JPH06299980A - Rotary compressor - Google Patents

Rotary compressor

Info

Publication number
JPH06299980A
JPH06299980A JP11891193A JP11891193A JPH06299980A JP H06299980 A JPH06299980 A JP H06299980A JP 11891193 A JP11891193 A JP 11891193A JP 11891193 A JP11891193 A JP 11891193A JP H06299980 A JPH06299980 A JP H06299980A
Authority
JP
Japan
Prior art keywords
vane
rotor
stator
air
rotary compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11891193A
Other languages
Japanese (ja)
Inventor
Yoji Uchiyama
洋司 内山
Kenzo Hoshino
謙三 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP11891193A priority Critical patent/JPH06299980A/en
Publication of JPH06299980A publication Critical patent/JPH06299980A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the compression efficiency and save the power by expanding the part in contact with the inner surface of a stator of a vane to the side where the vane is rotated, providing a notch in the rotor to insert the expanded part so that the vane may not be separated from the inner surface of the stator. CONSTITUTION:As the shaft 23 of a rotor 2 is rotated, the head part of a vane 3' equipped in a groove 17 of the rotor 2 is rotated by the centrifugal force while being brought into contact with the inner surface 24 of the stator 2, and the air flowed in from an air inlet 4 is discharged from a discharge port 5. The expanded part 6 of the head of the vane 3' is arranged in the rotational direction, and the vane 3' is constantly slid by this action while being brought into contact with the inner surface 24 of the stator and not separated from the inner surface 24 of the vane 3'. The expanded part 6 of the vane 3' is inserted into the notch 6' within the rotor, resulting in no obstruction of the rotation of the rotor. This constitution improves the power efficiency, and improves the durability of the machinery.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は空気等の気体を圧縮する
圧縮機に関するものでありさらに詳しくは、ベーンを保
持するローターをステーターと呼ばれる外筒内で回転す
る構造を有するベーン回転圧縮機に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a compressor for compressing a gas such as air, and more particularly to a vane rotary compressor having a structure in which a rotor holding a vane is rotated in an outer cylinder called a stator. It is a thing.

【0OO2】[0OO2]

【従来の技術】従来、ベーンタイプ回転圧縮機は第2図
に示す様に、入り口4より入つた空気(気体)はロータ
ー2が7の方向に回転するとベーン3により仕切りされ
た体積が小さくなるにつれて、この体積内の空気は圧縮
されて高圧となり出口5より、空間14に出て通路1
2、油分離器13を通つて15の空気出口より外に送ら
れる。この間油入口8より澗滑油が送られ、空気と一緒
に出口5から押し出されて11のオイルタンクに貯まり
空気と共に又12の通路に出たものはオイルフイルター
13によつて空気と分離されて又圧縮室の入口にもどる
様になりオイルタンクは常に圧縮空気で圧されているの
で、オイルタンクよりオイルパイプ9を通つて再びオイ
ル入口8に油が流れる間10のオイルクーラーによりオ
イルが冷却される様になつている。
2. Description of the Related Art Conventionally, as shown in FIG. 2, in a vane type rotary compressor, the volume of air (gas) introduced from an inlet 4 is reduced by a vane 3 when the rotor 2 rotates in the direction of 7. As a result, the air in this volume is compressed and becomes a high pressure, exits from the outlet 5 into the space 14, and passes through the passage 1
2. It is sent out from the air outlet 15 through the oil separator 13. During this time, the lubricating oil is sent from the oil inlet 8, is pushed out from the outlet 5 together with the air, is stored in the oil tank 11 and is taken out together with the air and in the passage 12 is separated from the air by the oil filter 13. Further, since the oil is returned to the inlet of the compression chamber and the oil tank is constantly compressed by compressed air, the oil is cooled by the oil cooler 10 while the oil flows from the oil tank to the oil inlet 8 again through the oil pipe 9. It has become like.

【0003】この様な機構により、従来のベーン圧縮器
は油の循環作用により、ローターとベーン、ベーンとス
テーターの摺動摩擦を少なくするとともにベーンとステ
ーターの間の空気の漏洩に対するシール、及びステータ
ーの内部に発生する熱を取り去つて温度を低く保つよう
になつてる。
With such a mechanism, the conventional vane compressor reduces the sliding friction between the rotor and the vane, the vane and the stator, and seals against the leakage of air between the vane and the stator, and the stator by the circulation action of oil. The heat generated inside is removed to keep the temperature low.

【0004】又、ベーンとローターとステーターの摺動
部の加工をよくして、摺動による摩擦が少ない様にして
極力効率によい空気圧縮が出来る様にしてある。
Further, the sliding portion between the vane, the rotor and the stator is improved so that the friction due to the sliding is reduced and the air compression can be performed as efficiently as possible.

【0005】又第3図に示す様にベーンのところどころ
にローターの半径方向に沿つて油溝16を切り、ベーン
とローターの間の潤滑を行うことによりベーン3とロー
ター溝17との摩擦を少なくしている。
Further, as shown in FIG. 3, the oil groove 16 is cut along the radial direction of the rotor at some points of the vane, and lubrication between the vane and the rotor is performed to reduce friction between the vane 3 and the rotor groove 17. is doing.

【0006】又第1図に示す様にベーンは遠心力により
ローターに押しつけられて回転し空気のシールを行う故
上記の様に潤滑と精密工作により摺動による摩擦を少な
くし無駄なエネルギーの損失を少なくする様にしてあ
る。
Also, as shown in FIG. 1, the vane is pressed against the rotor by centrifugal force and rotates to seal the air. Therefore, as described above, the friction due to the sliding is reduced by the lubrication and precision machining, and the wasteful energy loss is caused. I try to reduce.

【発明が解決しようとする課題】前項にかかげた技術を
使用しているにもかかわらず、空気圧縮機の効率は等温
圧縮仕事の3倍も動力を使用している。この原因は種々
あるが、本発明はベーン3の頭部がステーター1の内面
より離れることによる空気の漏洩を防ぐことにより、空
気圧縮機の熱力学的効率をよくするものである。
Despite the use of the technique described in the preceding paragraph, the efficiency of an air compressor uses three times the power of isothermal compression work. Although there are various causes for this, the present invention improves the thermodynamic efficiency of the air compressor by preventing air leakage due to the head of the vane 3 being separated from the inner surface of the stator 1.

【0007】第4回はベーン18が丁度出口5に来た時
であり、出口5からベーン18とベーン19に仕切られ
た部分21には出口5から逆に既に圧縮された空気が逆
流入して来る。これはこの位置では仕切空間21内の圧
縮された空気の圧力は割合に低くPoが7.5kg/c
m(ゲージ G)のときは、一般に2.5kg/cm
(G)ぐらいまでしかなつていない。このときベーン1
9と20の間の仕切空間22の圧力Pmは約0.5kg
/cm(G)である。ベーン19は頭部の点Cがステー
ター1の内面と接しているとすると、coの間は圧力P
oが働きcmの間は圧力Pmが働いてベーン19を下に
圧し下げようとしている。しかもベーン19の底は油溝
16により圧力Pmが押し上げに作用するがPoがPm
に対して非常に大きいので、遠心力による押し付け作用
に打ち勝つてベーン19を下に圧し下げ仕切室21内の
空気が22に流れ込む。
The fourth time is when the vane 18 has just come to the outlet 5, and the compressed air from the outlet 5 flows backward from the outlet 5 to the portion 21 partitioned by the vane 18 and the vane 19. Come on. At this position, the pressure of the compressed air in the partition space 21 is relatively low and Po is 7.5 kg / c.
When m (gauge G), generally 2.5 kg / cm
It's only up to (G). Then vane 1
The pressure Pm of the partition space 22 between 9 and 20 is about 0.5 kg
/ Cm (G). If the point C of the head of the vane 19 is in contact with the inner surface of the stator 1, the pressure P is maintained between co.
While o is working and cm is working, the pressure Pm works to lower the vane 19 downward. Moreover, the bottom of the vane 19 is pushed up by the oil groove 16 due to the pressure Pm, but Po is Pm.
Since it is very large, the vane 19 is pressed down by overcoming the pressing action by the centrifugal force, and the air in the partition chamber 21 flows into 22.

【0008】室21より室22に流れ込んだ空気の一部
は既にPoまで圧縮された空気が漏洩したものであり、
圧縮機としては再圧縮をするわけであるので明に動力の
大きな損失になる。
A part of the air flowing from the chamber 21 into the chamber 22 is the air that has already been compressed to Po and leaks,
Since the compressor recompresses, it obviously causes a large loss of power.

【0009】又ベーンの頭部とステーターの内面は接触
した点から損耗するので、使用しているとベーン頭部の
形はローター接触面に馴れ染む様になりながら、摺動す
るので、ベーン頭部がステーター内面より離れることは
避けられない。
Also, since the head of the vane and the inner surface of the stator are worn away from the point of contact, the shape of the vane head slides while being adapted to the rotor contact surface during use. It is unavoidable that the part is separated from the inner surface of the stator.

【0010】本発明は上記事情に鑑みてなされたもので
あつて、上述の損失をなくし圧縮機の能率をよくし、動
力を節減する事が出来る、圧縮機を提供することにあ
る。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a compressor which can eliminate the above-mentioned loss, improve the efficiency of the compressor, and save power.

【0011】[0011]

【問題を解決するための手段】上記課題を解決するため
に、本発明は次の様な回転圧縮機を採用した。すなわ
ち、請求項の回転圧縮機はステーター1の円筒形内腔内
を回転するローター2の中に略半径方向に装置した溝1
7内にベーン3を装置し、ベーン3はローター2の回転
にしたがい、ステーター1の略円筒形内面に接して、摺
動し、空気(気体)入口4より流入した空気を圧縮して
5の出口に吐出させるベーン圧縮機において、ベーン3
のステーター内面に接する部分(ベーンの頭部と呼ぶ)
を6の様にベーンの回転する側に拡大したベーンを装置
し、且つローター内にも6′の切欠きをつくり6の拡大
部が挿入出来る様にしたことを特徴とする回転圧縮機。
In order to solve the above problems, the present invention employs the following rotary compressor. That is, the rotary compressor according to the claims has a groove 1 installed in a rotor 2 rotating in a cylindrical bore of a stator 1 in a substantially radial direction.
The vane 3 is installed in the rotor 7, and the vane 3 slides in contact with the substantially cylindrical inner surface of the stator 1 according to the rotation of the rotor 2 to compress the air flowing in from the air (gas) inlet 4 to compress it. In the vane compressor that discharges to the outlet, vane 3
Part of the stator that contacts the inner surface of the stator (called the vane head)
A rotary compressor characterized in that an enlarged vane is installed on the rotating side of the vane as shown in 6, and a notch 6'is formed in the rotor so that the enlarged portion of 6 can be inserted.

【0012】[0012]

【作用】本発明の請求項1記載の回転圧縮機においては
第5図に示す様に、ベーン3′の頭部が回転する方向に
拡大しており、圧力Poはcoに圧力Pmはcmの間に
かかり、ベーン19を押し下げようとするが押し上げ力
は底面にPm、又拡大部の下面oc′にPoがかつてに
押し上げるのでcとc′の位置を近づければocとo
c′を同じくらいにすれば圧力による力は上、下方向で
略バランスするのでベーン19は常に遠心力でステータ
ーに押し付けられる。それ故例え出口圧が急に入つてき
てもベーン19は常にステーター内面に密着しているの
で、空気の漏洩は起きない。
In the rotary compressor according to claim 1 of the present invention, as shown in FIG. 5, the head of the vane 3'expands in the direction of rotation, and the pressure Po is co and the pressure Pm is cm. It takes time to push down the vane 19, but the pushing force is Pm to the bottom surface, and Po pushes up to the lower surface oc 'of the enlarged portion once, so if the positions of c and c'are brought close to each other, oc and o.
If c'is made the same, the force due to the pressure is substantially balanced in the upward and downward directions, so that the vane 19 is always pressed against the stator by the centrifugal force. Therefore, even if the outlet pressure suddenly enters, the vane 19 is always in close contact with the inner surface of the stator, so that air leakage does not occur.

【0113】上記の理由により拡大部6の効果により、
常に安定した圧縮が出来、無駄な動力の消費も少なく本
発明の効果により、再圧縮空気が少なくなるので、動力
の節減及び圧縮機の温度上昇も少なくなる。
Due to the effect of the enlarged portion 6 for the above reason,
Stable compression is always possible, useless power consumption is small, and the effect of the present invention is that the re-compressed air is reduced. Therefore, power saving and compressor temperature rise are reduced.

【0014】又ベーンの頭部に6の拡大部をつけた3′
のベーンは、その重量は拡大部を付けないベーン3とあ
まり違いがないので、遠心力は大差ないので、、ステー
ターに押し付けられる力もあまり変わらず、摺動抵抗の
差も少ない上、空気の漏洩は殆どなくなる。
Also, the head of the vane is provided with an enlarged portion of 6 3 '
The vane has a weight that is not much different from the vane 3 that does not have an enlarged portion, so the centrifugal force is not much different, so the force pressed on the stator does not change much, the difference in sliding resistance is small, and air leakage Is almost gone.

【0015】[0015]

【実施例】以下図面を参照して本発明の実施例を説明す
る。第6図は本発明に係るベーン式圧縮機を示す図であ
る。ローター2の軸23は7の方向に回転する。その回
転につれて、ローター2の溝17内に装置されたベーン
3′の頭部が遠心力により、ステーター2の内面24に
接しながら回転し、空気入口4より流入した空気を圧縮
して、5の吐出口より吐出させる。ベーン3′の頭は拡
大部6が回転方向についている。この6の作用により前
Embodiments of the present invention will be described below with reference to the drawings. FIG. 6 is a diagram showing a vane compressor according to the present invention. The shaft 23 of the rotor 2 rotates in the 7 direction. Along with the rotation, the head of the vane 3 ′ installed in the groove 17 of the rotor 2 rotates while coming into contact with the inner surface 24 of the stator 2 by the centrifugal force, and the air flowing in from the air inlet 4 is compressed. Discharge from the discharge port. The head of the vane 3'has the enlarged portion 6 in the rotational direction. By the action of this 6,

【0012】の様に常にベーン3′はステーター内面2
4に接して摺動するので、第4図に示したベーン3を使
用したときの様にベーンが内面24と離れることはな
い。
The vane 3'is always the inner surface 2 of the stator as shown in FIG.
4, the vane does not separate from the inner surface 24 unlike when the vane 3 shown in FIG. 4 is used.

【0007】ベーン3′の拡大部6はベーンの位置が2
5に来ると、ローター内の切り込み6′の中に入つて、
ローターの回転に支障がないようになる。
The enlarged portion 6 of the vane 3'has a vane position of 2
When you come to 5, insert into the notch 6'in the rotor,
It will not hinder the rotation of the rotor.

【0016】第7図及び第8図は実施例の作用を説明す
るための図である。8図は従来のベーンの場合を示し、
この場合はベーンの頭部面mcoをステーター面24よ
り離そうとする力D=cm×Pm+co×Poであり、
反対に面mcoを面24押し付ける力U=(mc+c
o)×Pm+Fc(ベーンに動く遠心力)であり、D−
U(離れる力)=co(Po−Pm)−Fcであるから
(Po−Pm)が大きくなるとmco面はmlclol
の面に下げられPoの空気がPmの方に流れ、Po−P
mが少なくなると又再びmcoの面は図24と接触する
がPoの空気がPmの方に漏洩することは避けられな
い。第7図は本発明の場合の作用を示したもので離れる
力D=mcPm+coPoであり押し付ける力U=m
c′Pm+c′oPo+Fcである。離れる力D−U=
Pm(mc−m′c)+Po(co−c′o)Po−F
cであるのでc′の位置をcと同じ様に取ればD−U=
−Fcで常に押し仕力が離れる力より勝るので、Poか
らPmに空気が洩れることはなくなるか非常に少ない。
FIG. 7 and FIG. 8 are views for explaining the operation of the embodiment. Figure 8 shows the case of the conventional vane,
In this case, the force for separating the head surface mco of the vane from the stator surface 24 is D = cm × Pm + co × Po,
On the contrary, the force U = (mc + c) for pressing the face mco on the face 24
o) × Pm + Fc (centrifugal force moving to vane), and D−
Since U (distance) = co (Po-Pm) -Fc, when (Po-Pm) becomes large, the mco surface becomes mlclol.
Is lowered to the surface of Po and the air of Po flows toward Pm.
When m decreases, the surface of mco comes into contact with FIG. 24 again, but it is unavoidable that the air of Po leaks to Pm. FIG. 7 shows the action in the case of the present invention, and the force of separation D = mcPm + coPo and the force of pressing U = m.
c′Pm + c′oPo + Fc. Separation force DU =
Pm (mc-m'c) + Po (co-c'o) Po-F
Since it is c, if the position of c'is taken in the same way as c, DU =
Since the pushing force is always greater than the releasing force at -Fc, air will not leak from Po to Pm or is very small.

【0017】遠心力による押し付けの場合、本発明のベ
ーンと従来のベーンの比較で頭部接触長さmcoを同じ
にした場合は明らかにmo>mc′であるから、ステー
ターの内面に加わるベーンの遠心力は本発明のものが小
さくなり、摺動圧が少ないので、摺動摩擦は小さく、動
力の節減となる。
In the case of pressing by the centrifugal force, when the head contact length mco is the same when comparing the vane of the present invention and the conventional vane, it is apparently mo> mc ', so that the vane applied to the inner surface of the stator is Since the centrifugal force of the present invention is small and the sliding pressure is small, the sliding friction is small and the power is saved.

【0018】[0018]

【発明の効果】以上説明した様に、本発明の請求項 記
載の回転圧縮機によれば、発明の回転圧縮機はステータ
ー1の円筒形内腔内を回転するローター2の中に略半径
方向に装置した溝17内にベーン3′を装置し、ベーン
3′はローターの回転にしたがい、ステーターの略円筒
形内面24に接して、摺動し気体(例えば空気)入り口
より、流入した空気を圧縮して5の吐出口より吐出させ
るベーン圧縮機においてベーン3′のステーター内面2
4に接する部分(ベーンの頭部と呼ぶ)6を6図のよう
にベーンの回転する側に拡大したベーン3′を装置し且
つローター内にも6′の切欠きをつくり6の拡大部が挿
入出来るようにしたことを特徴とする回転圧縮機である
からベーンの回転方向の前後に圧力の差がどんなにあつ
ても、ベーン3′がステーター内面より離れることが皆
無か従来のベーン3に比べて、たとえあつても非常に少
なく能率のよい気体(空気)圧縮を行うことが出来る。
As described above, according to the rotary compressor of the present invention, the rotary compressor of the invention has a substantially radial direction in the rotor 2 rotating in the cylindrical bore of the stator 1. The vane 3 ′ is installed in the groove 17 installed in the above, and the vane 3 ′ is brought into contact with the substantially cylindrical inner surface 24 of the stator according to the rotation of the rotor, and slides to remove the inflowing air from the gas (for example, air) inlet. In the vane compressor that compresses and discharges from the discharge port of 5, the stator inner surface 2 of the vane 3 '
As shown in Fig. 6, a vane 3'where the portion 6 (which is called the head of the vane) which contacts 4 is enlarged on the rotating side of the vane, and a notch 6'is formed in the rotor so that the enlarged portion of 6 is formed. Since it is a rotary compressor characterized by being able to be inserted, no matter what the difference in pressure before and after the direction of rotation of the vane, the vane 3'is never separated from the inner surface of the stator. Therefore, even if the gas (air) compression is very small and efficient, it can be performed.

【0019】以上により、本圧縮機は圧縮室の気体出口
近傍における従来の圧縮機にみられた空気の漏洩をなく
すとともに、従来の圧縮機に比べて再圧縮(洩れた空
気)仕事が少ないばかりか、それによる無駄な仕事をな
くして、発熱を少なくし、動力の効率をよくし、機械の
耐久性を向上させることが出来る。
As described above, the present compressor eliminates the air leakage found in the conventional compressor in the vicinity of the gas outlet of the compression chamber, and has less recompression (leaked air) work as compared with the conventional compressor. Or, it is possible to eliminate wasteful work, reduce heat generation, improve power efficiency, and improve machine durability.

【図面の簡単な説明】[Brief description of drawings]

【図1】ベーン型回転圧縮機の圧縮原理を示した図であ
り、3は従来の回転圧縮機のベーンを示し、3′は本発
明の回転圧縮機に使用されるベーンの一実施例を示す。
1 is a diagram showing a compression principle of a vane type rotary compressor, 3 is a vane of a conventional rotary compressor, and 3'is an example of a vane used in the rotary compressor of the present invention. Show.

【図2】ベーン型回転圧縮機の一実施例の概略構成図で
ある。
FIG. 2 is a schematic configuration diagram of an embodiment of a vane type rotary compressor.

【図3】ベーン型回転圧縮機のベーンの装置図及びベー
ンの断面図の一実施例を示す。
FIG. 3 shows an embodiment of a vane device of a vane type rotary compressor and a cross-sectional view of the vane.

【図4】(従来の)ベーン型回転圧縮機に於いて、ベー
ンに加わる気体圧の一実施例における説明図である。
FIG. 4 is an explanatory diagram of an example of gas pressure applied to a vane in a (conventional) vane type rotary compressor.

【図5】(本発明の)ベーン型回転圧縮機に於いて本発
明に用いられるベーンに加わる気体圧の一実施例におけ
る説明図である。
FIG. 5 is an explanatory diagram of an example of gas pressure applied to a vane used in the present invention in a vane type rotary compressor (of the present invention).

【図6】本発明の回転圧縮機の圧縮原理を示した概略構
成図である。
FIG. 6 is a schematic configuration diagram showing a compression principle of the rotary compressor of the present invention.

【図7】本発明の回転圧縮機のベーンの受ける外圧を示
す図面
FIG. 7 is a drawing showing the external pressure received by the vane of the rotary compressor of the present invention.

【図8】従来の回転圧縮機のベーンの受ける外圧を示す
図面
FIG. 8 is a drawing showing an external pressure received by a vane of a conventional rotary compressor.

【符号の説明】[Explanation of symbols]

1 ステーター 2 ローター 3 従来のベーン 3′本発明のベーン 4 気体入り口 5 気体出口 6 ベーンの拡大頭部 6′6挿入するローターの切り込み 7 回転方向 8 油入口 9 オイルパイプ 10 オイルクーラー 11 オイルタンク 12 通路 13 オイルフイルター 14 空間 15 空気(気体)出口 16 油溝 17 溝(ベーン溝) 18 ベーン 19 ベーン 20 ベーン 21 仕切空間 22 仕切空間 23 ローター軸 24 ステーター内面 25 回転位置 c、m,o、c′、cl、ol、ml‥‥‥ベーン頭部
上の点 Po、Pm は圧力 U、D は力
DESCRIPTION OF SYMBOLS 1 Stator 2 Rotor 3 Conventional vane 3'Vane of the present invention 4 Gas inlet 5 Gas outlet 6 Enlarged head of vane 6'6 Notch of rotor to be inserted 7 Rotation direction 8 Oil inlet 9 Oil pipe 10 Oil cooler 11 Oil tank 12 Passage 13 Oil filter 14 Space 15 Air (gas) outlet 16 Oil groove 17 Groove (vane groove) 18 Vane 19 Vane 20 Vane 21 Partition space 22 Partition space 23 Rotor shaft 24 Stator inner surface 25 Rotation position c, m, o, c ' , Cl, ol, ml ... points on the vane head Po and Pm are pressures U and D are forces

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ステーター1の円筒形内腔内を回転する
ローター2の中に略々半径方向に装置した溝内にベーン
3′を装置し、ベーン3′はローターの回転にしたがい
ステーターの略円筒形内面に接して摺動し、空気(気
体)入口4より流入した空気を圧縮して5の出口より吐
出させるベーン圧縮機においてベーン3′のステーター
内面に接する部分(ベーンの頭部と呼ぶ)6を6図の様
にベーンの回転する側に拡大したベーン3′を装置し、
且つローター内にも6′の切欠きをつくり6の拡大部が
挿入出来る様にしたことを特徴とする回転圧縮機
1. A vane 3'is provided in a groove formed substantially in a radial direction in a rotor 2 rotating in a cylindrical bore of a stator 1, the vane 3'corresponding to the rotation of the rotor. In the vane compressor that slides in contact with the inner surface of the cylinder and compresses the air that has flowed in from the air (gas) inlet 4 and discharges it from the outlet of 5, the portion that contacts the inner surface of the stator of the vane 3 '(referred to as the head of the vane). ) Install the enlarged vane 3'on the side where the vane rotates as shown in FIG.
Further, the rotary compressor is characterized in that a 6'notch is formed in the rotor so that the enlarged portion of 6 can be inserted.
JP11891193A 1993-04-12 1993-04-12 Rotary compressor Pending JPH06299980A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11891193A JPH06299980A (en) 1993-04-12 1993-04-12 Rotary compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11891193A JPH06299980A (en) 1993-04-12 1993-04-12 Rotary compressor

Publications (1)

Publication Number Publication Date
JPH06299980A true JPH06299980A (en) 1994-10-25

Family

ID=14748226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11891193A Pending JPH06299980A (en) 1993-04-12 1993-04-12 Rotary compressor

Country Status (1)

Country Link
JP (1) JPH06299980A (en)

Similar Documents

Publication Publication Date Title
US5310326A (en) Rotary compressor with improved bore configuration and lubrication system
US6193487B1 (en) Scroll-type fluid displacement device for vacuum pump application
US6250899B1 (en) Rotary compressor
JP4882643B2 (en) Scroll type expander
KR19980063888A (en) Rotary compressor with discharge chamber pressure release groove
JP3774964B2 (en) Scroll compressor
JPH0642474A (en) Single screw compressor
GB2107789A (en) Rotary positive-displacement fluid-machines
JPH06299980A (en) Rotary compressor
JPS58162794A (en) Vane compressor
JP2002155877A (en) Scroll compressor
KR100556796B1 (en) Back pressure sealing apparatus for high-pressure type scroll compressor
JPS60252188A (en) Movable vane compressor
WO2018117276A1 (en) Screw compressor
RU2133880C1 (en) Seal for turbocompressor shaft
CN217003088U (en) Mechanical seal combination for propylene gas compressor
JPH01224490A (en) Gas compressor
JP2002161880A (en) Scroll compressor
KR100286714B1 (en) The Rotary Compressor with the System of Suction through Bearing
JP2011117406A (en) Compression machine
JP2008106669A (en) Rotary fluid machine
US20050271520A1 (en) Liquid ring compressor
JP3150952B2 (en) Gas compressor
JP4106223B2 (en) Gas compressor
JPH081180B2 (en) Vane rotary compressor