JPH06299226A - Vacuum-degassing method for molten steel - Google Patents

Vacuum-degassing method for molten steel

Info

Publication number
JPH06299226A
JPH06299226A JP8323593A JP8323593A JPH06299226A JP H06299226 A JPH06299226 A JP H06299226A JP 8323593 A JP8323593 A JP 8323593A JP 8323593 A JP8323593 A JP 8323593A JP H06299226 A JPH06299226 A JP H06299226A
Authority
JP
Japan
Prior art keywords
molten steel
inner diameter
degassing
ladle
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8323593A
Other languages
Japanese (ja)
Inventor
Kazumi Harashima
和海 原島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP8323593A priority Critical patent/JPH06299226A/en
Publication of JPH06299226A publication Critical patent/JPH06299226A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To efficiently execute the degassing in a short time by correlating the inner diameter at the lower end of a vacuum vessel with the inner diameter at the upper end of a ladle and the inner diameter at the upper end of molten steel in the vacuum vessel, in the case of executing the degassing refining by setting the cylindrical vacuum vessel on the upper part of the ladle containing the molten steel. CONSTITUTION:By setting the cylindrical pressure reducing and vacuum vessel 3 on the upper part of the ladle 2 containing the molten steel 1, the pressure reducing and vacuum degassing refining is executed. At this time, the inner diameter (a) at the lower end of the vacuum vessel is larger than the inner diameter (b) at the upper end of the molten steel in the vacuum vessel. Further, this inner diameter (b) is made to be >1/2 of the inner diameter (c) at the upper end of the ladle 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、溶鋼あるいは溶融金属
に含有されている炭素、窒素、水素を減圧・真空下で除
去するための効率的な脱ガス方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an efficient degassing method for removing carbon, nitrogen and hydrogen contained in molten steel or molten metal under reduced pressure and vacuum.

【0002】[0002]

【従来の技術】鋼や合金に含まれる炭素や窒素あるいは
水素は、加工性向上、時効防止、伸延性向上のさらに低
温靱性向上のために極微量であることが要求される。一
般に、製鉄業においては、溶鋼あるいは溶融金属(以下
単に溶鋼と記述する)の脱ガス処理を、例えば、第3版
鉄鋼便覧II製銑製鋼編671〜685ページに示されて
いるような、各種の減圧・真空精錬設備を用いて実施し
ている。溶鋼循環型減圧・真空槽を用いた脱ガス法(R
H脱ガス法)に関して、減圧・真空槽(以下、単に真空
槽と記す)内に溶鋼を送り込むために、一方の浸漬管か
ら多量のガスを溶鋼に吹込み、ガスのリフト効果により
溶鋼を減圧・真空槽に供給し、溶鋼を環流させる。脱ガ
ス速度は、この溶鋼環流速度が大きい時に大きな値にな
る。しかし、溶鋼を反応槽である真空槽に供給するため
の浸漬管の大きさは取鍋径と煉瓦厚みにより制限され、
溶鋼環流速度を極度に大きくすることはできず、より効
率的な脱ガス方法の提示が期待される。
2. Description of the Related Art Carbon, nitrogen or hydrogen contained in steels and alloys is required to be in a very small amount in order to improve workability, prevent aging and improve ductility and further improve low temperature toughness. Generally, in the steel industry, degassing treatment of molten steel or molten metal (hereinafter simply referred to as molten steel) is performed by various methods such as those shown on pages 671 to 685 of the Ironmaking Steelmaking Edition, 3rd Edition Iron and Steel Handbook II. It is carried out using the decompression / vacuum refining equipment. Degassing method using molten steel circulation type decompression / vacuum tank (R
Regarding H degassing method), in order to send the molten steel into the decompression / vacuum tank (hereinafter simply referred to as the vacuum tank), a large amount of gas is blown into the molten steel from one dipping pipe, and the molten steel is decompressed by the gas lift effect.・ Supply it to the vacuum tank and recirculate the molten steel. The degassing rate has a large value when the molten steel recirculation rate is high. However, the size of the dipping pipe for supplying molten steel to the vacuum tank which is the reaction tank is limited by the ladle diameter and the brick thickness,
The molten steel recirculation velocity cannot be extremely increased, and a more efficient degassing method is expected to be presented.

【0003】脱ガス反応は溶鋼である液相と気体である
気相との界面(気・液界面)で進行する。このとき、各
脱ガス反応の速度は(1′)式〜(3′)式で示され、
脱ガス速度を大きくするためには反応速度定数kx の値
を大きくする必要がある。k x は反応面積に比例すると
同時に、溶鋼の反応サイトへの循環速度に大きく依存す
る。従って、脱ガス反応速度を増加させ、速やかに極低
炭、極低窒素、極低水素である溶鋼を溶製するためには
気・液界面積を増加する方法と同時に、溶鋼循環促進方
法の具体的手段が必要である。
The degassing reaction is a liquid phase that is molten steel and a gas
It progresses at the interface with the gas phase (gas / liquid interface). At this time, each
The rate of the degassing reaction is represented by the equations (1 ') to (3'),
To increase the degassing rate, the reaction rate constant kxThe value of the
Needs to be increased. k xIs proportional to the reaction area
At the same time, it greatly depends on the circulation rate of molten steel to the reaction site.
It Therefore, the degassing reaction rate is increased, and the ultra low
To make molten steel with charcoal, extremely low nitrogen and extremely low hydrogen,
At the same time as increasing the gas / liquid interface area, a method for promoting molten steel circulation
Concrete means of law are needed.

【0004】 脱ガス反応の速度 脱炭処理 :[C]+[O]=CO ・・・(1) (d mass%[C])/dt=−Kc ・mass% [C]・・・(1′) 脱水素処理:[H]+[H]=H2 ・・・(2) (d mass%[H])/dt=− KH ・mass% [H]・・・(2′) 脱窒処理:[N]+[N]=N2 ・・・(3) (d mass%[N])/dt=− KN ・mass% [N]2 ・・・(3′) Speed of degassing reaction Decarburization treatment: [C] + [O] = CO (1) (d mass% [C]) / dt = -K c · mass% [C] ... (1 ′) Dehydrogenation treatment: [H] + [H] = H 2 ... (2) (d mass% [H]) / dt = −K H · mass% [H] ... (2 ′ ) Denitrification treatment: [N] + [N] = N 2 ... (3) (d mass% [N]) / dt = −K N · mass% [N] 2 ... (3 ′)

【0005】[0005]

【発明が解決しようとする課題】溶鋼に含有される炭素
や窒素あるいは水素を効率よく、且つ迅速にしかも極低
濃度まで除去する脱ガス処理方法の提供が急がれる。本
発明は溶鋼あるいは溶融金属を減圧・真空処理を実施し
て、効率的且つ経済的に短時間で極低炭素、極低窒素、
極低水素溶鋼を溶製するための脱ガス方法を提供するこ
とを目的とするものである。
There is an urgent need to provide a degassing method for efficiently and rapidly removing carbon, nitrogen or hydrogen contained in molten steel to an extremely low concentration. INDUSTRIAL APPLICABILITY The present invention performs reduced pressure / vacuum treatment of molten steel or molten metal to efficiently and economically produce ultra-low carbon, ultra-low nitrogen in a short time.
It is an object of the present invention to provide a degassing method for producing extremely low hydrogen molten steel.

【0006】[0006]

【課題を解決するための手段】本発明は、従来技術の課
題を有利に解決するためのものであって、円筒型減圧・
真空槽を、溶鋼あるいは溶融金属を収容した取鍋上部に
設置して、取鍋内の溶鋼あるいは溶融金属の減圧・真空
脱ガス精錬を実施するにあたり、真空槽下端内径が、真
空槽内溶鋼上端内径よりも大きく、且つ、真空槽溶鋼上
端内径が、取鍋上端内径の1/2以上である円筒型減圧
・真空槽を用いる事を特徴とする。
SUMMARY OF THE INVENTION The present invention is to solve the problems of the prior art in an advantageous manner.
When the vacuum tank is installed above the ladle containing molten steel or molten metal and the decompression and vacuum degassing of molten steel or molten metal in the ladle is performed, the inner diameter of the lower end of the vacuum tank is the upper end of the molten steel in the vacuum tank. It is characterized by using a cylindrical decompression / vacuum tank that is larger than the inner diameter and has a molten steel upper end inner diameter that is 1/2 or more of the ladle upper end inner diameter.

【0007】以下、図面に基づいて本発明を説明する。The present invention will be described below with reference to the drawings.

【作用】図1は、本発明を実施するための方法の代表例
を示す図面である。脱ガス処理すべき溶鋼あるいは溶融
金属1を収容した取鍋2に減圧・真空槽3の下端を浸漬
し、該真空槽内3に溶鋼を吸引しつつ、溶鋼に不活性ガ
スをプラグ4あるいはランス5を介して吹込み、溶鋼を
循環させつつ脱ガス処理を実施する。このとき、減圧・
真空槽の形状が溶鋼循環を妨害しないように下端部の内
径aが、上端部の内径bよりも大きい形状とする。さら
に、上端からのガスの離脱が充分速やかに進行するよう
に、上端部の内径bとして、取鍋内径cの1/2以上を
確保する。
1 is a drawing showing a typical example of a method for carrying out the present invention. The lower end of the decompression / vacuum tank 3 is immersed in a ladle 2 containing the molten steel or molten metal 1 to be degassed, and the molten steel is sucked into the vacuum tank 3 while an inert gas plug 4 or lance is applied to the molten steel. Degassing is carried out while injecting through 5 and circulating molten steel. At this time, decompression
The inner diameter a of the lower end is set to be larger than the inner diameter b of the upper end so that the shape of the vacuum chamber does not hinder the circulation of molten steel. Further, the inner diameter b of the upper end portion should be 1/2 or more of the inner diameter c of the ladle so that the gas can be released from the upper end sufficiently quickly.

【0008】本発明者らは、浸漬管内径の大きさが脱ガ
ス速度の支配因子であると同時に、その形状が溶鋼の循
環作用に大きく影響することを見出し、溶鋼の環流速度
が、円筒型減圧・真空槽3の形状が、下広がりの時に大
きくなることを見出した。すなわち、溶鋼自由表面を充
分確保し、ガス吹込みと減圧・真空槽の形状選定によっ
て効率的な脱ガス処理が実行できる事を確認した。本発
明の方法を適用して溶鋼の脱窒・脱炭処理をするに当
り、溶鋼の酸素濃度を保持あるいは増加するために、酸
素ガスあるいは酸素含有ガスを、溶鋼に直接、吹込みノ
ズル6を介して吹込んでもよく、吹き込みランス5を用
いて溶鋼表面に吹付けてもよい。
The inventors of the present invention have found that the size of the inner diameter of the immersion pipe is a controlling factor of the degassing rate, and at the same time, its shape has a great influence on the circulating action of the molten steel. It has been found that the shape of the decompression / vacuum chamber 3 becomes large when it is expanded downward. That is, it was confirmed that a sufficient molten steel free surface can be secured, and efficient degassing treatment can be performed by gas injection, decompression, and shape selection of the vacuum chamber. When denitrifying and decarburizing molten steel by applying the method of the present invention, in order to maintain or increase the oxygen concentration of the molten steel, an oxygen gas or an oxygen-containing gas is directly introduced into the molten steel by the injection nozzle 6. It may be blown through, or may be blown onto the molten steel surface by using the blowing lance 5.

【0009】[0009]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。 実施例1 図1に示すような脱ガス炉で250トンの溶鋼の脱炭処
理をタイプIの円筒型真空槽を用いて実施した。取鍋の
内径は3.5m、円筒型真空槽上部の内径は2.0mで
あり、真空槽下端の内径は2.8mである。取鍋内壁と
円筒浸漬管との間隔は25cmである。プラグからのA
rガス吹込み流量は1000〜1200(Nl/mi
n)、ランス吹込みAr流量は1500〜2000(N
l/min)であり、真空排気しつつAr吹込みを実施
した。図2に、[C]濃度の経時変化を示す。真空槽上
部内径が2.8mで実施した場合に比較して、本発明の
方法では、短時間に極低炭素濃度まで脱炭が可能であ
り、極低炭素溶鋼が溶製できた。
Embodiments of the present invention will be described below with reference to the drawings. Example 1 In a degassing furnace as shown in FIG. 1, 250 tons of molten steel was decarburized using a type I cylindrical vacuum chamber. The inner diameter of the ladle is 3.5 m, the inner diameter of the upper portion of the cylindrical vacuum chamber is 2.0 m, and the inner diameter of the lower end of the vacuum chamber is 2.8 m. The distance between the inner wall of the ladle and the cylindrical dipping tube is 25 cm. A from the plug
The flow rate of r gas injection is 1000 to 1200 (Nl / mi
n), lance blowing Ar flow rate is 1500-2000 (N
1 / min), and Ar was blown in while evacuating. FIG. 2 shows the change over time in the [C] concentration. Compared to the case where the inner diameter of the upper part of the vacuum chamber was 2.8 m, the method of the present invention was able to decarburize to an extremely low carbon concentration in a short time, and was able to produce an extremely low carbon molten steel.

【0010】実施例2 図1に示すような脱ガス炉で250トンのキルド溶鋼の
脱水素処理をタイプIIに示すような円筒型真空槽を用い
て実施した。取鍋の内径は3.5m、円筒型真空槽上部
の内径は2.0mであり、真空槽下端の内径は2.8m
である。この時、プラグからのArガス吹込み流量は4
00〜500(Nl/min)、ランス吹込みAr流量
は1500(Nl/min)で、真空排気しつつAr吹
込みを実施した。図2に、[H]濃度の経時変化を示
す。真空槽上部内径が2.8mで実施した場合に比較し
て、短時間に極低濃度まで脱水素が可能であり、極低水
素溶鋼が溶製できた。
Example 2 In a degassing furnace as shown in FIG. 1, dehydrogenation treatment of 250 tons of killed molten steel was carried out using a cylindrical vacuum chamber as shown in type II. The inner diameter of the ladle is 3.5 m, the inner diameter of the upper part of the cylindrical vacuum chamber is 2.0 m, and the inner diameter of the lower end of the vacuum chamber is 2.8 m.
Is. At this time, the flow rate of Ar gas blown from the plug is 4
The lance blowing Ar flow rate was 1500 (Nl / min) from 00 to 500 (Nl / min), and Ar was blown while vacuum exhausting. FIG. 2 shows the change in [H] concentration with time. Compared with the case where the inner diameter of the upper part of the vacuum chamber was 2.8 m, dehydrogenation was possible to an extremely low concentration in a short time, and an extremely low hydrogen molten steel could be produced.

【0011】実施例3 図1に示すような脱ガス炉で250トン溶鋼の脱窒素処
理をタイプIの円筒型真空槽を用いて25min間実施
した。取鍋の内径は3.5m、円筒型真空槽上部の内径
は2.0mであり、真空槽下端の内径は2.8mであ
る。プラグからのArガス吹込み流量は400(Nl/
min)、ランス吹込みAr流量は1500〜2000
(Nl/min)であり、真空排気しつつAr吹込みを
実施した。図4に、脱ガス処理前後の[N]濃度の比較
を示す。従来法に比較して、本発明の方法では、短時間
に極低濃度まで脱窒素が可能であり、極窒素溶鋼が溶製
できた。
Example 3 In a degassing furnace as shown in FIG. 1, 250 tons of molten steel was denitrified using a type I cylindrical vacuum chamber for 25 minutes. The inner diameter of the ladle is 3.5 m, the inner diameter of the upper portion of the cylindrical vacuum chamber is 2.0 m, and the inner diameter of the lower end of the vacuum chamber is 2.8 m. The flow rate of Ar gas blown from the plug is 400 (Nl /
min), lance blowing Ar flow rate is 1500-2000
(Nl / min), and Ar was blown in while evacuating. FIG. 4 shows a comparison of [N] concentration before and after degassing. Compared with the conventional method, in the method of the present invention, denitrification was possible to an extremely low concentration in a short time, and an extreme nitrogen molten steel could be melted.

【0012】[0012]

【発明の効果】溶鋼の脱ガス速度が増大し、超極低炭
素、極低窒素、極低水素濃度の溶鋼の溶製ができるよう
になった。
EFFECTS OF THE INVENTION The degassing rate of molten steel is increased, and molten steel having ultra-low carbon, ultra-low nitrogen and ultra-low hydrogen concentration can be produced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を実施するための脱ガス設備の一例を示
す図面、
FIG. 1 is a drawing showing an example of a degassing facility for carrying out the present invention,

【図2】[C]濃度の経時変化を示す図面、FIG. 2 is a drawing showing a change with time of [C] concentration,

【図3】[H]濃度の経時変化を示す図面、FIG. 3 is a drawing showing changes with time of [H] concentration,

【図4】脱ガス処理前後の[N]濃度の比較を示す図面
である。
FIG. 4 is a drawing showing comparison of [N] concentration before and after degassing treatment.

【符号の説明】[Explanation of symbols]

1 溶鋼あるいは溶融金属 2 取鍋 3 下広がり円筒型真空槽 4 ガス吹込みプラグ 5 ガス吹込みランス 6 ガス吹込みノズル 1 Molten Steel or Molten Metal 2 Ladle 3 Lower Spread Cylindrical Vacuum Tank 4 Gas Injection Plug 5 Gas Injection Lance 6 Gas Injection Nozzle

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 円筒型減圧・真空槽を溶鋼あるいは溶融
金属を収容した取鍋上部に設置して取鍋内の溶鋼あるい
は溶融金属の減圧・真空脱ガス精錬を実施するにあた
り、真空槽下端内径が、真空槽内溶鋼上端内径よりも大
きく、且つ、真空槽溶鋼上端内径が、取鍋上端内径の1
/2以上である円筒型減圧・真空槽を用いる事を特徴と
する溶鋼あるいは溶融金属の脱ガス方法。
1. When a cylindrical decompression / vacuum tank is installed above a ladle containing molten steel or molten metal to carry out decompression / vacuum degassing refining of molten steel or molten metal in the ladle, the inner diameter of the lower end of the vacuum tank Is larger than the inner diameter of the molten steel in the vacuum tank, and the inner diameter of the molten steel in the vacuum tank is 1 of the inner diameter of the ladle.
A degassing method for molten steel or molten metal, which is characterized by using a cylindrical decompression / vacuum tank of ≥2.
JP8323593A 1993-04-09 1993-04-09 Vacuum-degassing method for molten steel Withdrawn JPH06299226A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8323593A JPH06299226A (en) 1993-04-09 1993-04-09 Vacuum-degassing method for molten steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8323593A JPH06299226A (en) 1993-04-09 1993-04-09 Vacuum-degassing method for molten steel

Publications (1)

Publication Number Publication Date
JPH06299226A true JPH06299226A (en) 1994-10-25

Family

ID=13796668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8323593A Withdrawn JPH06299226A (en) 1993-04-09 1993-04-09 Vacuum-degassing method for molten steel

Country Status (1)

Country Link
JP (1) JPH06299226A (en)

Similar Documents

Publication Publication Date Title
JP3176374B2 (en) Method for producing low carbon molten steel by vacuum degassing decarburization
JP5904237B2 (en) Melting method of high nitrogen steel
JP2006283080A (en) Method for smelting high nitrogen steel
FI67094B (en) FOERFARANDE FOER ATT FOERHINDRA ATT SLAGGMETALL VAELLER UPP ID PNEUMATISK UNDER YTAN SKEENDE RAFFINERING AV STAOL
JPH06299226A (en) Vacuum-degassing method for molten steel
JP3843589B2 (en) Melting method of high nitrogen stainless steel
JPS63143216A (en) Melting method for extremely low carbon and low nitrogen steel
JP2000212641A (en) High speed vacuum refining of molten steel
JP2724035B2 (en) Vacuum decarburization of molten steel
EA003345B1 (en) Method for denitriding molten steel during its production
US4436553A (en) Process to produce low hydrogen steel
JP2728184B2 (en) Oxygen top-blowing vacuum decarburization of molten steel
JPH08302419A (en) Refining method of molten steel
JP2000119730A (en) Method for refining molten steel under reduced pressure
JPH0192314A (en) Ladle refining method
JPH0941028A (en) Production of high purity ultra-low carbon steel
JP2962163B2 (en) Melting method of high clean ultra low carbon steel
JP3566770B2 (en) Manufacturing method of ultra-low carbon steel
JPH0543930A (en) Method for melting dead soft steel under atmospheric pressure
JPH05311227A (en) Reduced pressure-vacuum degassing refining method for molten metal
JPH0512410B2 (en)
JPH0192313A (en) Method for refining molten steel
JPH06256835A (en) Method for vacuum-degassing molten steel or molten alloy
JPH0696739B2 (en) Highly clean ultra low carbon steel melting method
JPH06240333A (en) Reduced pressure-vacuum degassing method for molten steel or molten alloy

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000704