JP4530765B2 - Adsorbent - Google Patents

Adsorbent Download PDF

Info

Publication number
JP4530765B2
JP4530765B2 JP2004250220A JP2004250220A JP4530765B2 JP 4530765 B2 JP4530765 B2 JP 4530765B2 JP 2004250220 A JP2004250220 A JP 2004250220A JP 2004250220 A JP2004250220 A JP 2004250220A JP 4530765 B2 JP4530765 B2 JP 4530765B2
Authority
JP
Japan
Prior art keywords
swnhs
adsorbent
ethanol
application
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004250220A
Other languages
Japanese (ja)
Other versions
JP2005021892A (en
Inventor
澄男 飯島
雅子 湯田坂
文夫 小海
邦充 高橋
アデレーネ ニーシャ ジェイムズ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
NEC Corp
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
NEC Corp
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, NEC Corp, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2004250220A priority Critical patent/JP4530765B2/en
Publication of JP2005021892A publication Critical patent/JP2005021892A/en
Application granted granted Critical
Publication of JP4530765B2 publication Critical patent/JP4530765B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

この出願の発明は、吸着材に関するものである。さらに詳しくは、この出願の発明は、活性化処理が不要で、吸着容量の極めて大きな単層カーボンナノホーンからなる吸着材に関するものである。   The invention of this application relates to an adsorbent. More specifically, the invention of this application relates to an adsorbent made of single-walled carbon nanohorns that require no activation treatment and have a very large adsorption capacity.

最近、この出願の発明者らにより、炭素原子のみからなる新しい炭素同素体である単層カーボンナノホーン(SWNH)が発見された。SWNHは、単層カーボンナノチューブの一端が円錐形状を有する管状体であって、各々の円錐部間に働くファンデルワールス力によって、複数のものがチューブ部を中心側にし円錐部が角のように表面部に突き出るような構成で集合し、直径80nm程度以下の球状の単層カーボンナノホーン集合体(SWNHs)を形成していることも見出されている。図1(a)〜(c)にSWNHsのTEM像を例示した。   Recently, the inventors of this application have discovered a single-walled carbon nanohorn (SWNH), which is a new carbon allotrope composed of only carbon atoms. SWNH is a tubular body in which one end of a single-walled carbon nanotube has a conical shape, and by a van der Waals force acting between each conical part, a plurality of ones have a tube part at the center and a conical part has an angle. It has also been found that the single-walled carbon nanohorn aggregates (SWNHs) having a spherical shape with a diameter of about 80 nm or less are aggregated in a configuration that protrudes to the surface portion. FIG. 1A to FIG. 1C exemplify TEM images of SWNHs.

SWNHのチューブ部は、直径約2nm、長さ30〜50nm程度であり、円錐部は軸断面の頂角が平均20°程度のものである。SWNHsを構成する隣接した二つのSWNHの壁間距離は約0.4nm以下である。   The tube portion of SWNH has a diameter of about 2 nm and a length of about 30 to 50 nm, and the cone portion has an apex angle of an axial section of about 20 ° on average. The distance between the walls of two adjacent SWNHs constituting the SWNHs is about 0.4 nm or less.

このようなSWNHsは、フラーレン、カ−ボンナノチュ−ブ等のニューカーボンと同様に、その機能および特性の発見と、化学工業をはじめとする広い分野での応用に大きな期待がよせられている。   Such SWNHs, like new carbons such as fullerenes and carbon nanotubes, are highly expected to find their functions and properties and to be applied in a wide range of fields including the chemical industry.

しかしなから、これまでSWNHsの機能および特性に関してはほとんど何も知られていないのが現状である。   However, the current situation is that little is known about the functions and characteristics of SWNHs.

そこで、この出願の発明は、以上の通りの事情に鑑みてなされたものであり、SWNHsの構造を基本とし、これまで未知の新しい機能材として、活性化処理が不要で、吸着容量の極めて大きな単層カーボンナノホーンの吸着材を提供することを課題としている。   Therefore, the invention of this application has been made in view of the circumstances as described above, and based on the structure of SWNHs, as an unknown new functional material, no activation treatment is required, and the adsorption capacity is extremely large. An object is to provide an adsorbent for a single-walled carbon nanohorn.

そこで、この出願の発明は、上記の課題を解決するものとして、以下の通りの発明を提供する。   Therefore, the invention of this application provides the following invention as a solution to the above-mentioned problems.

すなわち、まず第1には、この出願の発明は、活性化プロセスを必要とせずにエタノールを吸着する吸着材であって、単層カーボンナノホーンが球状に集合してなる単層カーボンナノホーン集合体により構成されていることを特徴とする吸着材を提供する。 That is, firstly, the invention of this application is an adsorbent that adsorbs ethanol without requiring an activation process, and includes a single-walled carbon nanohorn aggregate formed by collecting single-walled carbon nanohorns in a spherical shape. An adsorbent characterized by being configured is provided.

そして第2には、この出願の発明は、上記第1の発明について、350℃〜550℃の温度範囲で酸化抵抗性を有することを特徴とする吸着材を提供する。 Secondly, the invention of this application provides an adsorbent characterized by having oxidation resistance in a temperature range of 350 ° C. to 550 ° C. with respect to the first invention.

以上詳しく説明した通り、この発明によって、SWNHsの構造を基本とし、これまで未知の新しい機能材として、活性化処理が不要で、吸着容量の極めて大きな吸着材が提供される。   As described above in detail, according to the present invention, an adsorbent having an extremely large adsorption capacity is provided as an unknown new functional material based on the structure of SWNHs.

この出願の発明は、上記の通りの特徴を持つものであるが、以下にその実施の形態について説明する。   The invention of this application has the features as described above, and an embodiment thereof will be described below.

まず、この出願の発明が提供する吸着材は、活性化プロセスを必要とせずに被吸着物を吸着する吸着材であって、単層カーボンナノホーンが球状に集合してなる単層カーボンナノホーン集合体(以下、単にSWNHsと示す)により構成されていることを特徴としている。   First, the adsorbent provided by the invention of this application is an adsorbent that adsorbs an object to be adsorbed without requiring an activation process, and a single-walled carbon nanohorn aggregate formed by collecting single-walled carbon nanohorns in a spherical shape. (Hereinafter, simply referred to as SWNHs).

SWNHsは、チューブの一端が円錐形状の管状体からなる単層カーボンナノチューブの複数のものが、各々のチューブ部を中心側にし、円錐部が角のように表面部に突き出るような構成で球状体を形成したものであることが知られている。このようなSWNHsについて、この出願の発明では、これを吸着材としている。SWNHsが吸着材としての機能を有することはこれまで全く知られていないことであって、この出願の発明によってはじめて提示されることになる。   SWNHs are spherical with a structure in which a plurality of single-walled carbon nanotubes each having one end of a tube formed of a conical tubular body are centered on each tube portion, and the conical portion protrudes to the surface portion like a corner. It is known that is formed. Such SWNHs are used as an adsorbent in the invention of this application. It has never been known that SWNHs have a function as an adsorbent, and will be presented for the first time by the invention of this application.

さらに、この出願の発明の吸着材は、驚くべきことに、SWNHsという純粋な炭素材料により構成されているにもかかわらず、いかなる活性化プロセスをも必要とせず、高い吸着活性を示す。例えば従来より吸着材として広く使用されている活性炭材料は、製造過程において、物理的あるいは化学低活性化プロセスが必須とされている。このような活性化プロセスを必要としない高い吸着活性は、SWNHsに独特の新規な化学的特性の発見として画期的である。   Furthermore, the adsorbent of the invention of this application surprisingly does not require any activation process and exhibits a high adsorbing activity despite being composed of a pure carbon material called SWNHs. For example, an activated carbon material that has been widely used as an adsorbent conventionally requires a physical or chemical low activation process in the manufacturing process. The high adsorption activity that does not require such an activation process is epoch-making as the discovery of novel chemical properties unique to SWNHs.

なお、この出願の発明では、SWNHsについては「球状」に単層カーボンナノホーンが集合したものとしているが、この「球状」であることは、真球状であることに限定されることはない。同様に、「円錐」との規定についても真円錐に限られないことは言うまでもない。   In the invention of this application, SWNHs are assumed to be “spherical” in which single-walled carbon nanohorns are aggregated. However, the “spherical” is not limited to being true spherical. Similarly, it goes without saying that the definition of “cone” is not limited to a true cone.

そして、この出願の発明の吸着材は、図2の断面模式図に示したように、SWNHsの表面部に突き出た円錐部の間に形成される空間に、各種の被吸着物を吸着させるようにしている。被吸着物としては、気体、有機物、錯体、生体関連物質等の、各種の物質を考慮することができる。具体的には、たとえば、O、N、CO、CO、窒素酸化物、メタン等の有機物ガス等の気体、アルコール、アルデヒド、ケトン、脂肪族炭化水素、芳香族炭化水素等の有機物、金属フタロシアニン等の錯体、汚染水や汚染気流中の有機不純物や生体関連物質等を対象とすることができる。 The adsorbent of the invention of the present application adsorbs various objects to be adsorbed in the space formed between the conical portions protruding from the surface portion of the SWNHs, as shown in the schematic cross-sectional view of FIG. I have to. Various substances such as gases, organic substances, complexes, and biological substances can be considered as the adsorbed substances. Specifically, for example, gases such as O 2 , N 2 , CO, CO 2 , nitrogen oxides, organic gases such as methane, organic substances such as alcohols, aldehydes, ketones, aliphatic hydrocarbons, aromatic hydrocarbons, Complexes such as metal phthalocyanine, organic impurities in polluted water and polluted airflow, bio-related substances, and the like can be targeted.

たとえば、通常SWNHsの比表面積は100〜300m/g程度であるが、その吸着容量は、超高比表面積カーボンであるMACSORB(樹脂ベースのカーボン、賦活:KOH活性、平均細孔径:1nm以下、比表面積:2290m/g)と比較して、エタノール吸着量で約3.5倍という大きなものとなる。エタノール分子の大きさはおよそ0.6nm以上であり、図2に示したように、エタノール分子は、SWNHs吸着材の表面だけではなく、SWNHsを構成する個々の単層カーボンナノホーンの円錐部の相互の間に形成される空間に吸着される。したがって、SWNHsは比表面積が約7〜23倍程度の超高比表面積カーボンよりも多くの被吸着物質を吸着することができるのである。 For example, the specific surface area of SWNHs is usually about 100 to 300 m 2 / g, but its adsorption capacity is MACSORB (resin-based carbon, activation: KOH activity, average pore diameter: 1 nm or less, which is an ultra-high specific surface area carbon, (Specific surface area: 2290 m 2 / g), the ethanol adsorption amount is about 3.5 times larger. The size of the ethanol molecule is approximately 0.6 nm or more, and as shown in FIG. 2, the ethanol molecule is not only the surface of the SWNHs adsorbent, but also the conical portions of the individual single-walled carbon nanohorns constituting the SWNHs. It is adsorbed in the space formed between the two. Therefore, SWNHs can adsorb more substances to be adsorbed than ultra-high specific surface area carbon having a specific surface area of about 7 to 23 times.

また、この出願の発明の吸着材は、前記の通りの隣接するチューブ壁により構成される空間に加えて、SWNHsのチューブ部の間に形成される空間(図2において、点線の小さな丸に囲まれた空間)や、さらにはSWNHsそのものの内部空間にも被吸着分子を吸着することが可能である。ただし、隣接した二つの単層カーボンナノホーンの管状体の壁間距離は約0.4nmであることから、被吸着分子としては、このような壁間スペースに入り込むことができる程度に小さいものである。被吸着分子が十分に小さい場合には、この出願の発明の吸着材の吸着容量を、さらに大きなものとすることができる。   Further, the adsorbent of the invention of this application is not limited to the space formed by the adjacent tube walls as described above, but also the space formed between the SWNHs tube portions (in FIG. 2, surrounded by a small dotted circle). Adsorbed molecules can also be adsorbed in the internal space of SWNHs itself. However, since the distance between the walls of two adjacent single-walled carbon nanohorn tubular bodies is about 0.4 nm, the adsorbed molecule is small enough to enter such a space between walls. . When the molecules to be adsorbed are sufficiently small, the adsorption capacity of the adsorbent of the invention of this application can be further increased.

加えて、SWNHs自体が1800℃以上の真空中で極めて不活性であることは知られていたが、さらには、C60やアモルファスカーボンや活性炭等と比較して30〜50℃の温度範囲での酸化抵抗が高いことが明らかになった。これにより、この出願の発明の吸着材は、より多様な環境で利用可能となる。 In addition, although SWNHs itself has been known that it is very inert in vacuo at least 1800 ° C., further, as compared to C 60 or amorphous carbon or activated charcoal 3 5 0 temperature of 5 50 ° C. It became clear that the oxidation resistance in the range was high. Thereby, the adsorbent of the invention of this application can be used in more various environments.

なお、この出願の発明におけるSWNHsについては、室温、760TorrのAr雰囲気中で、触媒無しのグラファイトをターゲットとするCOレーザーアブレーション法によって製造することができる。 The SWNHs in the invention of this application can be produced by a CO 2 laser ablation method using graphite without a catalyst as a target in an Ar atmosphere at room temperature and 760 Torr.

以下、添付した図面に沿って実施例を示し、この発明の実施の形態についてさらに詳しく説明する。   Hereinafter, embodiments will be described with reference to the accompanying drawings, and embodiments of the present invention will be described in more detail.

(実施例1)
300mlの99.5%エタノールにSWNHs10mgを入れ、一般的な超音波槽を用いて30分間超音波を照射した。なお、使用したSWNHsは、波長10.6μmのCOレーザーを、反応チャンバー(室温、760Torr、Ar雰囲気)内で回転しているφ30×50mmのグラファイトターゲットにビーム径10mmで照射して発生させ、収集フィルター上に回収したものであり、その構造は次の通りであった。
Example 1
10 mg of SWNHs was placed in 300 ml of 99.5% ethanol, and ultrasonic waves were irradiated for 30 minutes using a general ultrasonic bath. Incidentally, SWNHs used was a CO 2 laser with a wavelength of 10.6 [mu] m, the reaction chamber (room temperature, 760 Torr, Ar atmosphere) to a graphite target of 0 30 × 50 mm rotating at a is generated by irradiating a beam diameter 10 mm, It was collected on a collection filter and its structure was as follows.

SWNH :チューブ直径 平均2nm
チューブ長さ 30nm
円錐部軸断面の頂角 平均20°
SWNHs:直径 平均70nm
チューブ壁間距離 平均0.3nm
このようなエタノール処理を施したSWNHs(以下、エタノール処理SWNHsという)は、溶媒を自然蒸発させることで溶液から回収した。超高比表面積を有するMACSORBに対しても、同様なエタノール処理を施した。
SWNH: Tube diameter average 2nm
Tube length 30nm
Average apex angle of the cone section 20 °
SWNHs: Diameter average 70nm
Tube wall distance average 0.3 nm
SWNHs subjected to such ethanol treatment (hereinafter referred to as ethanol-treated SWNHs) were recovered from the solution by spontaneous evaporation of the solvent. The same ethanol treatment was applied to MACSORB having an ultra-high specific surface area.

エタノール処理SWNHs、未処理SWNHsおよびエタノール処理MACSORBを試料とし、熱重量分析(TGA)を行うことでエタノール吸着量を測定した。測定にはTGA2950を用い、99.9999%のHe雰囲気中で、室温〜600℃の温度範囲を昇温速度10℃/min.で加熱した。Heガスの流量は、60ml/min.で一定とした。なお、試料室は各々の分析前にHeガスでパージし、残留酸素の低減を図った。   The ethanol adsorption amount was measured by performing thermogravimetric analysis (TGA) using ethanol-treated SWNHs, untreated SWNHs, and ethanol-treated MACSORB as samples. TGA2950 was used for the measurement, and the temperature range from room temperature to 600 ° C was set in a 99.9999% He atmosphere at a rate of temperature increase of 10 ° C / min. And heated. The flow rate of He gas is 60 ml / min. And constant. The sample chamber was purged with He gas before each analysis to reduce residual oxygen.

TGAの結果を、図3に示した。図中のアルファベットa、bはそれぞれエタノール処理SWNHsのTGA曲線とDTGA曲線を、cはエタノール処理MACSORBのTGA曲線を示している。未処理SWNHsについては、この温度範囲において目立った重量変化が見られなかったことから図示しなかった。このことから、残留酸素による分析への影響はなかったものとした。   The results of TGA are shown in FIG. In the figure, alphabets a and b represent the TGA curve and DTGA curve of ethanol-treated SWNHs, respectively, and c represents the TGA curve of ethanol-treated MACSORB. Untreated SWNHs were not shown because no noticeable weight change was observed in this temperature range. From this, it was assumed that there was no influence on the analysis by residual oxygen.

エタノール処理SWNHsの重量の減少はエタノールの脱離によるものであり、エタノール処理によってSWNHsに吸着されたエタノール量に一致する。このことから、SWNHsのエタノール吸着量は約25重量%であった。また、TGA曲線およびDTGA曲線から、エタノールの脱離は100〜550℃の範囲で2段階で連続的に生じていることが分かった。一方の曲線cから、MACSORBのエタノール吸着量は7重量%程度であることがわかった。   The decrease in the weight of the ethanol-treated SWNHs is due to the desorption of ethanol and coincides with the amount of ethanol adsorbed on the SWNHs by the ethanol treatment. From this, the ethanol adsorption amount of SWNHs was about 25% by weight. Further, it was found from the TGA curve and the DTGA curve that ethanol desorption occurred continuously in two steps in the range of 100 to 550 ° C. From one curve c, it was found that the ethanol adsorption amount of MACSORB was about 7% by weight.

以上のことから、この出願の発明のSWNHs吸着材は、例えば、超高比表面積カーボンよりもエタノールの吸着容量が約3.5倍というように、吸着容量の大きいことが示された。
(実施例2)
実施例1におけるSWNHsと他の炭素材のO2雰囲気における熱安定性をTGA分析により調べた。炭素材としては、C60、グラファイト、ダイヤモンド、アモルファスカーボン(a−C)、気相成長カーボンファイバー(VGCF075)、活性炭繊維A−20(比表面積:1800m/g)およびMACSORB(比表面積:2290m/g)を用いた。その結果から、図4に、SWNHsと他の炭素材料のDTGA曲線を示した。
From the above, it was shown that the SWNHs adsorbent of the invention of this application has a large adsorption capacity, for example, the adsorption capacity of ethanol is about 3.5 times that of ultra-high specific surface area carbon.
(Example 2)
The thermal stability of SWNHs in Example 1 and other carbon materials in an O 2 atmosphere was examined by TGA analysis. As carbon materials, C 60 , graphite, diamond, amorphous carbon (a-C), vapor grown carbon fiber (VGCF075), activated carbon fiber A-20 (specific surface area: 1800 m 2 / g) and MACSORB (specific surface area: 2290 m) 2 / g) was used. From the results, FIG. 4 shows DTGA curves of SWNHs and other carbon materials.

SWNHsの酸化は300℃付近から徐々に始まり、620℃付近でピークとなり、720℃で終了することがわかった。他の炭素材料と比較して、SWNHsの熱安定性は、VGCF07、グラファイトおよびダイヤモンドには劣っていた。しかしながら、610℃以下で完全に燃焼するC60、a―Cや2種の活性炭;A−20およびMACSORBよりは安定していた。また、これらの材料よりも、350〜550℃の温度範囲でのSWNHsの酸化速度が低いことが注目された。すなわち、SWNHsは、350〜550℃の温度範囲で、C60、a―C、A−20およびMACSORB等の材料よりも高い酸化抵抗特性を有することがわかった。 It was found that the oxidation of SWNHs started gradually from around 300 ° C., peaked at around 620 ° C., and ended at 720 ° C. Compared to other carbon materials, the thermal stability of SWNHs was inferior to VGCF07, graphite and diamond. However, it was more stable than C 60 , a-C and two types of activated carbon; A-20 and MACSORB, which burn completely at 610 ° C. or lower. It was also noted that the oxidation rate of SWNHs in the temperature range of 350 to 550 ° C. was lower than these materials. That is, it was found that SWNHs has higher oxidation resistance characteristics than materials such as C 60 , aC, A-20, and MACSORB in a temperature range of 350 to 550 ° C.

以上のことから、SWNHsの酸素雰囲気中における熱安定性は高く、C60、a―C、2種の活性炭と比較して30〜50℃の温度範囲で高酸化抵抗を示すことはSWNHs自体に付加的な価値を与え、この出願の発明の酸化触媒および触媒担体が広い範囲で利用できることが示された。 From the above, the thermal stability in an oxygen atmosphere at SWNHs is high, to exhibit high oxidation resistance at C 60, a-C, 2 kinds of compared to the activated carbon 3 5 0-5 50 temperature range ℃ is It provided additional value to SWNHs themselves, indicating that the inventive oxidation catalyst and catalyst support of this application can be used in a wide range.

もちろん、この発明は以上の例に限定されるものではなく、細部については様々な態様が可能であることは言うまでもない。   Of course, the present invention is not limited to the above examples, and it goes without saying that various aspects are possible in detail.

SWNHsのTEM像を例示した図である。(a)SWNHsは、直径が80nm程度でほぼ均一な大きさの球状体である。(b)それぞれのSWNHsは、管状のSWNHが球状に集合して構成されている。(c)SWNHsの表面部には、20nm程度の長さの円錐状の突出物が複数認められる。It is the figure which illustrated the TEM image of SWNHs. (A) SWNHs are spherical bodies having a diameter of about 80 nm and a substantially uniform size. (B) Each SWNHs is formed by collecting tubular SWNHs into a spherical shape. (C) A plurality of conical protrusions having a length of about 20 nm are observed on the surface of SWNHs. 集合体表面に突出しているホーン間の空間に吸着されたエタノール分子(小さい点群)の様子を例示した模式図である。(縮尺等は正確ではない。)It is the schematic diagram which illustrated the mode of the ethanol molecule (small point group) adsorbed in the space between the horns which protruded on the surface of an aggregate. (The scale is not accurate.) TGA分析の結果を例示した図であり、a、bはエタノール処理したSWNHsのTGA曲線とDTGA曲線を、また、cはエタノール処理したMACSORBのTGA曲線を示している。It is the figure which illustrated the result of the TGA analysis, a and b show the TGA curve and DTGA curve of SWNHs which carried out ethanol treatment, and c shows the TGA curve of MACSORB which carried out ethanol treatment. 酸素雰囲気中のSWNHsおよび各種カーボン材料のDTGA曲線を例示した図である。It is the figure which illustrated the DTGA curve of SWNHs and various carbon materials in oxygen atmosphere.

Claims (2)

活性化プロセスをせずにエタノールを吸着する吸着材であって、単層カーボンナノホーンが球状に集合してなる単層カーボンナノホーン集合体により構成されていることを特徴とする吸着材。 An adsorbent that adsorbs ethanol without an activation process, and is composed of a single-walled carbon nanohorn aggregate formed by collecting single-walled carbon nanohorns in a spherical shape. 350℃〜550℃の温度範囲で酸化抵抗性を有することを特徴とする請求項1記載の吸着材。 The adsorbent according to claim 1, wherein the adsorbent has oxidation resistance in a temperature range of 350 ° C to 550 ° C.
JP2004250220A 2004-08-30 2004-08-30 Adsorbent Expired - Lifetime JP4530765B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004250220A JP4530765B2 (en) 2004-08-30 2004-08-30 Adsorbent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004250220A JP4530765B2 (en) 2004-08-30 2004-08-30 Adsorbent

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000358362A Division JP3660236B2 (en) 2000-11-24 2000-11-24 Oxidation catalyst and catalyst support

Publications (2)

Publication Number Publication Date
JP2005021892A JP2005021892A (en) 2005-01-27
JP4530765B2 true JP4530765B2 (en) 2010-08-25

Family

ID=34191748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004250220A Expired - Lifetime JP4530765B2 (en) 2004-08-30 2004-08-30 Adsorbent

Country Status (1)

Country Link
JP (1) JP4530765B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007077823A1 (en) * 2006-01-06 2007-07-12 Daikin Industries, Ltd. Fluorine storage material
US8320598B2 (en) * 2009-06-30 2012-11-27 Nokia Corporation Apparatus and method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06298508A (en) * 1993-04-08 1994-10-25 Nippon Steel Corp Graphite-like carbon adsorbent
JPH11221414A (en) * 1998-02-09 1999-08-17 Mitsubishi Electric Corp Air purifying filter unit
JP2001064004A (en) * 1998-07-25 2001-03-13 Japan Science & Technology Corp Single layer carbon nano-horn structure and its production

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06298508A (en) * 1993-04-08 1994-10-25 Nippon Steel Corp Graphite-like carbon adsorbent
JPH11221414A (en) * 1998-02-09 1999-08-17 Mitsubishi Electric Corp Air purifying filter unit
JP2001064004A (en) * 1998-07-25 2001-03-13 Japan Science & Technology Corp Single layer carbon nano-horn structure and its production

Also Published As

Publication number Publication date
JP2005021892A (en) 2005-01-27

Similar Documents

Publication Publication Date Title
JP3989256B2 (en) Carbon nanohorn adsorbent and production method thereof
JP3660236B2 (en) Oxidation catalyst and catalyst support
Lithoxoos et al. Adsorption of N2, CH4, CO and CO2 gases in single walled carbon nanotubes: A combined experimental and Monte Carlo molecular simulation study
Raymundo-Pinero et al. High surface area carbon nanotubes prepared by chemical activation
Bekyarova et al. Single-wall nanostructured carbon for methane storage
Gangupomu et al. Comparative study of carbon nanotubes and granular activated carbon: physicochemical properties and adsorption capacities
JP4819061B2 (en) Porous fibrous nanocarbon and method for producing the same
JP4931168B2 (en) Method for producing high purity 2 to 5 carbon nanotubes
JP2006188393A (en) Method of processing carbon material
Xu et al. One-step preparation of highly dispersed metal-supported catalysts by fluidized-bed MOCVD for carbon nanotube synthesis
Babu et al. SO2 gas adsorption on carbon nanomaterials: a comparative study
JP2007176767A (en) Purifying method for composition containing carbon nanotube
Hu et al. Effects of water vapor on diameter distribution of SWNTs grown over Fe/MgO-based catalysts
JP4693463B2 (en) Catalyst for producing double-walled carbon nanotubes and method for producing double-walled carbon nanotubes using the same
JP4530765B2 (en) Adsorbent
Babu et al. Gas adsorption studies of CO2 in carbon nanomaterials: a case study of vertically aligned carbon nanotubes
JP4394383B2 (en) Single-walled carbon nanohorn adsorbent and method for producing the same
JPWO2006073099A1 (en) Method for producing carbon-based material
Puthusseri et al. Gas adsorption capacity in an all carbon nanomaterial composed of carbon nanohorns and vertically aligned carbon nanotubes
KR100514186B1 (en) Hairy nano carbon material
Hansu et al. Nano Carbon-Based Carbon Catalysts: Types, Preparation, and Characterization
Mamun et al. Carbon nanotubes grown on oil palm shell powdered activated carbon as less hazardous and cheap substrate
Jagtoyen et al. Porosity of carbon nanotubes
Abdulrauf et al. Use of carbon nanotubes for the analysis of pesticide residues in fruits and vegetables
KR102580274B1 (en) manufacturing method of ACTIVATED CARBON to improve TO IMPROVE MESOPORE RATIO AND SPECIFC SURFACE AREA by SURFACE OXIDATION OF PETROLEUM RESIDUE PITCH OR COAL TAR PITCH and activated carbon manufactured thereby

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070920

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070920

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071031

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100518

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100608

R150 Certificate of patent or registration of utility model

Ref document number: 4530765

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term