 54 of 180 deg. phase difference. A second differential amplifier 6 input by the signals 52, 53 lets the variation center level of the signals 52, 53 coincide with each other, and adjusts them into sine wave signals 55 of 180 deg. phase difference. The signals 54, 55 are output to differential amplifiers 10, 11 for output and converted to output signals 10a, 11a from which direct current components are perfectly removed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光電式エンコーダに関
し、特に直進移動又は回転移動を発光素子及び受光素子
を用いて検出する光電式エンコーダに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photoelectric encoder, and more particularly to a photoelectric encoder which detects a straight movement or a rotation movement by using a light emitting element and a light receiving element.

【0002】[0002]

【従来の技術】光電式エンコーダの受光素子群とスリッ
トが形成された符号板との関係を図4に示す。この光電
式エンコーダは、特公平3−76428号公報に示され
ている。図4に示す様に、スリット幅1/2ピッチPの
スリット20a、20bが1ピッチPの間隔で形成され
た符号板20と、符号板20を挟むように、一方には光
源として発光素子40(図5参照)が配設され、他方に
は発光素子40から射出された光を検出する少なくとも
4個の電気的に独立した受光素子21、22、23、2
4が配設されている。
2. Description of the Related Art FIG. 4 shows the relationship between a light receiving element group of a photoelectric encoder and a code plate having a slit. This photoelectric encoder is disclosed in Japanese Patent Publication No. 3-76428. As shown in FIG. 4, a code plate 20 in which slits 20a and 20b having a slit width ½ pitch P are formed at intervals of 1 pitch P, and a light emitting element 40 as a light source is provided on one side so as to sandwich the code plate 20. (See FIG. 5), and at the other side at least four electrically independent light receiving elements 21, 22, 23, 2 for detecting the light emitted from the light emitting element 40.
4 are provided.

【0003】各受光素子21、22、23、24は、略
1/4ピッチPの幅を有し、同一円周上における上記ス
リット20a、20bの配列方向に1/4ピッチPの間
隔で配置されている。即ち、各受光素子21、22、2
3、24は、互いに1/4ピッチPずれた位置関係にあ
る為、受光素子21と受光素子22とでは90°、受光
素子21と受光素子23とでは180°、受光素子21
と受光素子24とでは270°位相差が生じている。
Each of the light receiving elements 21, 22, 23, 24 has a width of about 1/4 pitch P, and is arranged at an interval of 1/4 pitch P in the arrangement direction of the slits 20a, 20b on the same circumference. Has been done. That is, each of the light receiving elements 21, 22, 2
Since 3 and 24 are in a positional relationship of being shifted by ¼ pitch P from each other, the light receiving element 21 and the light receiving element 22 are 90 °, the light receiving element 21 and the light receiving element 23 are 180 °, and the light receiving element 21 is
And the light receiving element 24 have a 270 ° phase difference.

【0004】各受光素子21、22、23、24から出
力される受光信号は、図5に示される信号処理回路によ
り処理される。図5に示す様に、受光素子21、22、
23、24から出力された受光信号は、各帰還抵抗3
4、35、36、37を介して増幅器30、31、3
2、33で増幅され、コンパレータ38、39に出力さ
れる。
The light receiving signals output from the respective light receiving elements 21, 22, 23, 24 are processed by the signal processing circuit shown in FIG. As shown in FIG. 5, the light receiving elements 21, 22,
The received light signals output from 23 and 24 are applied to each feedback resistor 3
Amplifiers 30, 31, 3 via 4, 35, 36, 37
It is amplified by 2, 33 and output to the comparators 38, 39.

【0005】図6(a)に示す様に、コンパレータ38
には、互いに180°位相のずれた正弦波信号21a、
23aが出力され、正弦波信号21a、23aが交差す
る位置で信号変換された矩形波信号38aになる。ま
た、コンパレータ39には、互いに180°位相のずれ
た正弦波信号22a、24aが出力され、正弦波信号2
2a、24aが交差する位置で信号変換された矩形波信
号39aになる。
As shown in FIG. 6A, the comparator 38
Is a sine wave signal 21a that is 180 ° out of phase with each other,
23a is output, and becomes a rectangular wave signal 38a that is signal-converted at the position where the sine wave signals 21a and 23a intersect. Further, the sine wave signals 22a and 24a, which are 180 ° out of phase with each other, are output to the comparator 39.
The rectangular wave signal 39a is converted at the position where 2a and 24a intersect.

【0006】矩形波信号38aと矩形波信号39aとの
関係は、図6(b)に示す様に互いに90°位相のずれ
た信号となる。出力信号38aを出力する回路を第1回
路45とし、出力信号39aを出力する回路を第2回路
46とする。上記構成の光電式エンコーダは、温度特性
及び素子劣化の補償をリファレンス(モニター)用受光
素子を配置しなくとも行えるので、受光素子等の電気回
路構成部の小型化を図ることができ、信頼性が高くなる
という効果がある。
The relationship between the rectangular wave signal 38a and the rectangular wave signal 39a is a signal whose phase is shifted by 90 ° from each other as shown in FIG. 6 (b). The circuit that outputs the output signal 38a is the first circuit 45, and the circuit that outputs the output signal 39a is the second circuit 46. The photoelectric encoder with the above configuration can compensate for temperature characteristics and element deterioration without arranging the reference (monitor) light receiving element, so that it is possible to reduce the size of the electric circuit components such as the light receiving element. Has the effect of increasing.

【0007】しかし、通常、発光素子及び受光素子に
は、発光素子から出力光のばらつき、受光素子の感度の
ばらつき等の各素子特性のばらつきがある。従って、上
記のばらつきにより、各受光素子が受光する光量にアン
バランスが生じている為、各コンパレータ38、39に
入力される正弦波信号は図7のようになる。第1回路4
5について、ばらつきが生じている例を説明する。
However, in general, the light emitting element and the light receiving element have variations in element characteristics such as variations in output light from the light emitting element and variations in sensitivity of the light receiving element. Therefore, due to the above variation, the light amount received by each light receiving element is unbalanced, so that the sine wave signals input to the respective comparators 38 and 39 are as shown in FIG. First circuit 4
Regarding No. 5, an example in which variation occurs will be described.

【0008】即ち、図7に示す様に、受光素子21から
得られた正弦波信号21bと、受光素子23から得られ
た正弦波信号23bとでは、振幅及び変動中心レベル
(正弦波信号のピーク値とバリィ値との平均)が異なる
ので、コンパレータ38で変換される矩形波信号38b
は、デューティ比が50%にならない信号になるという
問題がある。
That is, as shown in FIG. 7, in the sine wave signal 21b obtained from the light receiving element 21 and the sine wave signal 23b obtained from the light receiving element 23, the amplitude and the fluctuation center level (peak of the sine wave signal) Since the average of the value and the variable value is different, the rectangular wave signal 38b converted by the comparator 38
Has a problem that the signal has a duty ratio of not 50%.

【0009】この様な問題を解決する方法がオプトデバ
イス応用ノウハウ(伊藤弘 編著)〔CQ出版社〕のP
110に開示されている。即ち、第1回路45及び第2
回路46の、帰還抵抗34及び帰還抵抗36を可変抵抗
にし、その抵抗値を変えることにより、光量のばらつき
を調整してデューテイ比が50%の矩形波信号を出力す
ることが開示されている。
A method for solving such a problem is P of Opto Device Application Know-how (edited by Hiroshi Ito) [CQ Publisher].
110. That is, the first circuit 45 and the second circuit
It is disclosed that the feedback resistor 34 and the feedback resistor 36 of the circuit 46 are made variable resistors and the resistance values thereof are changed to adjust the variation of the light amount to output a rectangular wave signal having a duty ratio of 50%.

【0010】[0010]

【発明が解決しようとする課題】上記の如き従来の技術
において、第1回路45及び第2回路46の帰還抵抗3
4及び帰還抵抗36の抵抗値を変えて、光量調整を行っ
ているので、第1回路45及び第2回路46のそれぞれ
の矩形波信号はデューティ比が50%になり、かつ直流
成分を除去することができるようになる。
In the prior art as described above, the feedback resistor 3 of the first circuit 45 and the second circuit 46 is used.
4 and the resistance value of the feedback resistor 36 are changed to adjust the light amount, so that the rectangular wave signals of the first circuit 45 and the second circuit 46 have a duty ratio of 50% and remove the DC component. Will be able to.

【0011】しかしながら、帰還抵抗34及び帰還抵抗
36の抵抗値を変えるので、第1回路45及び第2回路
46の周波数特性が異なってしまう。即ち、第1回路4
5から出力される矩形波信号と、第2回路46から出力
される矩形波信号とを比較した場合、第1回路45と第
2回路46が信号処理する周波数が高くなってくると、
互いに90°位相の異なる出力信号にならないという問
題点がある。
However, since the resistance values of the feedback resistors 34 and 36 are changed, the frequency characteristics of the first circuit 45 and the second circuit 46 are different. That is, the first circuit 4
When the rectangular wave signal output from 5 and the rectangular wave signal output from the second circuit 46 are compared, if the frequencies processed by the first circuit 45 and the second circuit 46 become higher,
There is a problem in that the output signals are out of phase with each other by 90 °.

【0012】本発明は、この様な従来の問題点に鑑みて
なされたもので、デューテイ比が50%の出力信号が得
られると共に、その出力信号が正確な互いに90°位相
の異なる信号を出力できる光電式エンコーダを得ること
を目的とする。
The present invention has been made in view of the above-mentioned conventional problems, and an output signal having a duty ratio of 50% is obtained, and the output signals output signals having mutually different 90 ° phases. The purpose is to obtain a photoelectric encoder that can be used.

【0013】[0013]

【課題を解決するための手段】請求項1に記載の本発明
は、1/2ピッチP幅のスリット(20a、20b)が
一定ピッチP間隔で形成された符号板(20)と、符号
板(20)を挟むように一方側に配置された発光部と、
符号板(20)を挟むように他方側に配置され、発光部
が発する光をスリット(20a、20b)を通して受光
する受光部と、受光部からの受光信号を信号処理し、符
号板(20)と受光部との相対移動量を求める信号処理
手段と、を備え、受光部は、略1/4ピッチPの幅を有
し、スリット(20a、20b)の配列方向に1/4ピ
ッチPの間隔で配置される少なくとも4個の受光素子
(21、22、23、24)から構成される光電式エン
コーダにおいて、信号処理手段は、4個の受光素子(2
1、22、23、24)が検出した受光信号(50、5
1、52、53)を全て加算して調整信号(56)を出
力する加算手段(7)と、調整信号(56)を入力し、
調整信号(56)により4つの受光信号(50、51、
52、53)の変動中心レベルを調整する調整手段
(5、6、7、8a、8b、9)とを有している。
The present invention according to claim 1 is a code plate (20) in which slits (20a, 20b) having a 1/2 pitch P width are formed at a constant pitch P, and a code plate. A light emitting portion arranged on one side so as to sandwich (20),
The code plate (20) is arranged on the other side so as to sandwich the code plate (20) and receives the light emitted from the light emitting unit through the slits (20a, 20b) and the light reception signal from the light receiving unit. And a signal processing means for obtaining a relative movement amount between the light receiving portion and the light receiving portion, and the light receiving portion has a width of approximately 1/4 pitch P and has a width of 1/4 pitch P in the arrangement direction of the slits (20a, 20b). In a photoelectric encoder composed of at least four light receiving elements (21, 22, 23, 24) arranged at intervals, the signal processing means includes four light receiving elements (2
1, 22, 23, 24) detected light receiving signals (50, 5)
1, 52, 53) are all added to output the adjustment signal (56), and the adjustment signal (56) is input.
Four light receiving signals (50, 51,
52, 53) and the adjusting means (5, 6, 7, 8a, 8b, 9) for adjusting the fluctuation center level.

【0014】[0014]

【作用】本発明において、各受光素子が検出した出力信
号を全て足し合わせて、光量のばらつきを調整する為の
調整信号としたので、各回路の周波数特性を変えること
なく、完全に直流成分を除去できるようになる。
In the present invention, the output signals detected by the respective light receiving elements are added together to form an adjustment signal for adjusting the variation in the light quantity, so that the DC component can be completely generated without changing the frequency characteristic of each circuit. Can be removed.

【0015】[0015]

【実施例】本実施例における光電式エンコーダの構成
は、図4に示す従来の技術の光電式エンコーダと同じ構
成なので、同じ符号を用い、説明を省略する。図1は、
本発明における信号処理回路の構成図である。図1に示
す様に、信号処理回路は、逆バイアス電圧が印加された
各受光素子21、22、23、24が接続された第1差
動増幅器1、2、3、4を備えている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The photoelectric encoder according to this embodiment has the same structure as that of the conventional photoelectric encoder shown in FIG. Figure 1
It is a block diagram of a signal processing circuit in the present invention. As shown in FIG. 1, the signal processing circuit includes first differential amplifiers 1, 2, 3, 4 to which the respective light receiving elements 21, 22, 23, 24 to which a reverse bias voltage is applied are connected.

【0016】第1差動増幅器1、2、3、4は、受光素
子21、22、23、24が発生する電流を各帰還抵抗
を介して電圧に変換して、直流成分と交流成分とを含む
変換信号50、51、52、53を出力する。第1差動
増幅器1の出力端子は、加算器7の抵抗7aに接続され
ると共に、第2差動増幅器5のマイナス入力端子に接続
され、第1差動増幅器2の出力端子は、加算器7の抵抗
7bに接続されると共に、上記第2差動増幅器5のプラ
ス入力端子に接続される。
The first differential amplifiers 1, 2, 3, 4 convert the current generated by the light receiving elements 21, 22, 23, 24 into a voltage via each feedback resistor to generate a DC component and an AC component. The converted signals 50, 51, 52 and 53 including the output signals are output. The output terminal of the first differential amplifier 1 is connected to the resistor 7a of the adder 7 and the negative input terminal of the second differential amplifier 5, and the output terminal of the first differential amplifier 2 is the adder. The resistor 7b is connected to the positive input terminal of the second differential amplifier 5.

【0017】また、第1差動増幅器3の出力端子は、加
算器7の抵抗7cに接続されると共に、第2差動増幅器
6のマイナス入力端子に接続され、第1差動増幅器4の
出力端子は、加算器7の抵抗7dに接続されると共に、
上記第2差動増幅器6のプラス入力端子に接続される。
加算器7は、上述した様に4本の抵抗7a、7b、7
c、7dと、加算用差動増幅器8aと、から構成され、
各抵抗7a、7b、7c、7dは、加算用差動増幅器8
aのマイナス入力端子に接続される。
The output terminal of the first differential amplifier 3 is connected to the resistor 7c of the adder 7 and the negative input terminal of the second differential amplifier 6, and the output of the first differential amplifier 4 is connected. The terminal is connected to the resistor 7d of the adder 7, and
It is connected to the positive input terminal of the second differential amplifier 6.
The adder 7 has four resistors 7a, 7b, 7 as described above.
c and 7d, and a differential amplifier 8a for addition,
Each of the resistors 7a, 7b, 7c, 7d is a summing differential amplifier 8
It is connected to the minus input terminal of a.

【0018】従って、交換信号50、51、52、53
は、各抵抗7a、7b、7c、7dを介して1つの加算
信号56となり、加算用差動増幅器8aに出力される。
加算用差動増幅器8aは、加算信号56を帰還抵抗を介
して増幅し、ノイズ成分が除去された第1調整信号57
を出力する。即ち、図3に示す様に、加算器7は、変換
信号50、51、52、53の交流成分を打ち消し合
い、そして直流成分だけを加算することにより第1調整
信号57を出力する。
Therefore, the exchange signals 50, 51, 52, 53
Becomes one addition signal 56 via the resistors 7a, 7b, 7c, 7d, and is output to the addition differential amplifier 8a.
The addition differential amplifier 8a amplifies the addition signal 56 via a feedback resistor to remove the noise component from the first adjustment signal 57.
Is output. That is, as shown in FIG. 3, the adder 7 outputs the first adjustment signal 57 by canceling out the AC components of the converted signals 50, 51, 52, 53 and adding only the DC components.

【0019】この第1調整信号57は、変換信号50、
51、52、53のそれぞれの直流成分の4倍になる。
反転回路は、加算用差動増幅器8aの出力端子がマイナ
ス端子に接続された増幅器8bから構成される。反転回
路の増幅器8bの出力端子は、調整器9を構成する2つ
の可変抵抗9a、9bが並列に接続されている。
The first adjustment signal 57 is the converted signal 50,
It is four times the DC component of each of 51, 52, and 53.
The inverting circuit is composed of an amplifier 8b in which the output terminal of the adding differential amplifier 8a is connected to the negative terminal. Two variable resistors 9a and 9b forming the adjuster 9 are connected in parallel to the output terminal of the amplifier 8b of the inverting circuit.

【0020】反転回路は、第1調整信号57を所定レベ
ルで変動するようにする為に、ノイズ成分が除去された
第2調整信号58を出力する。そして、第1調整信号5
7及び第2調整信号58は、調整器9の各可変抵抗9
a、9bに出力される。第2差動増幅器5は、第1差動
増幅器1の変換信号50と第1差動増幅器2の変換信号
51とを帰還抵抗を介して増幅し、正弦波信号54とし
て出力する。また、第2差動増幅器5のプラス端子は、
調整器9の可変抵抗9aに接続されている。
The inverting circuit outputs the second adjustment signal 58 from which the noise component is removed in order to change the first adjustment signal 57 at a predetermined level. Then, the first adjustment signal 5
7 and the second adjustment signal 58 are applied to each variable resistor 9 of the adjuster 9.
It is output to a and 9b. The second differential amplifier 5 amplifies the converted signal 50 of the first differential amplifier 1 and the converted signal 51 of the first differential amplifier 2 via a feedback resistor and outputs it as a sine wave signal 54. The positive terminal of the second differential amplifier 5 is
It is connected to the variable resistor 9 a of the adjuster 9.

【0021】第2差動増幅器6は、第1差動増幅器3の
変換信号52と第1差動増幅器4の変換信号53とを帰
還抵抗を介して増幅し、正弦波信号55として出力す
る。また、第2差動増幅器6のプラス端子は、調整器9
の可変抵抗9bに接続されている。第2差動増幅器5の
出力端子は、出力差動増幅器10のプラス端子に接続さ
れ、また、第2差動増幅器6の出力端子は、出力差動増
幅器11のプラス端子に接続される。
The second differential amplifier 6 amplifies the converted signal 52 of the first differential amplifier 3 and the converted signal 53 of the first differential amplifier 4 via a feedback resistor and outputs it as a sine wave signal 55. Further, the plus terminal of the second differential amplifier 6 is connected to the adjuster 9
Of the variable resistor 9b. The output terminal of the second differential amplifier 5 is connected to the plus terminal of the output differential amplifier 10, and the output terminal of the second differential amplifier 6 is connected to the plus terminal of the output differential amplifier 11.

【0022】出力差動増幅器10、11は、正弦波信号
54、55を各帰還抵抗を介して増幅し、完全に直流成
分を除去した出力信号10a、10bを出力する回路で
ある。この様に構成された信号処理回路にばらつきのあ
る光量を各受光素子21、22、23、24が受光した
場合について説明する。
The output differential amplifiers 10 and 11 are circuits for amplifying the sine wave signals 54 and 55 via the respective feedback resistors and outputting the output signals 10a and 10b from which the direct current component is completely removed. A case will be described in which the light receiving elements 21, 22, 23, and 24 receive light of varying amounts of light in the signal processing circuit configured as described above.

【0023】光を受光した各受光素子21、22、2
3、24は、直流成分と交流成分とを含む電流を発生
し、その電流は第1差動増幅器1、2、3、4により電
流−電圧変換され、互いに90°位相(光量にばらつき
がない場合)がずれた変換信号50、51、52、53
が得られる。変換信号50、51は、光量のばらつきが
ある為、図2(a)に示す様な変動中心レベルがずれて
しまい、この変換信号50、51を第2差動増幅器5で
差動増幅すると、直流成分が除去することが出来ずに、
変動中心レベルがずれた正弦波信号54となる。
Each of the light receiving elements 21, 22, 2 which receives the light
Reference numerals 3 and 24 generate a current containing a direct current component and an alternating current component, and the currents are current-voltage converted by the first differential amplifiers 1, 2, 3 and 4, and are 90 ° in phase with each other (the light quantity does not vary). Case) the converted signals 50, 51, 52, 53 are deviated
Is obtained. Since the converted signals 50 and 51 have variations in the amount of light, the fluctuation center level is shifted as shown in FIG. 2A, and when the converted signals 50 and 51 are differentially amplified by the second differential amplifier 5, DC component could not be removed,
The sine wave signal 54 has a fluctuation center level shifted.

【0024】同様に、図示しない変換信号52、53
は、光量のばらつきがある為、変動中心レベルがずれて
しまい、この変換信号52、53を第2差動増幅器6で
差動増幅すると、直流成分を除去することが出来ずに、
変動中心レベルがずれた正弦波信号55となる。従っ
て、調整器9の可変抵抗9a、9bの抵抗値を変えて、
第2差動増幅器5、6のプラス端子にに入力する変換信
号51、53の光量調整を行い、各変換信号50、5
1、52、53の変動中心レベルを調整する。
Similarly, converted signals 52 and 53 (not shown)
Since there is a variation in the amount of light, the fluctuation center level deviates, and when the converted signals 52 and 53 are differentially amplified by the second differential amplifier 6, the DC component cannot be removed,
The sine wave signal 55 is obtained with the fluctuation center level shifted. Therefore, by changing the resistance values of the variable resistors 9a and 9b of the adjuster 9,
The light amounts of the converted signals 51 and 53 input to the plus terminals of the second differential amplifiers 5 and 6 are adjusted, and the converted signals 50 and 5 are adjusted.
Adjust the fluctuation center level of 1, 52, 53.

【0025】即ち、変換信号50、51を入力する第2
差動増幅器5は、調整器9の可変抵抗9aの抵抗値を変
えることにより、変換信号50、51の変動中心レベル
を一致させ、かつ互いに180°位相のずれた正弦波信
号54に調整する。また、変換信号52、53を入力す
る第2差動増幅器6は、調整器9の可変抵抗9bの抵抗
値を変えることにより、変換信号52、53の変動中心
レベルを一致させ、かつ互いに180°位相のずれた正
弦波信号55に調整する。
That is, the second inputting the converted signals 50 and 51
The differential amplifier 5 changes the resistance value of the variable resistor 9a of the adjuster 9 to match the fluctuation center levels of the converted signals 50 and 51, and adjusts the sinusoidal signal 54 which is 180 ° out of phase with each other. In addition, the second differential amplifier 6 that receives the converted signals 52 and 53 changes the resistance value of the variable resistor 9b of the adjuster 9 to match the fluctuation center levels of the converted signals 52 and 53, and to make them 180 ° from each other. The sine wave signal 55 is adjusted in phase.

【0026】本実施例では、正弦波信号について説明し
たが、正弦波信号が矩形波信号の場合には、変動中心レ
ベルはデューティ比で表現される再び図1に示す様に、
調整された正弦波信号54、55は、出力用差動増幅器
10、11に出力され、完全に直流成分が除去された出
力信号10a、10bに変換される。
In this embodiment, the sine wave signal has been described. However, when the sine wave signal is a rectangular wave signal, the fluctuation center level is represented by a duty ratio, as shown in FIG. 1 again.
The adjusted sine wave signals 54, 55 are output to the output differential amplifiers 10, 11 and converted into output signals 10a, 10b from which the direct current component is completely removed.

【0027】本実施例による信号処理回路では、第1差
動増幅器1、2、3、4で除去されなかった直流成分
は、第2差動増幅器5、6及び出力用差動増幅器10、
11により完全に除去ずることができ、また、変動中心
レベルの位置ずれを可変抵抗9a、9bの抵抗値を変え
ることにより調整することができる。即ち、出力差動増
幅器10、11から出力される出力信号10a、11a
は、変動中心レベルが正弦波の中心(ピーク値とバリィ
値との平均)、言い換えれば、デューティ比が50%に
なり、かつ出力信号10aと出力信号11aとを比較し
た場合でも互いに90°位相のずれたデジタル信号とな
る。
In the signal processing circuit according to the present embodiment, the DC components not removed by the first differential amplifiers 1, 2, 3, 4 are the second differential amplifiers 5, 6 and the output differential amplifier 10,
It is possible to completely eliminate it by 11, and it is possible to adjust the positional deviation of the fluctuation center level by changing the resistance values of the variable resistors 9a and 9b. That is, the output signals 10a and 11a output from the output differential amplifiers 10 and 11
Is the center of fluctuation of the sine wave (the average of the peak value and the variable value), in other words, the duty ratio is 50%, and even when the output signal 10a and the output signal 11a are compared with each other, they are 90 ° out of phase with each other. The resulting digital signal is out of sync.

【0028】本発明では、加算器7を信号処理回路に設
けて、各受光素子の出力を加算して調整信号を作ること
により、リファレンス用受光素子を配置することと同じ
効果を得られる様になる。また、増幅器1及び増幅器2
と、増幅器3及び増幅器4との周波数特性を変えること
がないので、出力信号10a、10bの位相関係が一定
になる。
In the present invention, the adder 7 is provided in the signal processing circuit, and the outputs of the respective light receiving elements are added to generate the adjustment signal, so that the same effect as that of arranging the reference light receiving element can be obtained. Become. Also, the amplifier 1 and the amplifier 2
Since the frequency characteristics of the amplifier 3 and the amplifier 4 are not changed, the phase relationship between the output signals 10a and 10b becomes constant.

【0029】各受光素子21、22、23、24は、
本実施例では、受光素子の数は4個の出力を加算する構
成にしたが、符号板に対して配置される受光素子の出力
を全て加算してもよい。
The respective light receiving elements 21, 22, 23 and 24 are
In the present embodiment, the number of light receiving elements is set to add four outputs, but all outputs of the light receiving elements arranged with respect to the code plate may be added.

【0030】[0030]

【発明の効果】以上の様に本発明によれば、4個の受光
素子から得られる調整信号を用いて、各受光素子の受光
信号の位相調整を行うことができるようにしたので、信
号処理回路の周波数特性を一定に保つことができ、デュ
ーテイ比が50%の出力信号が得られると共に、その出
力信号が正確な互いに90°位相の異なる出力信号を得
ることができる。
As described above, according to the present invention, since the adjustment signals obtained from the four light receiving elements can be used to adjust the phase of the light receiving signal of each light receiving element, the signal processing can be performed. The frequency characteristics of the circuit can be kept constant, an output signal with a duty ratio of 50% can be obtained, and output signals whose output signals are 90 ° out of phase with each other can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示す信号処理回路を示す図で
ある。
FIG. 1 is a diagram showing a signal processing circuit showing an embodiment of the present invention.

【図2】本実施例の光量にばらつきがある時の動作を示
す信号図である。
FIG. 2 is a signal diagram showing an operation of the present embodiment when there is a variation in light amount.

【図3】本実施例の調整信号を示す信号図である。FIG. 3 is a signal diagram showing an adjustment signal of the present embodiment.

【図4】従来及び本発明の光電式エンコーダの主要部を
示す図である。
FIG. 4 is a diagram showing a main part of a conventional photoelectric encoder and a photoelectric encoder of the present invention.

【図5】従来の信号処理回路を示す図である。FIG. 5 is a diagram showing a conventional signal processing circuit.

【図6】従来の動作説明の為の信号図である。FIG. 6 is a signal diagram for explaining a conventional operation.

【図7】従来の光量にばらつきがある時の動作を示す信
号図である。
FIG. 7 is a signal diagram showing an operation when there is a variation in the conventional light amount.

【符号の説明】[Explanation of symbols]

1、2、3、4 第1差動増幅器 5、6 第2差動増幅器 7、8a 加算器 8b 反転回路 9 調整器 10、11 出力用差動増幅器 1, 2, 3, 4 First differential amplifier 5, 6 Second differential amplifier 7, 8a Adder 8b Inversion circuit 9 Adjuster 10, 11 Output differential amplifier

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】1/2ピッチP幅のスリットが一定ピッチ
P間隔で形成された符号板と、 前記符号板を挟むように一方側に配置された発光部と、 前記符号板を挟むように他方側に配置され、前記発光部
が発する光を前記スリットを通して受光する受光部と、 前記受光部からの受光信号を信号処理し、前記符号板と
前記受光部との相対移動量を求める信号処理手段と、を
備え、 前記受光部は、略1/4ピッチPの幅を有し、前記スリ
ットの配列方向に1/4ピッチPの間隔で配置される少
なくとも4個の受光素子から構成される光電式エンコー
ダにおいて、 前記信号処理手段は、 前記4個の受光素子が検出した4つの受光信号を全て加
算して調整信号を出力する加算手段と、 前記調整信号を入力し、前記調整信号により前記4つの
受光信号の変動中心レベルを調整する調整手段と、を有
することを特徴とする光電式エンコーダ。
1. A code plate in which slits having a 1/2 pitch P width are formed at a constant pitch P interval, a light emitting portion arranged on one side so as to sandwich the code plate, and so as to sandwich the code plate. A light receiving unit which is arranged on the other side and receives light emitted from the light emitting unit through the slit, and signal processing of a light receiving signal from the light receiving unit to obtain a relative movement amount between the code plate and the light receiving unit. The light-receiving unit has a width of about 1/4 pitch P, and is composed of at least four light-receiving elements arranged at intervals of 1/4 pitch P in the arrangement direction of the slits. In the photoelectric encoder, the signal processing unit adds all four light-receiving signals detected by the four light-receiving elements and outputs an adjustment signal, and the adjustment signal is input, and the signal processing unit outputs the adjustment signal by the adjustment signal. Of the four received light signals An optoelectronic encoder comprising: an adjusting unit that adjusts a fluctuation center level.
JP08719193A 1993-04-14 1993-04-14 Photoelectric encoder Expired - Lifetime JP3277597B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08719193A JP3277597B2 (en) 1993-04-14 1993-04-14 Photoelectric encoder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08719193A JP3277597B2 (en) 1993-04-14 1993-04-14 Photoelectric encoder

Publications (2)

Publication Number Publication Date
JPH06300589A true JPH06300589A (en) 1994-10-28
JP3277597B2 JP3277597B2 (en) 2002-04-22

Family

ID=13908103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08719193A Expired - Lifetime JP3277597B2 (en) 1993-04-14 1993-04-14 Photoelectric encoder

Country Status (1)

Country Link
JP (1) JP3277597B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000275067A (en) * 1999-03-25 2000-10-06 Koyo Electronics Ind Co Ltd Optical rotary encoder
JP2006153753A (en) * 2004-11-30 2006-06-15 Olympus Corp Encoder
JP2007155635A (en) * 2005-12-08 2007-06-21 Koyo Electronics Ind Co Ltd Rotary encoder
JP2013029458A (en) * 2011-07-29 2013-02-07 Mitsutoyo Corp Displacement measurement apparatus and offset correction method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000275067A (en) * 1999-03-25 2000-10-06 Koyo Electronics Ind Co Ltd Optical rotary encoder
JP4559557B2 (en) * 1999-03-25 2010-10-06 光洋電子工業株式会社 Optical rotary encoder
JP2006153753A (en) * 2004-11-30 2006-06-15 Olympus Corp Encoder
JP2007155635A (en) * 2005-12-08 2007-06-21 Koyo Electronics Ind Co Ltd Rotary encoder
JP2013029458A (en) * 2011-07-29 2013-02-07 Mitsutoyo Corp Displacement measurement apparatus and offset correction method

Also Published As

Publication number Publication date
JP3277597B2 (en) 2002-04-22

Similar Documents

Publication Publication Date Title
US20070247141A1 (en) Continuosly Calibrated Magnetic Field Sensor
JPWO2016047149A1 (en) Hall electromotive force signal detection circuit and current sensor
JP5774016B2 (en) Physical quantity sensor
KR100382864B1 (en) Improved 90-degree phase shifter
JPS5940258A (en) Photoelectric type rotary encoder
JPH06300589A (en) Photoelectric encoder
JP3620998B2 (en) End detection device for conductive object
US4733070A (en) Rotational information output device
US4302668A (en) Variably biased photoelectric circuit
US20020030497A1 (en) Measurement signal generating circuit for linear scale
JP2006177895A (en) Electrostatic capacity/voltage converting arrangement and mechanical quantity sensor
JPH0719019Y2 (en) Temperature correction circuit
JP3460932B2 (en) Absolute value circuit
EP0280516B1 (en) Differential amplifier circuit
KR200315301Y1 (en) Open loop type current sensor including compensation sercuit
TWI794427B (en) Semiconductor device and adjusting method thereof
JPH02288485A (en) Color subcarrier generating circuit
WO2004068702A1 (en) Front end amplifier circuit and optical receiver using the same
JPH03286605A (en) Optical receiver circuit
JPS58213568A (en) Circuit for correcting video clamp
JPH0936702A (en) Active low pass filter
KR20030024732A (en) Open loop type current sensor including compensation sercuit
JP2000275067A (en) Optical rotary encoder
JP2004219254A (en) Optical encoder
KR0135461B1 (en) Amplifying circuit with high input impedance

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140215

Year of fee payment: 12

EXPY Cancellation because of completion of term