TWI794427B - Semiconductor device and adjusting method thereof - Google Patents
Semiconductor device and adjusting method thereof Download PDFInfo
- Publication number
- TWI794427B TWI794427B TW108107120A TW108107120A TWI794427B TW I794427 B TWI794427 B TW I794427B TW 108107120 A TW108107120 A TW 108107120A TW 108107120 A TW108107120 A TW 108107120A TW I794427 B TWI794427 B TW I794427B
- Authority
- TW
- Taiwan
- Prior art keywords
- hall element
- vertical hall
- power supply
- current
- output
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 56
- 238000000034 method Methods 0.000 title claims description 22
- 239000000758 substrate Substances 0.000 claims abstract description 14
- 230000003247 decreasing effect Effects 0.000 claims 1
- 230000001105 regulatory effect Effects 0.000 claims 1
- 230000004907 flux Effects 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 8
- 238000001514 detection method Methods 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 238000009987 spinning Methods 0.000 description 5
- 238000009792 diffusion process Methods 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/02—Measuring direction or magnitude of magnetic fields or magnetic flux
- G01R33/06—Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
- G01R33/07—Hall effect devices
- G01R33/077—Vertical Hall-effect devices
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R1/00—Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
- G01R1/20—Modifications of basic electric elements for use in electric measuring instruments; Structural combinations of such elements with such instruments
- G01R1/206—Switches for connection of measuring instruments or electric motors to measuring loads
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R19/00—Arrangements for measuring currents or voltages or for indicating presence or sign thereof
- G01R19/0038—Circuits for comparing several input signals and for indicating the result of this comparison, e.g. equal, different, greater, smaller (comparing pulses or pulse trains according to amplitude)
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/0023—Electronic aspects, e.g. circuits for stimulation, evaluation, control; Treating the measured signals; calibration
- G01R33/0029—Treating the measured signals, e.g. removing offset or noise
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/0052—Manufacturing aspects; Manufacturing of single devices, i.e. of semiconductor magnetic sensor chips
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/02—Measuring direction or magnitude of magnetic fields or magnetic flux
- G01R33/06—Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
- G01R33/07—Hall effect devices
- G01R33/072—Constructional adaptation of the sensor to specific applications
- G01R33/075—Hall devices configured for spinning current measurements
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N52/00—Hall-effect devices
- H10N52/101—Semiconductor Hall-effect devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N52/00—Hall-effect devices
- H10N52/80—Constructional details
- H10N52/85—Magnetic active materials
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Hall/Mr Elements (AREA)
- Measuring Magnetic Variables (AREA)
Abstract
半導體裝置包括:第一立式霍爾元件,設置在半導體基板的第一區域,具有在第一直線上隔開規定的間隔配置的多個第一電極;第二立式霍爾元件,設置在半導體基板的不同於第一區域的第二區域,具有在與第一直線平行的第二直線上隔開規定的間隔配置的與多個第一電極數量相同的多個第二電極;第一驅動電源,驅動第一立式霍爾元件;以及第二驅動電源,與第一驅動電源分開設置,驅動第二立式霍爾元件。The semiconductor device includes: a first vertical Hall element disposed on a first region of a semiconductor substrate, having a plurality of first electrodes arranged at predetermined intervals on a first straight line; a second vertical Hall element disposed on A second region of the semiconductor substrate different from the first region has a plurality of second electrodes arranged at predetermined intervals on a second straight line parallel to the first straight line, the same number as the plurality of first electrodes; the first drive power supply , to drive the first vertical Hall element; and a second drive power supply, set separately from the first drive power supply, to drive the second vertical Hall element.
Description
本發明是有關於一種半導體裝置及其調整方法,尤其是有關於一種具有對水平方向的磁界進行偵測的立式霍爾元件的半導體裝置及其調整方法。The present invention relates to a semiconductor device and its adjustment method, in particular to a semiconductor device with a vertical Hall element for detecting the horizontal magnetic field and its adjustment method.
霍爾元件由於能夠作為磁性感測器來進行非接觸的位置偵測或角度偵測,因此被用於各種用途。其中,一般常為人所知的是使用對垂直於半導體基板表面的磁界成分(垂直磁場)進行偵測的臥式霍爾元件的磁性感測器,但亦提出有各種使用對平行於半導體基板的表面的磁界成分(水平磁場)進行偵測的立式霍爾元件的磁性感測器。Hall elements are used in various applications because they can be used as magnetic sensors for non-contact position detection or angle detection. Among them, a magnetic sensor using a horizontal Hall element that detects a magnetic field component (vertical magnetic field) perpendicular to the surface of a semiconductor substrate is generally known, but various methods using a magnetic field component parallel to the semiconductor substrate have also been proposed. A magnetic sensor with a vertical Hall element that detects the magnetic field component (horizontal magnetic field) of the surface.
在立式霍爾元件中,由於難以取得幾何對稱性高的結構,因此與臥式霍爾元件相比更容易產生即使在未施加磁界時亦會輸出的所謂的偏移(offset)電壓。因此,在作為磁性感測器來使用時,需要去除所述偏移電壓,作為其方法,已知旋轉電流法(spin current method)。In the vertical Hall element, since it is difficult to obtain a structure with high geometric symmetry, it is easier to generate a so-called offset (offset) voltage that is output even when no magnetic field is applied, compared to the horizontal Hall element. Therefore, when used as a magnetic sensor, it is necessary to remove the offset voltage, and a spin current method is known as a method for this.
作為使用旋轉電流法去除偏移電壓的方法,例如,在專利文獻1中,揭示了如圖6所示般,將同樣構成的2個(多個)立式霍爾元件300與立式霍爾元件400並列配置,並藉由配線W1~配線W6將立式霍爾元件300的電極311~電極315與立式霍爾元件400的電極411~電極415如圖示般連接,來進行旋轉電流法。藉此,在執行旋轉電流法時,在切換電流的方向後的各相位(phase)的任一者中,電流路徑的電阻均相等,從而可提高偏移電壓的去除精度。
[現有技術文獻]
[專利文獻]As a method of removing the offset voltage using the spinning current method, for example,
[專利文獻1]歐洲專利第1438755號說明書[Patent Document 1] Specification of European Patent No. 1438755
[發明所欲解決之課題][Problem to be Solved by the Invention]
然而,在專利文獻1的方法中,會發生以下般的問題。However, in the method of
當多個立式霍爾元件的特性完全相同時,如上所述,在執行旋轉電流法時的各相位的任一者中,電流路徑的電阻均相等,因此能夠精度良好地去除偏移電壓。When the characteristics of the plurality of vertical Hall elements are completely the same, as described above, the resistance of the current path is equal in any of the phases when the rotating current method is performed, so that the offset voltage can be removed with high precision.
但是,多個立式霍爾元件雖是在同一基板上藉由半導體製造製程同時形成,但極難使雜質的濃度分佈等在多個立式霍爾元件之間完全相同。因此,在多個立式霍爾元件之間會產生特性偏差。因此,在執行旋轉電流法時的各相位中,電流路徑的電阻不完全相等,所以偏移消除(offset cancel)的精度不會有很大提高。However, although a plurality of vertical Hall elements are simultaneously formed on the same substrate through a semiconductor manufacturing process, it is extremely difficult to make the concentration distribution of impurities etc. identical among the plurality of vertical Hall elements. Therefore, characteristic variation occurs among a plurality of vertical Hall elements. Therefore, in each phase when the rotating current method is performed, the resistances of the current paths are not completely equal, so the accuracy of offset cancel cannot be greatly improved.
因此,本發明的目的在於提供一種具有能夠以更高的精度實現基於旋轉電流法的偏移消除的立式霍爾元件的半導體裝置。 [解決課題之手段]Therefore, an object of the present invention is to provide a semiconductor device having a vertical Hall element capable of achieving offset cancellation by the spinning current method with higher accuracy. [Means to solve the problem]
本發明的半導體裝置的特徵在於包括:第一立式霍爾元件,設置在半導體基板的第一區域,具有在第一直線上隔開規定的間隔配置的多個第一電極;第二立式霍爾元件,設置在所述半導體基板的不同於所述第一區域的第二區域,具有在與所述第一直線平行的第二直線上隔開所述規定的間隔配置的與所述多個第一電極數量相同的多個第二電極;第一驅動電源,驅動所述第一立式霍爾元件;以及第二驅動電源,與所述第一驅動電源分開設置,驅動所述第二立式霍爾元件。 [發明的效果]The semiconductor device of the present invention is characterized in that it comprises: a first vertical Hall element disposed in a first region of a semiconductor substrate, having a plurality of first electrodes arranged at predetermined intervals on a first straight line; a second vertical Hall element The Hall element is provided in a second region of the semiconductor substrate that is different from the first region, and has a plurality of Hall elements arranged at a predetermined interval on a second straight line parallel to the first straight line. A plurality of second electrodes with the same number of first electrodes; a first driving power supply, driving the first vertical Hall element; and a second driving power supply, set separately from the first driving power supply, driving the second vertical Hall element Type Hall element. [Effect of the invention]
根據本發明,由於第一立式霍爾元件與第二立式霍爾元件分別由不同的驅動電源獨立驅動,因此藉由適當調整第一驅動電源與第二驅動電源,可補償半導體製造製程上產生的第一立式霍爾元件與第二立式霍爾元件的特性誤差。因此,可在使第一立式霍爾元件與第二立式霍爾元件的特性實質上相同的狀態下執行旋轉電流法,因此能夠進行高精度的偏移消除。According to the present invention, since the first vertical Hall element and the second vertical Hall element are independently driven by different drive power sources, by properly adjusting the first drive power source and the second drive power source, the semiconductor manufacturing process can be compensated. The resulting characteristic error of the first vertical Hall element and the second vertical Hall element. Therefore, since the spinning current method can be performed with the characteristics of the first vertical Hall element and the second vertical Hall element being substantially the same, high-precision offset cancellation can be performed.
以下,參照附圖對用於實施本發明的方式進行詳細說明。Hereinafter, modes for implementing the present invention will be described in detail with reference to the drawings.
圖1及圖2是用於說明具有本發明的實施方式的立式霍爾元件的半導體裝置的概略圖,圖1示出了將在執行旋轉電流法時立式霍爾元件中流動的電流的方向設為第一狀態的情況(相位1),圖2示出了將在執行旋轉電流法時立式霍爾元件中流動的電流的方向設為第二狀態的情況(相位2)。1 and 2 are schematic diagrams for explaining a semiconductor device having a vertical Hall element according to an embodiment of the present invention. When the direction is set to the first state (phase 1), FIG. 2 shows the case where the direction of the current flowing in the vertical Hall element is set to the second state (phase 2) when the rotating current method is performed.
如圖1及圖2所示,本實施方式的半導體裝置包括:立式霍爾元件100及立式霍爾元件200、作為對立式霍爾元件100及立式霍爾元件200分別供給驅動電流的驅動電源的電流源120及電流源220、對自立式霍爾元件100及立式霍爾元件200得到的信號進行放大的放大器110及放大器210、以及用以對驅動立式霍爾元件100及立式霍爾元件200的電流的方向進行切換的開關S10~開關S19及開關S20~開關S29。As shown in FIG. 1 and FIG. 2 , the semiconductor device of this embodiment includes: a
立式霍爾元件100及立式霍爾元件200分別包括在圖1所示的直線L1-L1上及直線L2-L2上隔開規定的間隔配置的5個電極111~115及電極211~215,並具有彼此大致相同的結構。而且,立式霍爾元件100及立式霍爾元件200以直線L1-L1與直線L2-L2彼此平行的方式配置。The
電流源120構成為經由開關S10~開關S14而連接於立式霍爾元件100。即,電流源120的輸入端經由開關S10而連接於電極111,經由開關S11而連接於電極112,經由開關S14而連接於電極115,電流源120的輸出端經由開關S12而連接於電極113,經由開關S13而連接於電極114。The
另一方面,電流源220構成為經由開關S20~開關S24而連接於立式霍爾元件200。即,電流源220的輸入端經由開關S22而連接於電極213,經由開關S23而連接於電極214,電流源220的輸出端經由開關S20而連接於電極211,經由開關S21而連接於電極212,經由開關S24而連接於電極215。On the other hand, the
而且,放大器110構成為經由開關S15~開關S19而連接於立式霍爾元件100。即,放大器110的非反相輸入端子經由開關S16而連接於電極112,經由開關S17而連接於電極113,放大器110的反相輸入端子經由開關S15而連接於電極111,經由開關S18而連接於電極114,經由開關S19而連接於電極115。Furthermore, the
另一方面,放大器210構成為經由開關S25~開關S29而連接於立式霍爾元件200。即,放大器210的非反相輸入端子經由開關S25而連接於電極211,經由開關S28而連接於電極214,經由開關S29而連接於電極215,放大器210的反相輸入端子經由開關S26而連接於電極212,經由開關S27而連接於電極213。On the other hand,
立式霍爾元件100與立式霍爾元件200藉由半導體製造製程在同一半導體基板上同時形成。此處,使用圖3對立式霍爾元件100及立式霍爾元件200的結構的一例進行說明。圖3是與圖1所示的半導體裝置的沿L-L線的斷面對應的圖。The
如圖3所示,立式霍爾元件100及立式霍爾元件200分別形成於P型(第一導電型)的半導體基板101的區域RA及區域RB。區域RA與區域RB藉由半導體基板101上設置的N型(第二導電型)的半導體層102上所形成的P型的元件分離擴散層103而彼此電性分離。立式霍爾元件100的電極111~電極115及立式霍爾元件200的電極211~電極215藉由與區域RA及區域RB各者中的半導體層102的表面鄰接設置的比半導體層102濃度高的N型的雜質區域構成。As shown in FIG. 3 , the
圖3中雖未顯示,但圖1及圖2所示的電流源120及電流源220、放大器110及放大器210以及開關S10~開關S19及開關S20~開關S29亦於半導體基板101的與區域RA及區域RB不同的區域中,以藉由元件分離擴散層103而與立式霍爾元件100及立式霍爾元件200電性分離的方式形成。Although not shown in FIG. 3, the
另外,在圖3中,示出了將立式霍爾元件100與立式霍爾元件200在橫向上排列配置,即,以圖1所示的直線L1-L1與直線L2-L2成為同一直線的方式進行配置的示例,但不限於此,立式霍爾元件100與立式霍爾元件200只要以直線L1-L1與直線L2-L2平行的方式配置則如何配置均可。例如,亦可將立式霍爾元件100與立式霍爾元件200在縱向上排列配置,即,在圖1及圖2中,將立式霍爾元件100配置在紙面上側,並將立式霍爾元件200配置在紙面下側。進而,立式霍爾元件100與立式霍爾元件200並非一定需要鄰接配置,例如,亦能夠在立式霍爾元件100與立式霍爾元件200之間配置電流源120、電流源220或放大器110、放大器210等。In addition, in FIG. 3 , it is shown that the
其次,對使用本實施方式的半導體裝置中的立式霍爾元件100及立式霍爾元件200,藉由旋轉電流法進行偏移消除的方法進行說明。磁場是沿圖1及圖2所示的箭頭B的方向施加。Next, a description will be given of a method of offset cancellation by the spinning current method using the
首先,如圖1所示,作為相位1,將連接於立式霍爾元件100的開關S10、開關S12、開關S14、開關S16、開關S18、以及連接於立式霍爾元件200的開關S20、開關S22、開關S24、開關S26、開關S28設為接通(ON),將連接於立式霍爾元件100的開關S11、開關S13、開關S15、開關S17、開關S19、以及連接於立式霍爾元件200的開關S21、開關S23、開關S25、開關S27、開關S29設為斷開(OFF)。First, as shown in FIG. 1 , as
藉此,以電流自電極113流向兩端的電極111及電極115的方式,自電流源120向立式霍爾元件100供給驅動電流(將此時的電流的方向稱為「第一電流方向」),從而在電極112與電極114之間產生電位差。由於開關S16及開關S18接通,並且放大器110的非反相輸入端子連接於電極112,反相輸入端子連接於電極114,因此放大器110將電極112與電極114之間的電位差放大後輸出至加法器130。Thereby, a driving current is supplied from the
以電流自兩端的電極211及電極215流向電極213的方式,自電流源220向立式霍爾元件200供給驅動電流(將此時的電流的方向稱為「第二電流方向」),從而在電極212與電極214之間產生電位差。由於開關S26及開關S28接通,並且放大器210的非反相輸入端子連接於電極214,反相輸入端子連接於電極212,因此放大器210將電極214與電極212之間的電位差放大後輸出至加法器130。A drive current is supplied from the
加法器130將放大器110的輸出信號與放大器210的輸出信號相加,作為相位1的輸出電壓將輸出電壓VOUT1輸出至輸出端子131。輸出電壓VOUT1由抽樣保持電路等(未圖示)保持。The
其次,如圖2所示,作為相位2,將連接於立式霍爾元件100的開關S11、開關S13、開關S15、開關S17、開關S19、以及連接於立式霍爾元件200的開關S21、開關S23、開關S25、開關S27、開關S29設為接通,將連接於立式霍爾元件100的開關S10、開關S12、開關S14、開關S16、開關S18、以及連接於立式霍爾元件200的開關S20、開關S22、開關S24、開關S26、開關S28設為斷開。Next, as shown in FIG. 2 , as
藉此,以電流自電極114流向電極112的方式,自電流源120向立式霍爾元件100供給驅動電流(將此時的電流的方向稱為「第三電流方向」),從而在電極113與電極111及電極115之間產生電位差。由於開關S15、開關S17、開關S19接通,並且放大器110的非反相輸入端子連接於電極113,反相輸入端子連接於電極111及電極115,因此放大器110將電極113與電極111及電極115之間的電位差放大後輸出至加法器130。In this way, a drive current is supplied from the
以電流自電極212流向電極214的方式,自電流源220向立式霍爾元件200供給驅動電流(將此時的電流的方向稱為「第四電流方向」),從而在電極211及電極215與電極213之間產生電位差。由於開關S25、開關S27、開關S29接通,並且放大器210的非反相輸入端子連接於電極211及電極215,反相輸入端子連接於電極213,因此放大器210將電極211及電極215與電極213之間的電位差放大後輸出至加法器130。A driving current is supplied from the
加法器130將放大器110的輸出信號與放大器210的輸出信號相加,作為相位2的輸出電壓將輸出電壓VOUT2輸出至輸出端子131。The
並且,藉由進行自相位2中所得到的輸出電壓VOUT2減去相位1中所得到的輸出電壓VOUT1的處理,可得到去除了偏移電壓的最終輸出電壓。And, by performing a process of subtracting the output voltage VOUT1 obtained in the
另外,在所述說明中,示出了在相位1中,向立式霍爾元件100供給第一電流方向的驅動電流,向立式霍爾元件200供給第二電流方向的驅動電流,在相位2中,向立式霍爾元件100供給第三電流方向的驅動電流,向立式霍爾元件200供給第四電流方向的驅動電流的示例,但驅動電流的供給方向並不限於此。改變開關的切換方式,例如在相位1中,向立式霍爾元件100供給第一電流方向的驅動電流,向立式霍爾元件200供給第四電流方向的驅動電流,在相位2中,向立式霍爾元件100供給第三電流方向的驅動電流,向立式霍爾元件200供給第二電流方向的驅動電流等,驅動電流的供給方向可適當調換,亦可對據此而得到的輸出電壓進行適當相加或相減,藉此消除偏移電壓。In addition, in the above description, it was shown that in
此處,立式霍爾元件100與立式霍爾元件200在同一半導體基板上藉由半導體製造製程同時形成,但使雜質的濃度分佈等在兩者之間完全相同是非常困難的。因此,在立式霍爾元件100與立式霍爾元件200之間產生特性偏差。Here, the
因此,在本實施方式中,採用了分別使用不同的電流源120與電流源220驅動立式霍爾元件100與立式霍爾元件200的構成。藉由所述構成,可分開調整立式霍爾元件100與立式霍爾元件200的驅動電流。Therefore, in this embodiment, a configuration is adopted in which the
即,預先將電流源120的電流值與電流源220的電流值設為同一電流值(稱為初始電流值),測定對立式霍爾元件100與立式霍爾元件200分別供給同一方向、同一電流值的驅動電流時各自的輸出電壓。然後,基於測定出的兩輸出電壓的差異,調整電流源120的電流值與電流源220的電流值,以修正所述差異。藉此,可實質性地補償立式霍爾元件100與立式霍爾元件200之間的特性偏差。因此,能夠高精度地進行基於旋轉電流法的偏移消除。另外,電流源120與電流源220的各電流值的調整,例如較佳為以將電流源120的電流值自初始電流值增加α,並將電流源220的電流值自初始電流值減少α,而使總電流值(驅動電流)一定的方式進行調整。藉此,可不再需要對立式霍爾元件100及立式霍爾元件200的輸出側的放大器110、放大器210等的電路進行調整。That is, the current value of the
而且,在本實施方式中,藉由採用將立式霍爾元件100及立式霍爾元件200的輸出分別利用不同的放大器110及放大器210進行放大的構成,亦能夠藉由調整放大器110及放大器210各自的增益(gain),來補償立式霍爾元件100與立式霍爾元件200之間的特性偏差。Furthermore, in the present embodiment, by adopting a configuration in which the outputs of the
另一方面,雖省略了圖示,但亦可構成為將立式霍爾元件100與立式霍爾元件200的輸出側適當接線,利用1個放大器對輸出電壓進行放大。在此情況下,雖變得無法如上所述般,藉由調整2個放大器110及210的增益來補償立式霍爾元件100與立式霍爾元件200之間的特性偏差,但由於可將放大器設為1個,因此可縮小電路規模。On the other hand, although not shown in the figure, the output side of the
進而,根據本實施方式,藉由根據磁場的檢測狀態,適當調整供給至立式霍爾元件100及立式霍爾元件200各者的驅動電流,即電流源120及電流源220的電流值,亦能夠對最終輸出電壓附加遲滯特性。因此,以下,使用圖4對調整電流源120及電流源220的電流值以對最終輸出電壓附加遲滯特性的具體構成例進行說明。Furthermore, according to the present embodiment, by appropriately adjusting the drive current supplied to each of the
圖4是表示對圖1及圖2所示的半導體裝置的最終輸出電壓附加遲滯特性時的具體構成例的圖。另外,圖4示出了與圖1相同的相位1的狀態,但相位2的狀態由於與圖2相同而省略圖示。而且,圖5是用於說明圖4所示的半導體裝置的磁電轉換特性的圖。FIG. 4 is a diagram showing a specific configuration example when a hysteresis characteristic is added to the final output voltage of the semiconductor device shown in FIGS. 1 and 2 . In addition, FIG. 4 shows the
圖4所示的半導體裝置除了圖1所示的半導體裝置的構成以外,亦更具有抽樣保持電路140及比較器150。The semiconductor device shown in FIG. 4 further includes a sample-and-
抽樣保持電路140保持所述相位1中的輸出電壓VOUT1,進而自相位2中的輸出電壓VOUT2減去所保持的輸出電壓VOUT1,並將相減結果作為最終輸出電壓VOUT而予以輸出。The sample-and-
比較器150的非反相輸入端子中輸入抽樣保持電路140的輸出電壓VOUT,比較器150的反相輸入端子中輸入接地端子151的接地電壓作為參考電壓,而將比較電壓VOUT與接地電壓而得的結果作為輸出信號CMPOUT而予以輸出。比較器150的輸出信號CMPOUT被輸入至電流源120及電流源220。The output voltage VOUT of the sampling and holding
電流源120及電流源220如上所述,為了補償立式霍爾元件100與立式霍爾元件200之間的特性偏差,而預先被調整了電流值,並構成為根據比較器150的輸出信號CMPOUT,以調整後的狀態的電流值為基準,分別被在2值之間切換電流值。As described above, the
此處,比較器150由於反相輸入端子被輸入接地電壓(0 V),因此如下般輸出與非反相輸入端子的電壓VOUT的電壓值相應的輸出信號CMPOUT。
VOUT>0時,CMPOUT=“H”
VOUT<0時,CMPOUT=“L”Here, since the ground voltage (0 V) is input to the inverting input terminal of the
其次,使用圖5對本實施方式的動作進行說明。X軸表示施加磁通密度B,Y軸表示抽樣保持電路140的輸出電壓(比較器150的非反相輸入端子的輸入電壓)VOUT。Next, the operation of this embodiment will be described using FIG. 5 . The X-axis represents the applied magnetic flux density B, and the Y-axis represents the output voltage of the sample-and-hold circuit 140 (the input voltage of the non-inverting input terminal of the comparator 150 ) VOUT.
當設電流源120及電流源220的調整前的電流值為I,電流源120及電流源220的調整後的電流值分別為I1、I2,設α及β為常數時,藉由以
CMPOUT=“H”時,I1=I(1+α+β),I2=I(1-α-β)
CMPOUT=“L”時,I1=I(1+α-β),I2=I(1-α+β)
的方式,根據比較器150的輸出信號CMPOUT,在2值之間切換電流源120及電流源220的電流值,可使抽樣保持電路140的輸出電壓VOUT具有斜率相等、Y軸截距分別僅偏移±VOS的磁電轉換特性。When the current value before the adjustment of the
此處,α是以補償立式霍爾元件100與立式霍爾元件200之間的特性偏差的方式經預先調整的值。β=0對應的直線表示藉由加減所述α以分別求出電流源120的電流值I1及電流源220的電流值I2,而特性偏差得到補償的磁電轉換特性。β是根據所希望的遲滯寬度BHYS而任意設定。Here, α is a value adjusted in advance in such a manner as to compensate for a characteristic deviation between the
當施加磁通密度B自零向正(S極)的方向增加時,沿與CMPOUT=“L”對應的直線,抽樣保持電路140的輸出電壓VOUT增加(對應於圖中箭頭O)。VOUT>0時,比較器150的輸出信號CMPOUT自“L”轉變為“H”,針對施加磁通密度B的磁電轉換特性被切換為與CMPOUT=“H”對應的直線(對應於圖中箭頭P)。此時的施加磁通密度B為動作點BOP。When the applied magnetic flux density B increases from zero to positive (S pole), along the line corresponding to CMPOUT=“L”, the output voltage VOUT of the sample and hold
其次,當施加磁通密度B向負(N極)的方向增加時,沿與CMPOUT=“H”對應的直線,抽樣保持電路140的輸出電壓VOUT減少(對應於圖中箭頭Q)。VOUT<0時,比較器150的輸出信號CMPOUT自“H”轉變為“L”,針對施加磁通密度B的磁電轉換特性再次被切換為與CMPOUT=“L”對應的直線(對應於圖中箭頭R)。此時的施加磁通密度B是復位點BRP。Secondly, when the applied magnetic flux density B increases toward the negative (N pole), along the line corresponding to CMPOUT=“H”, the output voltage VOUT of the sample and hold
如此,藉由使磁電轉換特性具有遲滯性,能夠實現具備遲滯寬度BHYS的交變偵測特性。因此,不再需要通常為了對抽樣保持電路140的輸出的後段附加遲滯特性而設置的用於切換信號路徑的信號傳遞極性的電路等,只要追加簡單構成的比較器即可,因此可減少佔有面積。In this way, by making the magnetoelectric conversion characteristic hysteresis, it is possible to realize the alternating detection characteristic having the hysteresis width BHYS. Therefore, it is no longer necessary to add a circuit for switching the signal transmission polarity of the signal path, which is usually provided to add a hysteresis characteristic to the output of the sample-and-
另外,亦可對比較器150的反相輸入端子輸入規定的參考電壓VREF以代替接地電壓。在所述情況下,圖5的抽樣保持電路140的輸出電壓VOUT的磁電轉換特性的反相位準不是0,而是VREF,因此成為
VOUT>VREF時,CMPOUT=“H”
VOUT<VREF時,CMPOUT=“L”,
而動作點BOP及復位點BRP根據規定的參考電壓VREF的絕對值及極性而偏移。即,若以使動作點BOP及復位點BRP均為正的方式輸入VREF(>0),則可實現在S極側具有動作點BOP及復位點BRP的S極偵測特性。而且,若以使動作點BOP及復位點BRP均為負的方式輸入VREF(<0),則亦可實現在N極側具有動作點BOP及復位點BRP的N極偵測特性。In addition, instead of the ground voltage, a predetermined reference voltage VREF may be input to the inverting input terminal of the
圖4中示出了藉由比較器150的輸出信號CMPOUT來切換電流源120及電流源220兩者的電流值的示例,但亦可採用僅切換電流源120及電流源220中的任一者的電流值的構成。FIG. 4 shows an example in which the current values of both the
如以上所說明般,根據本實施方式,與驅動立式霍爾元件100的電流源120分開設置有驅動立式霍爾元件200的電流源220,因此,藉由適當調整電流源120與電流源220的電流值,補償半導體製造製程上產生的立式霍爾元件100與立式霍爾元件200的特性誤差,可在使立式霍爾元件100與立式霍爾元件200的特性實質上相同的狀態下執行旋轉電流法。因此,能夠進行高精度的偏移消除。而且,藉由基於比較器150的輸出信號CMPOUT對電流源120與電流源220的電流值進行切換控制,亦能夠對最終輸出電壓VOUT附加遲滯特性。因此,不再需要追加通常在最終輸出電壓VOUT的後段設置的用於附加遲滯特性特別的電路,因此可縮小半導體裝置整體的面積。As described above, according to the present embodiment, the
以上,對本發明的實施方式進行了說明,但本發明並不限定於所述實施方式,當然可在不脫離本發明的主旨的範圍內進行各種變更。As mentioned above, although embodiment of this invention was described, this invention is not limited to the said embodiment, Of course, various changes are possible in the range which does not deviate from the summary of this invention.
例如,在所述實施方式中,例示了使用電流源作為驅動電源的示例,但亦可使用電壓源來代替電流源。在此情況下,藉由調整電壓源的電壓值來調整立式霍爾元件的驅動電流。For example, in the above-described embodiments, an example in which a current source is used as the driving power source is illustrated, but a voltage source may be used instead of the current source. In this case, the driving current of the vertical Hall element is adjusted by adjusting the voltage value of the voltage source.
在所述實施方式中,以具有2個立式霍爾元件的半導體裝置為例進行了說明,但本發明亦可適用於具有3個以上立式霍爾元件的半導體裝置。在所述情況下,亦與所述實施方式相同,設置與多個立式霍爾元件的數量相同的驅動電源,利用獨立的驅動電源使各立式霍爾元件分別驅動,藉此可修正多個立式霍爾元件在半導體製造製程上產生的特性誤差。尤其是,若採用設置4個立式霍爾元件的構成,則一次便可將第一電流方向~第四電流方向的驅動電流供給至各立式霍爾元件,因此可縮短偏移消除所需的時間。而且,若採用設置8個立式霍爾元件的構成,由於可將4方向的驅動電流分別供給至2個立式霍爾元件,因此能夠進行更高精度的偏移消除。In the above-described embodiments, a semiconductor device having two vertical Hall elements has been described as an example, but the present invention is also applicable to a semiconductor device having three or more vertical Hall elements. In this case, as in the above-mentioned embodiment, the same number of driving power sources as the number of vertical Hall elements is provided, and each vertical Hall element is driven separately by using an independent driving power source, thereby correcting the number of vertical Hall elements. The characteristic error of a vertical Hall element in the semiconductor manufacturing process. In particular, if four vertical Hall elements are provided, the drive currents in the first current direction to the fourth current direction can be supplied to each vertical Hall element at one time, so the offset cancellation time can be shortened. time. Furthermore, if a configuration in which eight vertical Hall elements are provided, since drive currents in four directions can be supplied to two vertical Hall elements, offset cancellation can be performed with higher precision.
在所述實施方式中,示出了在立式霍爾元件100與立式霍爾元件200上分別連接放大器110與放大器210,並藉由加法器130將放大器110的輸出信號與放大器210的輸出信號相加的示例,但亦可如下設置。即,亦可將放大器設為1個,首先,藉由該1個放大器將在圖1所示的狀態下驅動立式霍爾元件100而得到的輸出電壓的差放大而作為第一輸出信號,其次,藉由相同的放大器將在圖1所示的狀態下驅動立式霍爾元件200而得到的輸出電壓的差放大而作為第二輸出信號,繼而,藉由相同的放大器將在圖2所示的狀態下驅動立式霍爾元件100而得到的輸出電壓的差放大而作為第三輸出信號,最後,藉由相同的放大器將在圖2所示的狀態下驅動立式霍爾元件200而得到的輸出電壓的差放大而作為第四輸出信號,並對該些第一輸出信號~第四輸出信號進行加減計算。藉此放大器成為1個,因此能夠縮小電路規模。但是,由於是時分割處理,偏移消除所需的時間變長,因此在要求高速性的情況下,如所述實施方式般,較佳為對應於立式霍爾元件各者來設置放大器。In the embodiment, it is shown that the
在所述實施方式中,將供給至立式霍爾元件100及立式霍爾元件200的電流方向分別設為2方向,即對立式霍爾元件100供給第一電流方向及第三電流方向,對立式霍爾元件200供給第二電流方向及第四電流方向的驅動電流,但亦可對立式霍爾元件100及立式霍爾元件200各者施加第一電流方向~第四電流方向來進行偏移消除。在此情況下,由於需要4個相位,因此偏移消除所需的時間增加,但可提高偏移消除的精度。In the above-described embodiment, the directions of the currents supplied to the
在所述實施方式中,示出了立式霍爾元件100及立式霍爾元件200分別具有5個電極的示例,但並不限於此,只要立式霍爾元件100與立式霍爾元件200的電極數相同,分別具有3個以上的電極即可。關於此點,在半導體裝置具有3個以上的立式霍爾元件的情況下亦是同樣的。In the above-described embodiment, an example in which the
在所述實施方式中,將第一導電型作為P型,將第二導電型作為N型來進行了說明,但亦可將導電型調換,將第一導電型作為N型,將第二導電型作為P型。In the above-described embodiment, the first conductivity type is described as P-type, and the second conductivity type is N-type. type as P type.
100、200、300、400‧‧‧立式霍爾元件
101‧‧‧半導體基板
102‧‧‧半導體層
103‧‧‧元件分離擴散層
110、210‧‧‧放大器
111~115、211~215、311~315、411~415‧‧‧電極
120、220‧‧‧電流源
130‧‧‧加法器
131‧‧‧輸出端子
140‧‧‧抽樣保持電路
150‧‧‧比較器
151‧‧‧接地端子
B‧‧‧施加磁通密度/箭頭
BHYS‧‧‧遲滯寬度
BOP‧‧‧動作點
BRP‧‧‧復位點
CMPOUT‧‧‧比較器的輸出信號
RA、RB‧‧‧區域
S10~S29‧‧‧開關
VOS‧‧‧偏移
VOUT1、VOUT2‧‧‧輸出電壓
VOUT‧‧‧最終輸出電壓
W1~W6‧‧‧配線
L、L1、L2‧‧‧線100, 200, 300, 400‧‧‧
圖1是用於說明具有本發明的實施方式的立式霍爾元件的半導體裝置的概略圖。 圖2是用於說明具有本發明的實施方式的立式霍爾元件的半導體裝置的概略圖。 圖3是表示本發明的實施方式的立式霍爾元件的結構的一例的剖面圖,是與圖1所示的半導體裝置的沿L-L線的剖面對應的圖。 圖4是用於說明對圖1所示的半導體裝置附加遲滯(Hysteresis)特性時的具體構成例的概略圖。 圖5是用於說明圖4所示的半導體裝置的磁電轉換特性的圖。 圖6是用於說明具有以往技術的立式霍爾元件的半導體裝置的概略圖。FIG. 1 is a schematic diagram illustrating a semiconductor device including a vertical Hall element according to an embodiment of the present invention. 2 is a schematic diagram illustrating a semiconductor device including a vertical Hall element according to an embodiment of the present invention. 3 is a cross-sectional view showing an example of the structure of a vertical Hall element according to an embodiment of the present invention, corresponding to a cross-section taken along line L-L of the semiconductor device shown in FIG. 1 . FIG. 4 is a schematic diagram illustrating a specific configuration example when a hysteresis characteristic is added to the semiconductor device shown in FIG. 1 . FIG. 5 is a graph for explaining magnetoelectric conversion characteristics of the semiconductor device shown in FIG. 4 . FIG. 6 is a schematic diagram illustrating a semiconductor device including a conventional vertical Hall element.
100、200‧‧‧立式霍爾元件 100, 200‧‧‧Vertical Hall element
110、210‧‧‧放大器 110, 210‧‧‧amplifier
111~115、211~215‧‧‧電極 111~115, 211~215‧‧‧electrodes
120、220‧‧‧電流源 120, 220‧‧‧current source
130‧‧‧加法器 130‧‧‧adder
131‧‧‧輸出端子 131‧‧‧Output terminal
B‧‧‧施加磁通密度/箭頭 B‧‧‧applied magnetic flux density/arrow
S10~S29‧‧‧開關 S10~S29‧‧‧Switch
VOUT1‧‧‧輸出電壓 VOUT1‧‧‧Output voltage
L、L1、L2‧‧‧線 L, L1, L2‧‧‧Line
Claims (8)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-046888 | 2018-03-14 | ||
JP2018046888 | 2018-03-14 | ||
JP2018230554A JP7239308B2 (en) | 2018-03-14 | 2018-12-10 | Semiconductor device and adjustment method thereof |
JP2018-230554 | 2018-12-10 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201945752A TW201945752A (en) | 2019-12-01 |
TWI794427B true TWI794427B (en) | 2023-03-01 |
Family
ID=68064770
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW108107120A TWI794427B (en) | 2018-03-14 | 2019-03-04 | Semiconductor device and adjusting method thereof |
Country Status (3)
Country | Link |
---|---|
JP (2) | JP7239308B2 (en) |
KR (2) | KR102632662B1 (en) |
TW (1) | TWI794427B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7535954B2 (en) | 2020-03-13 | 2024-08-19 | エイブリック株式会社 | Semiconductor Device |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130342194A1 (en) * | 2012-06-22 | 2013-12-26 | Infineon Technologies Ag | Vertical hall sensor with series-connected hall effect regions |
US20140210461A1 (en) * | 2013-01-29 | 2014-07-31 | Infineon Technologies Ag | Vertical hall device with highly conductive opposite face node for electrically connecting first and second hall effect regions |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS582084A (en) * | 1981-06-26 | 1983-01-07 | Toshiba Corp | Hall element device |
JPH077047B2 (en) * | 1989-09-01 | 1995-01-30 | ブラザー工業株式会社 | Magnetic detection device |
DE10150955C1 (en) | 2001-10-16 | 2003-06-12 | Fraunhofer Ges Forschung | Vertical Hall sensor |
JP2008008883A (en) * | 2006-06-02 | 2008-01-17 | Denso Corp | Magnetometric sensor and sensor |
CH699933A1 (en) * | 2008-11-28 | 2010-05-31 | Melexis Technologies Sa | Vertical Hall sensor. |
CN102820860A (en) | 2012-07-26 | 2012-12-12 | 上海新进半导体制造有限公司 | Hall voltage sensor, amplifier circuit, testing circuit and testing method |
JP5507744B2 (en) | 2013-07-09 | 2014-05-28 | 旭化成エレクトロニクス株式会社 | Hall electromotive force detection device and rotation angle detection device |
JP2015078949A (en) * | 2013-10-18 | 2015-04-23 | 旭化成エレクトロニクス株式会社 | Hall electromotive force signal detection circuit |
JP6418965B2 (en) | 2015-01-28 | 2018-11-07 | 日置電機株式会社 | Hall element drive circuit and sensor circuit |
JP6618370B2 (en) | 2015-03-05 | 2019-12-11 | エイブリック株式会社 | Magnetic sensor circuit |
-
2018
- 2018-12-10 JP JP2018230554A patent/JP7239308B2/en active Active
-
2019
- 2019-03-04 TW TW108107120A patent/TWI794427B/en active
- 2019-03-13 KR KR1020190028888A patent/KR102632662B1/en active IP Right Grant
-
2022
- 2022-12-20 JP JP2022202919A patent/JP7466617B2/en active Active
-
2023
- 2023-08-02 KR KR1020230100957A patent/KR102697502B1/en active IP Right Grant
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130342194A1 (en) * | 2012-06-22 | 2013-12-26 | Infineon Technologies Ag | Vertical hall sensor with series-connected hall effect regions |
US20140210461A1 (en) * | 2013-01-29 | 2014-07-31 | Infineon Technologies Ag | Vertical hall device with highly conductive opposite face node for electrically connecting first and second hall effect regions |
Also Published As
Publication number | Publication date |
---|---|
KR20230119084A (en) | 2023-08-16 |
JP2019164117A (en) | 2019-09-26 |
KR102632662B1 (en) | 2024-02-01 |
KR20190108513A (en) | 2019-09-24 |
JP2023029390A (en) | 2023-03-03 |
TW201945752A (en) | 2019-12-01 |
JP7239308B2 (en) | 2023-03-14 |
KR102697502B1 (en) | 2024-08-21 |
JP7466617B2 (en) | 2024-04-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3176593B1 (en) | Hall electromotive force signal detection circuit and current sensor | |
US9261572B2 (en) | Low offset spinning current hall plate and method to operate it | |
US6768301B1 (en) | Hall sensor array for measuring a magnetic field with offset compensation | |
KR101542679B1 (en) | Magnetic detection device and magnetic detection method | |
US8427140B2 (en) | Hall sensor | |
US20130193962A1 (en) | Hall electromotive force signal detection circuit and current sensor thereof | |
KR20160064000A (en) | Hall sensor and compensation method for offset caused by temperature distribution in hall sensor | |
JP5512561B2 (en) | Hall voltage detector | |
US9651635B2 (en) | Bias circuit for stacked hall devices | |
KR102697502B1 (en) | Semiconductor device and method of adjusting the same | |
CN108572338B (en) | Magnetic sensor circuit | |
US10677858B2 (en) | Magnetic sensor, a magnetic detection apparatus, and a magnetic detection method | |
JP2015078949A (en) | Hall electromotive force signal detection circuit | |
JP5000585B2 (en) | Current sensor | |
US11016151B2 (en) | Semiconductor device and method of adjusting the same | |
KR102642649B1 (en) | Semiconductor device | |
KR20170061700A (en) | Hall sensor | |
KR20120116036A (en) | Hall sensor deleting off-set | |
US11073574B2 (en) | Hall sensor apparatus and method for measuring a magnetic field | |
JP2024115234A (en) | Semiconductor Device | |
JP2012211809A (en) | Physical quantity sensor | |
WO2017194334A1 (en) | Magnetic operational amplifier | |
KR101820756B1 (en) | Hall plate having resistance error reducing funtion | |
JP3819323B2 (en) | Hall element and electric quantity measuring device |