JPH06298508A - Graphite-like carbon adsorbent - Google Patents

Graphite-like carbon adsorbent

Info

Publication number
JPH06298508A
JPH06298508A JP5104908A JP10490893A JPH06298508A JP H06298508 A JPH06298508 A JP H06298508A JP 5104908 A JP5104908 A JP 5104908A JP 10490893 A JP10490893 A JP 10490893A JP H06298508 A JPH06298508 A JP H06298508A
Authority
JP
Japan
Prior art keywords
graphite
electron density
molecules
carbon
high electron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5104908A
Other languages
Japanese (ja)
Inventor
Masao Sakashita
雅雄 坂下
Akira Tanaka
曉 田中
Noritake Shimanoe
憲剛 島ノ江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP5104908A priority Critical patent/JPH06298508A/en
Publication of JPH06298508A publication Critical patent/JPH06298508A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PURPOSE:To provide a graphite-like carbon adsorbent capable of individually adsorbing molecules one by one or molecule groups which consist of several molecules, respectively. CONSTITUTION:A graphite-like carbon adsorbent comprises periodically arranging high electron density regions on the (011) lattice plane of a graphite-like thin film formed on a metal at distances of 1 nanometer or 10 nanometer and enabling to indiviually and periodically adsorb molecules such as enzymes or molecule groups when several molecules form a stable group in the high electron density region.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は黒鉛状炭素吸着体、とく
に(001)格子面上に高い電子密度をもつ領域が周期
的に配列し、分子1個づつあるいは数個の分子群づつを
等間隔に配列する吸着体に関するものであり、その結
果、酵素などの分子を1個づつあるいは数個の分子で安
定であるならばその分子群づつを固定して分子像を観察
することを可能にする吸着体に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to a graphitic carbon adsorbent, and in particular, regions having a high electron density on the (001) lattice plane are arranged periodically, and one molecule or several groups of molecules are formed. It relates to adsorbents arranged at intervals, and as a result, if molecules such as enzymes are stable with one molecule or several molecules, it becomes possible to fix the molecule groups and observe the molecular image. The present invention relates to an adsorbent that does.

【0002】[0002]

【従来の技術】黒鉛は化学的に安定でかつ電導性がある
ので工業用の電解電極から小型の乾電池あるいはリチウ
ム電池の電極として広く利用されているとともに、繊維
状に黒鉛化して軽量で高強度な材料としても広範に活用
されている。
BACKGROUND OF THE INVENTION Graphite is widely used as an electrode for industrial electrolytic electrodes to small dry batteries or lithium batteries because it is chemically stable and has electrical conductivity. It is also graphitized into fibers and is lightweight and has high strength. It is also widely used as a material.

【0003】吸着体としての炭素材料としては、多くの
場合は表面積の大きい非晶質炭素が用いられるが、黒鉛
粉砕も特徴的な層状構造のインターカレーションを利用
した吸着体として利用されている。
As the carbon material as the adsorbent, amorphous carbon having a large surface area is used in many cases, but graphite pulverization is also used as the adsorbent utilizing the intercalation of the characteristic layered structure. .

【0004】これら電極材料としての黒鉛、高強度材料
としての黒鉛化繊維、吸着体としての黒鉛粉末に見られ
る従来の黒鉛の利用技術と本発明の技術とは全く異な
る。
The conventional technique of utilizing graphite found in graphite as an electrode material, graphitized fiber as a high-strength material, and graphite powder as an adsorbent is completely different from the technique of the present invention.

【0005】すなわち、従来技術はいわゆる黒鉛構造を
もつ構造体全体の特性を利用したものであるのに対し、
本発明は特殊は黒鉛状表面構造に起因する少数の炭素原
子の集団の特性を利用したものである。
That is, while the conventional technology utilizes the characteristics of the entire structure having a so-called graphite structure,
The present invention utilizes the characteristics of a group of a small number of carbon atoms, which are specially caused by the graphitic surface structure.

【0006】少数の炭素原子の集団を利用するという観
点からはサッカーボール状炭素原子集団であるC60に
代表されるフラーレンに類似するが、フラーレンの構造
は球状であるのに対し、本発明の黒鉛状炭素は平面状で
ある。
From the viewpoint of utilizing a small number of carbon atom groups, it is similar to the fullerene represented by C60 which is a soccer ball-like carbon atom group, but the fullerene structure is spherical, whereas the graphite of the present invention is The shaped carbon is planar.

【0007】一方、医薬品開発の高効率化や医療技術の
高度化の社会要請と、近年の発達が著しい走査型トンネ
ル顕微鏡に代表される原子,分子レベルの観察手法であ
る走査プローブ顕微鏡技術が融合し、例えば薬効を酵素
などの生体分子の三次元構造変化で確認するなどの分子
レベルで観察と操作する技術が求められている。
On the other hand, the societal demands for higher efficiency of drug development and sophistication of medical technology are combined with the scanning probe microscope technology, which is an observation method at the atomic and molecular level represented by the scanning tunnel microscope, which has been remarkably developed in recent years. However, there is a demand for a technique for observing and manipulating the drug at the molecular level, for example, confirming the drug effect by the three-dimensional structural change of biomolecules such as enzymes.

【0008】分子1個づつを観測したり操作するには少
なくともその分子を固定しなければならない。
In order to observe and manipulate each molecule, at least that molecule must be immobilized.

【0009】固定した分子の像の解像度を向上するには
分子が独立に分散する事が望ましい。
In order to improve the resolution of the image of the fixed molecule, it is desirable that the molecules are dispersed independently.

【0010】元来、固定と分散は相反する要請であり、
分散する低濃度の溶液を固定機能をもつ基板上に導入す
ると、分子の集合した塊が少数形成されることになり、
目的を達し得ない。
Originally, fixing and dispersion were contradictory requirements,
When a low-concentration solution to be dispersed is introduced onto a substrate having a fixing function, a small number of aggregated molecules are formed,
I cannot reach my goal.

【0011】さらに、固定に用いる基板表面は原子レベ
ルで平滑であることはもちろんであるが、原子・分子レ
ベルの範囲あるいは長さの単位ではナノメータレベルで
吸着分子の相対的な位置が明確にできることが望まし
い。
Further, the surface of the substrate used for fixing is, of course, smooth at the atomic level, but the relative position of the adsorbed molecule can be made clear at the nanometer level in the atomic or molecular level range or length unit. Is desirable.

【0012】すなわち、酵素などを例えば白紙の上では
なく方眼紙の様にナノメータレベルで間隔が規定された
表面上に配列することが望まれる。
That is, it is desired that the enzyme or the like is arranged not on a blank sheet of paper but on a surface of which the spacing is defined at the nanometer level, such as a graph paper.

【0013】原子レベルで平滑であり、原子・分子レベ
ルの方眼紙状表面を提供する観点からは黒鉛の(00
1)格子面が最適である。
From the viewpoint of providing a graph paper-like surface that is smooth at the atomic level and at the atomic / molecular level, graphite (00
1) The lattice plane is optimal.

【0014】しかしながら、黒鉛の(001)格子面は
化学的に安定であり、分子が吸着し難いことでは典型的
な表面であり、表面処理すること無しに酵素等を吸着さ
せることはできないし、表面処理をすると原子レベルの
平滑性と原子・分子レベルで位置を判定できる方眼紙の
ような特性を失う。
However, the (001) lattice plane of graphite is chemically stable and is a typical surface because it is difficult for molecules to be adsorbed, and it is impossible to adsorb an enzyme or the like without surface treatment. Surface treatment loses the smoothness at the atomic level and the properties of graph paper that can determine the position at the atomic / molecular level.

【0015】[0015]

【発明が解決しようとする課題】本発明者らは、分子を
規則的に配列できる吸着体表面を達成すべく、鋭意検討
した結果、本発明をなすに至った。
DISCLOSURE OF THE INVENTION The present inventors have completed the present invention as a result of extensive studies to achieve an adsorbent surface on which molecules can be regularly arranged.

【0016】すなわち、本発明の目的は黒鉛の格子面上
に原子レベルで平滑であり、ナノメータレベルの周期性
を持ち、かつその上に分子1個づつあるいは数個の分子
群づつ吸着することを可能とする黒鉛状炭素吸着体を提
供することである。
That is, the object of the present invention is to have smoothness at the atomic level on the lattice plane of graphite, have periodicity at the nanometer level, and to adsorb one molecule or several molecule groups on it. It is to provide a graphite-like carbon adsorbent that enables it.

【0017】[0017]

【課題を解決するための手段】上述した本発明の目的
は、黒鉛状炭素表面の超周期構造で達成することができ
る。
The above-mentioned objects of the present invention can be achieved by a super-periodic structure of graphitic carbon surface.

【0018】本発明は黒鉛状炭素の(001)格子面上
に電子密度の高い領域の周期的配列をもち、その高電子
密度領域に分子1個づつあるいは数個の分子群づつ吸着
する黒鉛状炭素吸着体である。
The present invention has a periodic array of high electron density regions on the (001) lattice plane of graphitic carbon and adsorbs one molecule or several molecule groups in the high electron density region. It is a carbon adsorbent.

【0019】本発明における黒鉛状炭素表面に周期的に
配列した高電子密度領域の間隔は1ナノメータから10
ナノメータの範囲である。
In the present invention, the interval of the high electron density regions periodically arranged on the surface of the graphitic carbon is from 1 nanometer to 10
It is in the nanometer range.

【0020】すなわち、本発明の黒鉛状炭素の(00
1)格子面は黒鉛構造の原子は位置に加え、電子密度の
超周期構造を持つことを特徴とする。
That is, the graphitic carbon of the present invention (00
1) The lattice plane is characterized by having atoms of graphite structure in addition to positions and having a super periodic structure of electron density.

【0021】かかる特徴を有する本発明の黒鉛状炭素は
金属上に形成された薄膜の形態をとる。
The graphitic carbon of the present invention having such characteristics takes the form of a thin film formed on a metal.

【0022】以下に本発明の黒鉛状炭素吸着体を詳細に
説明する。
The graphite-like carbon adsorbent of the present invention will be described in detail below.

【0023】図1にパラジウム上に形成した黒鉛状炭素
の走査トンネル顕微鏡像であり、周期的に配列した明る
い領域は高い電子密度領域で、その間隔は約2ナノメー
タである。
FIG. 1 is a scanning tunneling microscope image of graphitic carbon formed on palladium, in which the periodically arranged bright areas are high electron density areas and the distance between them is about 2 nanometers.

【0024】さらに解像度を高めて観察すると、図2に
示すように、明るい領域の中にさらに明るい点が規則的
に配列し、その間隔は約0.25ナノメータであって黒
鉛構造の(001)格子面の炭素原子の間隔に等しい。
As shown in FIG. 2, when further observing with higher resolution, bright spots are regularly arranged in the bright region, and the intervals are about 0.25 nanometer, and the (001) graphite structure is formed. Equal to the spacing of carbon atoms in the lattice plane.

【0025】すなわち、パラジュウム上に形成した黒鉛
状炭素薄膜の表面には、黒鉛構造の(001)格子の炭
素原子配列が約2ナノメータの電子密度分布の周期をも
つ超周期構造が見られる。
That is, on the surface of the graphite-like carbon thin film formed on the palladium, a superperiodic structure in which the carbon atom arrangement of the graphite structure (001) lattice has an electron density distribution period of about 2 nanometers is seen.

【0026】図1および図2に見られる電子密度の超周
期構造の発現機構を明確に説明できないが、ひとつの可
能性の高い説明として、最表面の格子面が次の面に対し
て数度だけ回転しているとすることであろう。
Although it is not possible to clearly explain the manifestation mechanism of the electron periodicity super-periodic structure shown in FIGS. 1 and 2, one possible explanation is that the outermost lattice plane is several degrees from the next plane. It would just be rotating.

【0027】格子面の回転による超周期構造の発現を分
かりやすく説明すると、図3に模式的にしめした格子面
を2枚の回転角度7度で重ね合わせると、図4に示す超
周期構造が得られ、図1の観測結果を模式的に再現して
いる。
The expression of the super-periodic structure due to the rotation of the lattice planes will be explained in an easy-to-understand manner. When the lattice planes schematically shown in FIG. 3 are superposed at a rotation angle of 7 degrees, the super-periodic structure shown in FIG. Obtained and schematically reproducing the observation result of FIG.

【0028】回転の角度が小さくなると超周期の間隔は
長くなり、明るさのコントラストは回転してない場合と
大差がなくなり、有意の差が認められる間隔は10ナノ
メータである。
As the rotation angle becomes smaller, the super-cycle interval becomes longer, and the brightness contrast is almost the same as that in the non-rotated case, and the interval at which a significant difference is recognized is 10 nanometers.

【0029】一方、回転角度が大きくなると超周期の間
隔が短くなり、間隔が1ナノメータ以下で有意の差が認
められなくなる。
On the other hand, when the rotation angle becomes large, the interval of the super cycle becomes short, and when the interval is 1 nanometer or less, no significant difference can be recognized.

【0030】黒鉛状炭素表面の超周期構造は金属表面に
形成された黒鉛状薄膜に見られるが、その製造方法は多
様である。
The super-periodic structure of the graphitic carbon surface is found in the graphitic thin film formed on the metal surface, but the manufacturing method thereof is various.

【0031】たとえば、高温で金属内に予め炭素を固溶
した後、それより低い温度で長時間保持して、炭素原子
を内部から表面析出させる方法である。
For example, there is a method in which carbon is previously solid-dissolved in a metal at a high temperature and then held at a temperature lower than that for a long time so that carbon atoms are surface-precipitated from the inside.

【0032】ここで、この固溶と表面析出の過程は酸素
が存在しない高真空条件が必要なことは当然である。
Here, it goes without saying that the process of solid solution and surface precipitation requires high vacuum conditions in which oxygen does not exist.

【0033】金属の種類は炭素原子を溶解するものであ
れば特に指定しないが、ニッケル、パラジウム、白金で
は比較的低い温度の熱処理で黒鉛状炭素の薄膜が得られ
る。
The type of metal is not particularly specified as long as it dissolves carbon atoms, but with nickel, palladium and platinum, a thin film of graphitic carbon can be obtained by heat treatment at a relatively low temperature.

【0034】第2の方法は有機気体中で金属表面に炭素
を析出させ、さらに熱処理により黒鉛化する方法であ
る。この方法では、固溶炭素から表面析出させるより高
い温度が必要である。
The second method is a method in which carbon is deposited on the metal surface in an organic gas and then graphitized by heat treatment. This method requires higher temperatures than surface precipitation from solute carbon.

【0035】黒鉛状炭素を形成せしめる基板として用い
られている金属は多結晶でもよいが、単結晶あるいは結
晶粒の大きい多結晶体で広い範囲の超周期領域を作るこ
とができる。
The metal used as the substrate for forming the graphitic carbon may be polycrystalline, but a single crystal or a polycrystalline body having large crystal grains can form a wide range of super-periodic region.

【0036】図1および図2に見られる超周期の明るい
部分は、走査トンネル顕微鏡の原理から、電子密度の高
い領域である。この電子密度の超周期性は安定であり、
大気中はもとより水溶液中でも観察できる。
The bright portion of the super-period shown in FIGS. 1 and 2 is a region having a high electron density according to the principle of the scanning tunneling microscope. The super periodicity of this electron density is stable,
It can be observed not only in the air but also in an aqueous solution.

【0037】電子密度が高い領域では、その上に接近し
た分子との相互作用が強くなるので、安定した吸着状態
が期待できる。
In the region where the electron density is high, the interaction with the molecules approaching the region is stronger, so that a stable adsorption state can be expected.

【0038】さらに大気中あるいは水溶液中では水分子
が吸着し、本来は疎水性である黒鉛表面が、1ナノメー
タから10ナノメータの周期性をもってナノメータレベ
ルノ局部領域の親水性を増大させることができる。
Furthermore, water molecules are adsorbed in the air or in an aqueous solution, and the originally hydrophobic graphite surface can increase the hydrophilicity in the local area of the nanometer level area with a periodicity of 1 nanometer to 10 nanometers.

【0039】この特徴により、アルブミンなどの酵素分
子の希釈溶液と接触させること、分子1個づつあるいは
2量体が安定ならば2個づつ、さらに数個の分子で固有
の集合体を形成するならばその数の分子の集合体を分散
させて吸着させることが可能となる。
By virtue of this feature, contact with a dilute solution of an enzyme molecule such as albumin, if one molecule or two if the dimer is stable, and if several molecules form a unique aggregate, For example, it is possible to disperse and adsorb the aggregate of molecules of that number.

【0040】以下に実施例をもって、本発明をさらに具
体的に説明する。
The present invention will be described more specifically with reference to the following examples.

【0041】[0041]

【実施例1】パラジウムの単結晶板を炭素粉とともに石
英管に真空封管し、1000℃の電気炉中で加熱して炭
素原子を結晶中に溶解させた後、水中でクエンチして管
外に取り出した。
Example 1 A single crystal plate of palladium was vacuum sealed with a carbon powder in a quartz tube and heated in an electric furnace at 1000 ° C. to dissolve carbon atoms in the crystal, followed by quenching in water to outside the tube. I took it out.

【0042】パラジュウム(100)面を研磨したの
ち、高真空中環境にて700℃で加熱し、表面に黒鉛状
炭素の薄膜を得た。
After polishing the palladium (100) surface, it was heated in a high vacuum environment at 700 ° C. to obtain a thin film of graphitic carbon on the surface.

【0043】この薄膜を大気開放環境下で走査トンネル
顕微鏡観察した結果、図1に示した間隔が約2ナノメー
タの高い電子密度領域の超周期構造が図2に示した黒鉛
構造の(001)格子面の原子配列に加えて観察され
た。この超周期構造は水中でも安定であった。
As a result of observing this thin film in an atmosphere open to the atmosphere using a scanning tunneling microscope, the super-periodic structure in the high electron density region with a spacing of about 2 nanometers shown in FIG. 1 has the graphite structure (001) lattice shown in FIG. Observed in addition to the atomic arrangement of the plane. This superperiodic structure was stable in water.

【0044】[0044]

【実施例2】実施例1と同じ方法で炭素原子を固溶した
パラジウム単結晶の(111)面を研磨し、高真空環境
にて800℃で加熱し、表面に黒鉛状炭素の薄膜を得
た。
Example 2 By the same method as in Example 1, the (111) plane of a palladium single crystal in which carbon atoms were solid-solved was polished and heated at 800 ° C. in a high vacuum environment to obtain a thin film of graphitic carbon on the surface. It was

【0045】この薄膜を大気開放環境下で走査トンネル
顕微鏡観察した結果、間隔が約7ナノメータの高い電子
密度領域の超周期構造が黒鉛構造の(001)格子面の
原子配列に加えて観察された。この超周期構造は水中で
も安定であった。
As a result of observing this thin film in an atmosphere open to the atmosphere with a scanning tunneling microscope, a superperiodic structure in a high electron density region with a spacing of about 7 nanometers was observed in addition to the atomic arrangement on the (001) lattice plane of the graphite structure. . This superperiodic structure was stable in water.

【0046】[0046]

【比較例1】市販の黒鉛板(HOPG)を大気中で劈開
して得た(001)格子面を大気開放環境下で走査トン
ネル顕微鏡観察した結果、実施例1および2で見られた
超周期構造は観察されず、単に(001)格子面の原子
配列が観察されたのみであった。
Comparative Example 1 A (001) lattice plane obtained by cleaving a commercially available graphite plate (HOPG) in the atmosphere was observed by a scanning tunnel microscope under an atmosphere open to the atmosphere, and as a result, the super-periods found in Examples 1 and 2 were observed. No structure was observed, and only the atomic arrangement of the (001) lattice plane was observed.

【0047】[0047]

【実施例3】実施例1で得た超周期構造をもつ黒鉛状炭
素表面に血清アルブミン水溶液を注入し、走査原子間力
顕微鏡で観察した結果、分散して表面吸着したアルブミ
ン分子が観察できた。
Example 3 A serum albumin aqueous solution was injected into the surface of the graphitic carbon having the superperiodic structure obtained in Example 1 and observed by a scanning atomic force microscope. As a result, albumin molecules dispersed and adsorbed on the surface could be observed. .

【0048】[0048]

【比較例2】比較例1に示した市販の黒鉛板(HOP
G)の劈開面に実施例3と同じ血清アルブミン水溶液を
注入し、走査原子間力顕微鏡で観察したが、表面にはア
ルブミン分子が観察されなかった。アルブミン分子は浮
遊し、表面には固定されていない。
[Comparative Example 2] The commercially available graphite plate (HOP
The same serum albumin aqueous solution as in Example 3 was injected into the cleaved surface of G) and observed with a scanning atomic force microscope, but no albumin molecule was observed on the surface. Albumin molecules float and are not fixed on the surface.

【0049】[0049]

【発明の効果】上述のように本発明の黒鉛状炭素吸着体
は、金属上に形成された黒鉛状炭素薄膜表面の(00
1)格子面に形成された1ナノメータから10ナノメー
タ間隔の高い電子密度を持つ領域の超周期構造という新
しい発見に基づくものであり、酵素等の分子1個づつあ
るいは数個の分子群づつ分散して吸着する基板を提供す
るものであり、さらに、他の分子あるいはイオンの添加
による酵素分子の形状変化を精密にその場観察する吸着
体として利用できるとともに、医薬品の効用を分子レベ
ルで確認でする方法へ発展する顕著な効果をもつ。
As described above, the graphite-like carbon adsorbent of the present invention has (00) of the surface of the graphite-like carbon thin film formed on the metal.
1) It is based on the new discovery of a super-periodic structure of a region having a high electron density at intervals of 1 nanometer to 10 nanometers formed on a lattice plane, and it is possible to disperse one molecule or several groups of molecules such as an enzyme. It can be used as an adsorbent for precise in-situ observation of shape changes of enzyme molecules due to addition of other molecules or ions, and can confirm the efficacy of pharmaceuticals at the molecular level. It has a remarkable effect of developing into a method.

【図面の簡単な説明】[Brief description of drawings]

【図1】パラジウム上に形成した黒鉛状炭素薄膜の走査
トンネル電子顕微鏡像を示す。
FIG. 1 shows a scanning tunneling electron microscope image of a graphitic carbon thin film formed on palladium.

【図2】パラジウム上に形成した黒鉛状炭素薄膜の走査
トンネル電子顕微鏡による原子像を示す。
FIG. 2 shows an atomic image of a graphitic carbon thin film formed on palladium by a scanning tunneling electron microscope.

【図3】黒鉛(001)格子モデルを示す模式図。FIG. 3 is a schematic diagram showing a graphite (001) lattice model.

【図4】7度回転した格子モデルを示す模式図。FIG. 4 is a schematic diagram showing a lattice model rotated by 7 degrees.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 黒鉛状炭素の(001)格子面上に電子
密度の高い領域が周期的に配列し、その高電子密度領域
に分子1個づつあるいは数個の分子群づつを吸着するこ
とを可能とする黒鉛状炭素吸着体。
1. A region having a high electron density is periodically arranged on a (001) lattice plane of graphitic carbon, and one molecule or a few molecule groups are adsorbed in the high electron density region. Graphite-like carbon adsorbent that makes possible.
【請求項2】 周期的に配列した高電子密度領域の間隔
が1ナノメータから10ナノメータの範囲であることを
特徴とする請求項1に記載の黒鉛状炭素吸着体。
2. The graphitic carbon adsorbent according to claim 1, wherein the intervals of the periodically arranged high electron density regions are in the range of 1 nanometer to 10 nanometers.
【請求項3】 黒鉛状炭素が金属上に形成された薄膜で
あり、その表面が周期的な高電子密度領域をもつことを
特徴とする請求項1又は2に記載の黒鉛状炭素吸着体。
3. The graphitic carbon adsorbent according to claim 1, wherein the graphitic carbon is a thin film formed on a metal, and the surface thereof has a periodic high electron density region.
JP5104908A 1993-04-08 1993-04-08 Graphite-like carbon adsorbent Withdrawn JPH06298508A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5104908A JPH06298508A (en) 1993-04-08 1993-04-08 Graphite-like carbon adsorbent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5104908A JPH06298508A (en) 1993-04-08 1993-04-08 Graphite-like carbon adsorbent

Publications (1)

Publication Number Publication Date
JPH06298508A true JPH06298508A (en) 1994-10-25

Family

ID=14393225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5104908A Withdrawn JPH06298508A (en) 1993-04-08 1993-04-08 Graphite-like carbon adsorbent

Country Status (1)

Country Link
JP (1) JPH06298508A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002032568A1 (en) * 2000-10-18 2002-04-25 Toyo Kohan Co., Ltd. Particulate support for separation/purification or extraction and process for producing the same
JP2005021892A (en) * 2004-08-30 2005-01-27 Japan Science & Technology Agency Adsorbent material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002032568A1 (en) * 2000-10-18 2002-04-25 Toyo Kohan Co., Ltd. Particulate support for separation/purification or extraction and process for producing the same
JP2005021892A (en) * 2004-08-30 2005-01-27 Japan Science & Technology Agency Adsorbent material
JP4530765B2 (en) * 2004-08-30 2010-08-25 独立行政法人科学技術振興機構 Adsorbent

Similar Documents

Publication Publication Date Title
Christenson et al. The nature of the air-cleaved mica surface
Zhai et al. Rational construction of 3D‐networked carbon nanowalls/diamond supporting CuO architecture for high‐performance electrochemical biosensors
Xie et al. Graphene nanoribbons from unzipped carbon nanotubes: atomic structures, Raman spectroscopy, and electrical properties
US7115305B2 (en) Method of producing regular arrays of nano-scale objects using nano-structured block-copolymeric materials
Gómez-Navarro et al. Atomic structure of reduced graphene oxide
Gooding Nanostructuring electrodes with carbon nanotubes: A review on electrochemistry and applications for sensing
Saha et al. Carbon nanotube networks on different platforms
Che et al. Chemical vapor deposition based synthesis of carbon nanotubes and nanofibers using a template method
Borgohain et al. Controlled synthesis, efficient purification, and electrochemical characterization of arc-discharge carbon nano-onions
Rakov Methods for preparation of carbon nanotubes
US7166325B2 (en) Carbon nanotube devices
AU724277B2 (en) Functionalised nanotubes
CN103140439A (en) Method for producing graphene at a low temperature, method for direct transfer of graphene using same, and graphene sheet
Tan et al. Growth of carbon nanotubes over non-metallic based catalysts: A review on the recent developments
Xu et al. Two‐Dimensional Mesoporous Carbon Materials Derived from Fullerene Microsheets for Energy Applications
Liu et al. Core–shell nanocluster films of hemoglobin and clay nanoparticle: Direct electrochemistry and electrocatalysis
Shu et al. Electrochemical exfoliation of two‐dimensional phosphorene sheets and its energy application
JPH06298508A (en) Graphite-like carbon adsorbent
Gao et al. Graphene Membranes for Multi‐Dimensional Electron Microscopy Imaging: Preparation, Application, and Prospect
JPWO2019168206A1 (en) Method for manufacturing surface-modified carbon material and surface-modified carbon material
Rochal et al. Chirality manifestation in elastic coupling between the layers of double-walled carbon nanotubes
US20060121628A1 (en) Fine particle film and producing method of the same
Fang et al. Spontaneous and scanning-assisted desorption–adsorption dynamics in porous supramolecular networks at the solution–solid interface
JPH06305721A (en) Graphite carbon adsorbent
Rius Technologies of carbon materials. syntheses and preparations

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000704