JPH0629703B2 - Deformation measurement method - Google Patents

Deformation measurement method

Info

Publication number
JPH0629703B2
JPH0629703B2 JP15429888A JP15429888A JPH0629703B2 JP H0629703 B2 JPH0629703 B2 JP H0629703B2 JP 15429888 A JP15429888 A JP 15429888A JP 15429888 A JP15429888 A JP 15429888A JP H0629703 B2 JPH0629703 B2 JP H0629703B2
Authority
JP
Japan
Prior art keywords
deformation
speckle
cross
pattern
speckle pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15429888A
Other languages
Japanese (ja)
Other versions
JPH01320412A (en
Inventor
民樹 竹森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP15429888A priority Critical patent/JPH0629703B2/en
Priority to US07/367,659 priority patent/US4967093A/en
Priority to DE8989111389T priority patent/DE68904993T2/en
Priority to EP89111389A priority patent/EP0347912B1/en
Publication of JPH01320412A publication Critical patent/JPH01320412A/en
Publication of JPH0629703B2 publication Critical patent/JPH0629703B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention 【産業上の利用分野】[Industrial applications]

本発明は、変形の測定方法に係り、特に、変形前後の物
体表面の一部をレーザビームで照射してスペツクル模様
を現出し、該変形前後のスペツクル模様をそれぞれ光電
変換して得られる信号間の相互相関関数を求め、該相互
相関関数の極値の位置として求められるスペツクル模様
の移動量から物体の変形量を決定する変形の測定方法の
改良に関するものである。
The present invention relates to a deformation measuring method, and in particular, a part of an object surface before and after deformation is irradiated with a laser beam to reveal a speckle pattern, and a signal between signals obtained by photoelectrically converting the speckle pattern before and after the deformation. The present invention relates to an improvement in the deformation measuring method for determining the amount of deformation of an object from the amount of movement of the speckle pattern obtained as the position of the extreme value of the cross-correlation function.

【従来の技術】[Prior art]

レーザビームを粗面に当てた時、拡散光の干渉によつて
生ずるスペツクル模様は、表面に変位や変形が起きる
と、徐々に変形しながら移動する。そこで、スペツクル
模様を光電的に走査し、得られる信号の相関ピーク位置
からスペツクル移動を求め、このスペツクル移動と表面
の変位や変形との関係を利用して、物体の並進、回転、
歪み等による微小な変形を測定する、いわゆるスペツク
ル相関法が提案されている(特公昭59−52963、
レーザー科学研究No.6(1984)pp152〜15
4、最新精密計測技術(昭和62年7月1日)pp241
〜244)。 このスペツクル相関法で、最も実用に近いのは、第8図
に示す如く、一次元イメージセンサ15とマイクロコン
ピユータ16を用いたものであり、これによつて、1μ
m以上の平行移動と10-5rad程度の回転が測定されて
いる。 この装置においては、物体10上の測定点を、レーザ源
12で発生した、直径1m程度のレーザビーム13で、
必要に応じて拡大レンズ14を介して照射し、その拡散
反射光の中に一次元イメージセンサ15を配置してお
く。その際、ビーム径wとセンサ距離Loを調節して、
およそλLo/w(λはレーザビームの波長)で与えられる
センサ15上でのスペツクルの平均径を、そのピツチ
(10〜20μm)より大きくとつておく。又、一次元
イメージセンサ15の軸は、光学系と物体変位の種類
(平行移動、回転、歪みの方向)で決まるスペツクル移
動の方向に合致させておく。 一次元イメージセンサ15の出力をA/D変換してマイ
クロコンピユータ16に入れ、相関器18で物体の変形
前後の出力の間の相互相関関数を計算すると、そのピー
ク位置としてスペツクル移動がほぼ実時間で求められ
る。この際、相関関数の計算時間を短縮するために、一
次元イメージセンサ15の出力信号をその平均値に関し
て2値化し、いわゆる特性相関を計算することも提案さ
れている。スペツクルのコントラストが高いので、こう
して得られるピーク位置は通常の相関関数のそれと常に
一致する。従つて、相互相関関数の極値の位置からスペ
ツクル移動を検出することができる。 前記相互相関関数を求めるに際して、従来のスペツクル
相関法では、物体の変形前のスペツクル模様を基準デー
タとして固定し、物体の変形が持続中のスペツクル模様
を比較データとして相互相関関数を求めるか、又は、物
体の変形が持続中のスペツクル模様を比較データとし、
この比較データの1つ前の走査で得られたデータを基準
データとして、基準データを毎回更新して相互相関関数
を求めていた。 しかしながら、前者のように基準データを固定してしま
うと、物体の変形に伴つてスペツクル模様も変化し、得
られる相互相関関数の極値が周囲の無関係のピークより
低下してしまい、正しい極値の位置が得られなくなるた
め、測定範囲が限定されるという問題点を有していた。 一方、後者のように基準データを毎回更新する方法で
は、前回と今回の2つの走査時間の間に一次元イメージ
センサ15のピツチ間隔の半分以下の変位が生じたとき
には、基準データと比較データが同一となるため、極値
の位置は移動しない。従つて、物体の変位が無視され
る。この誤差は、毎回の走査で繰返されるため、2つの
走査時間内における変位がイメージセンサのピツチ間隔
の半分以下であるような低速の変位は検出できないとい
う問題点を有していた。
When a laser beam is applied to a rough surface, the speckle pattern generated by the interference of diffused light moves while gradually deforming when the surface is displaced or deformed. Therefore, the speckle pattern is photoelectrically scanned, the speckle movement is determined from the correlation peak position of the obtained signal, and the relationship between the speckle movement and the surface displacement or deformation is used to translate, rotate, or rotate the object.
A so-called speckle correlation method, which measures a minute deformation due to distortion or the like, has been proposed (Japanese Patent Publication No. 59-52963,
Laser Science Research No.6 (1984) pp152-15
4, latest precision measurement technology (July 1, 1987) pp241
~ 244). The most practical one of the speckle correlation methods is the one using a one-dimensional image sensor 15 and a micro computer 16 as shown in FIG.
A translation of more than m and a rotation of about 10 -5 rad have been measured. In this apparatus, a measurement point on the object 10 is a laser beam 13 generated by a laser source 12 and having a diameter of about 1 m.
Irradiation is performed through the magnifying lens 14 as needed, and the one-dimensional image sensor 15 is arranged in the diffuse reflection light. At that time, by adjusting the beam diameter w and the sensor distance Lo,
The average diameter of the speckle on the sensor 15 given by approximately λLo / w (λ is the wavelength of the laser beam) is set to be larger than its pitch (10 to 20 μm). Further, the axis of the one-dimensional image sensor 15 is made to coincide with the direction of the speckle movement determined by the optical system and the type of object displacement (parallel movement, rotation, distortion direction). When the output of the one-dimensional image sensor 15 is A / D converted and input to the microcomputer 16 and the cross-correlation function between the outputs before and after the deformation of the object is calculated by the correlator 18, the movement of the spectrum is almost real time as the peak position. Required by. At this time, in order to shorten the calculation time of the correlation function, it has been proposed to binarize the output signal of the one-dimensional image sensor 15 with respect to its average value and calculate a so-called characteristic correlation. Due to the high contrast of the speckle, the peak position thus obtained always matches that of the normal correlation function. Therefore, it is possible to detect the speckle movement from the position of the extreme value of the cross-correlation function. In obtaining the cross-correlation function, in the conventional speckle correlation method, the speckle pattern before the deformation of the object is fixed as reference data, and the cross-correlation function is determined by using the speckle pattern while the deformation of the object is continuing as the comparison data, or , The object pattern is a continuous speckle pattern as comparison data,
The cross-correlation function was obtained by updating the reference data every time, using the data obtained by the scan immediately before the comparison data as the reference data. However, if the reference data is fixed as in the former case, the speckle pattern will also change with the deformation of the object, and the extrema of the obtained cross-correlation function will be lower than the surrounding unrelated peaks. However, since the position cannot be obtained, the measurement range is limited. On the other hand, in the method of updating the reference data every time like the latter, when the displacement of less than half the pitch interval of the one-dimensional image sensor 15 occurs between the two scanning times of the previous time and this time, the reference data and the comparison data are Since they are the same, the extreme positions do not move. Therefore, the displacement of the object is ignored. Since this error is repeated in every scanning, there is a problem that a low-speed displacement such that the displacement within two scanning times is less than half the pitch interval of the image sensor cannot be detected.

【発明が達成しようとする課題】[Problems to be achieved by the invention]

本発明は、前記従来の問題点を解消するべくなされたも
ので、変位測定の範囲を誤差を生じることなく拡大し
て、測定精度を向上することが可能な変形の測定方法を
提供することを目的とする。
The present invention has been made to solve the above conventional problems, and provides a deformation measuring method capable of expanding the range of displacement measurement without causing an error and improving the measurement accuracy. To aim.

【課題を達成するめの手段】[Means for achieving the object]

本発明は、変形前後の物体表面の一部をレーザビームで
照射してスペツクル模様を現出し、該変形前後のスペツ
クル模様をそれぞれ光電変換して得られる信号間の相互
相関関数を求め、該相互相関関数の極値の位置として求
められるスペツクル模様の移動量から物体の変形量を決
定する変形の測定方法において、第1図にその要旨を示
す如く、前記相互相関関数の極値が予め設定された値よ
り低下するか、又は、前記極値の位置の移動が予め設定
された範囲より逸脱した時に、相互相関の基準パターン
を更新することによつて、前記目的を達成したものであ
る。
The present invention irradiates a part of the object surface before and after deformation with a laser beam to reveal a speckle pattern, obtains a cross-correlation function between signals obtained by photoelectrically converting the speckle pattern before and after the deformation, and calculates the cross correlation function. In the deformation measuring method for determining the deformation amount of an object from the movement amount of the speckle pattern obtained as the position of the extreme value of the correlation function, the extreme value of the cross-correlation function is preset as shown in the outline of FIG. The above-mentioned object is achieved by updating the reference pattern of the cross-correlation when the movement of the position of the extreme value deviates from the preset range.

【作用及び効果】[Action and effect]

第2図に示す如く、物体10の測定領域Oを、レーザ源
12からのレーザビーム13で必要に応じて拡大レンズ
14を介して照射し、得られるスペツクル模様を観察面
30で観察する場合を考える。 ここで、物体面上の座標軸をx、y、z、レーザビーム
13の発散点の距離OS=Ls、発散点の方向をlsx、l
sy、lsz、物体面と観察面30の距離をLo、観察点P
の方向をlx、ly、lz、レーザビーム13で照射し
た領域における物体10の並進、回転、歪みの成分をそ
れぞれ(ax、ay、az)、(Ωx、Ωy、Ωz)、(εx
x、εyx、εyy)とする。 この条件下で、物体10が変形を受ける前後における観
察点Pでのスペツクル模様の強度分布I1(x、y)と
2(x、y)の間の相互相関関数C(、)を計算
する。 C(、)=<I1(x、y) ×I2(x+y+)>…(1) ここで、<>は集合平均を意味する。 この(1)式を計算すると、C(、)が、=A
x、=Ayで最大値をとることがわかる。ここでA
x、Ayは、次式で与えられ、物理的には物体変形によ
るスペツクル模様の移動量に相当する。 Ax=−ax[(Lo/Ls)(lsx2−1)+lx2
−1] −ay[(Lo/Ls)lsxlsy+lxly] −az[(Lo/Ls)lsxlsz+lxlz] −Lo[Ωz(lsy+ly) −Ωy(1sz+1z)+εxx(1sx+1x)+εxy(lsy+
ly)]……(2) Ay=−ax[((Lo/Ls)(lsylsx+lylx] −ay[(Lo/Ls)(lsy2−1)+ly2
−1] −az[(Lo/Ls)lsylsz+lxlz] −Lo[−Ωz(lsx+lx) −Ωx(lsz+lz)+εyy(lsy+ly) +εxy(lsx+lx)]……(3) 従つて、前記観察面30に一次元イメージセンサを配置
してスペツクルの移動量Ax、Ayを観測すれば、該一
次元イメージセンサの出力波形は、物体変位前後で第3
図(A)に示す如く変化し、その自己相関波形は、第3
図(B)に示す如くとなり、相互相関波形は第3図
(C)に示す如くとなる。 このような装置を用いて物体の変形を測定するに際し
て、相互相関関数を求める際に、本発明においては、従
来技術のように、基準データを固定してしまつたり、あ
るいは、基準データを毎回更新するのではなく、相互相
関関数の極値が設定値より低下するか、又は、極値の位
置の移動が設定範囲より逸脱した時に、基準パターンを
更新するようにしている。従つて、物体の変形に伴うス
ペツクル模様の移動が大きい場合には、基準データが更
新されるので、測定範囲が限定されることはない。逆
に、物体の変形が小さく、極値の位置の移動が設定範囲
内にある場合には、基準パターンが固定されるので、基
準データを毎回更新する場合に比べて、低速の変位も検
出できる。従つて、変位測定の範囲を誤差なく拡大し
て、測定精度を向上することができる。
As shown in FIG. 2, a case where the measurement area O of the object 10 is irradiated with the laser beam 13 from the laser source 12 through the magnifying lens 14 as necessary, and the obtained speckle pattern is observed on the observation surface 30 is shown. Think Here, the coordinate axes on the object plane are x, y, z, the distance OS of the divergence point of the laser beam 13 is Ls, and the direction of the divergence point is lsx, l.
sy, lsz, the distance between the object plane and the observation plane 30 is Lo, and the observation point P
, Lx, ly, and lz, and translational, rotational, and distortion components of the object 10 in the region irradiated with the laser beam 13 are (ax, ay, az), (Ωx, Ωy, Ωz), (εx, respectively).
x, εyx, εyy). Under this condition, the cross-correlation function C (,) between the intensity distributions I 1 (x, y) and I 2 (x, y) of the speckle pattern at the observation point P before and after the object 10 is deformed is calculated. To do. C (,) = <I 1 (x, y) × I 2 (x + y +)> (1) Here, <> means a collective average. When this equation (1) is calculated, C (,) becomes = A
It can be seen that the maximum value is obtained at x, = Ay. Where A
x and Ay are given by the following equations and physically correspond to the movement amount of the speckle pattern due to the deformation of the object. Ax = −ax [(Lo / Ls) (lsx 2 −1) + lx 2
-1] -ay [(Lo / Ls) lsxlsy + lxly] -az [(Lo / Ls) lsxlsz + lxlz] -Lo [Ωz (lsy + ly) -Ωy (1sz + 1z) + εxx (1sx + 1x) + εxy (lsy +)
ly)] ...... (2) Ay = -ax [((Lo / Ls) (lsylsx + lylx] -ay [(Lo / Ls) (lsy 2 -1) + ly 2
−1] −az [(Lo / Ls) lsylsz + lxlz] −Lo [−Ωz (lsx + lx) −Ωx (lsz + lz) + εyy (lsy + ly) + εxy (lsx + lx)] (3) Accordingly, the observation surface 30 is one-dimensional. If the image sensors are arranged and the movement amounts Ax and Ay of the speckle are observed, the output waveform of the one-dimensional image sensor shows the third waveform before and after the object displacement.
The autocorrelation waveform changes as shown in FIG.
As shown in FIG. 3B, the cross-correlation waveform becomes as shown in FIG. When measuring the deformation of an object using such a device, in determining the cross-correlation function, in the present invention, the reference data may be fixed or the reference data may be changed every time as in the prior art. Instead of updating, the reference pattern is updated when the extreme value of the cross-correlation function becomes lower than the set value or the movement of the extreme value position deviates from the set range. Therefore, when the movement of the speckle pattern due to the deformation of the object is large, the reference data is updated, so that the measurement range is not limited. On the contrary, when the deformation of the object is small and the movement of the extreme value position is within the set range, the reference pattern is fixed, so that the displacement can be detected at a lower speed than when the reference data is updated every time. . Therefore, the range of displacement measurement can be expanded without error and the measurement accuracy can be improved.

【実施例】【Example】

以下、図面を参照して、本発明の実施例を詳細に説明す
る。 本実施例は、第4図に示す如く、物体10の表面にレー
ザビーム13を照射してスペツクル模様を発生させるレ
ーザ源12を備えている。このレーザ源12によつて発
生されたスペツクル模様を光電変換するための受光素子
としては、第5図に示すような、例えば短辺が13μ
m、長辺が2.5mm、配設ピツチが25μmの短冊型の
受光素子(・・・22n-1、22n、22n+1・・・)を
有する受光素子列20、24が、列をなす角度を変えて
2組配設されている。 該2組の受光素子列20、24で、それぞれ光電変換さ
れたスペツクル模様は、それぞれ本発明に係る相関器4
0、42に入力され、スペツクル模様の移動の前後の相
互相関関数の極値の位置の変化が検出される。 該相関器40及び42は、第6図に示す如く、前記受光
素子列20(相関器40)又は24(相関器42)より
得られるスペツクル模様の2値化された電気信号入力A
の1フレーム前のデータを一時的に保持するためのメモ
リ40Aと、該メモリ40Aから出力される基準パター
データBと前記受光素子列20又は24から入力される
比較データCが入力され、この基準パターンデータBと
比較データCの相関値Dを出力する相関用IC(例えば
TRW社のTDC1023)40Bと、基準パターンデ
ータBを更新するためのゲート40Cと、各シフトクロ
ツクCL毎の相関値Dのうち、極値Eとそのタイミング
出力Fを出力する最大値検出回路40Dと、最大値のタ
イミング出力FとシフトクロツクCLが入力され、極値
の位置Gを出力するカウンタ40Eと、前記最大値検出
回路40Dから出力される極値Eとその閾値を比較し、
極値Eが閾値未満である場合に基準パターン交替信号H
を出力する比較回路40Fと、前記カウンタ40Eから
出力される極値の位置Gとその最大範囲の閾値を比較
し、極値の位置が最大範囲を超えている場合に基準パタ
ーン交替信号Iを出力する比較回路40Gと、同じく極
値の位置Gとその最小範囲の閾値を比較し、極値の位置
Gが最小範囲未満である場合に基準パターン交替信号J
を出力する比較回路40Hと、前記基準パターン交替信
号H、I、Jの論理和を前記ゲート40C及び後出FI
FOメモリ40Jに出力するORゲート40Iと、前記
カウンタ40E出力の極値の位置Gと基準パターン交替
信号H+I+Jを一時的に格納して、CPUバス40K
に出力するFIFO(フアーストインフアーストアウ
ト)メモリ40Jとから構成されている。 以上の構成により、極値の値Eがある閾値より低下する
か、極値の位置Gが設定範囲より逸脱した場合に、基準
パターン更新が自動的に行われる。 前記相関器40、42で検出された極値の位置の変化は
コンピユータ44に入力され、データ処理を行つて、ス
ペツクル模様の移動量から検出すべき変形量を算出す
る。 コンピユータ44は、ステツピングモータコントローラ
46に指令を与えて、物体10が載置されているリニア
ステージ48をx軸方向に移動させ、スペツクル模様を
x軸方向に移動させると共に、タイミング回路50を介
して、前記相関器40、42に必要なタイミング信号を
入力する。 第7図に、リニアステージ48をx軸方向に6mm移動し
た場合の、極値Eに対する閾値を100%、90%、8
0%、70%、60%以上とした測定例を比較して示
す。100%の測定例は、毎回基準パターンが更新さ
れ、1つ前のフレームを基準パターンとしている従来例
に等しく、一方、60%の測定例は、閾値が低いため基
準パターンの更新が発生せず、基準パターンを固定した
従来例とほぼ同様である。 これに対して、基準パターンを本発明により設定値70
%〜90%として更新した場合には、リニアステージ4
8の実際の移動量に対して、スペツクル模様の移動量か
ら求めたリニアステージ移動量(測定値)もほぼ対応し
ていることが明らかである。 本実施例においては、受光素子列20、24の各素子を
短冊型とすると共に、受光素子列を2組設けているの
で、スペツクル模様の移動の向きと受光素子列の向きを
一致させる必要がなく、又、各方向の成分をそれぞれ測
定することができる。なお、受光素子の形状や受光素子
列の組数は前記実施例に限定されず、例えば所定のx軸
方向の移動成分のみを抽出すればよい時には、受光素子
列を1組のみとしてもよい。又、受光素子列を3組以上
設けて、更に高精度の測定を行うことも可能である。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In this embodiment, as shown in FIG. 4, a laser source 12 for irradiating the surface of the object 10 with a laser beam 13 to generate a speckle pattern is provided. As a light receiving element for photoelectrically converting the speckle pattern generated by the laser source 12, for example, as shown in FIG.
m, the long side is 2.5 mm, and the light receiving element rows 20 and 24 having strip-shaped light receiving elements (... 22 n-1 , 22 n , 22 n + 1 ...) Of 25 μm in pitch are arranged. Two sets are arranged with different angles. The speckle patterns photoelectrically converted by the two sets of light receiving element arrays 20 and 24 are respectively correlators 4 according to the present invention.
0 and 42, the change in the position of the extreme value of the cross-correlation function before and after the movement of the speckle pattern is detected. The correlators 40 and 42 are, as shown in FIG. 6, a binarized electrical signal input A of a speckle pattern obtained from the light receiving element array 20 (correlator 40) or 24 (correlator 42).
40A for temporarily holding the data of one frame before, reference pattern data B output from the memory 40A, and comparison data C input from the light receiving element array 20 or 24 are input. Of the correlation IC (for example, TDC1023 manufactured by TRW) 40B for outputting the correlation value D of the pattern data B and the comparison data C, the gate 40C for updating the reference pattern data B, and the correlation value D for each shift clock CL. , A maximum value detection circuit 40D that outputs an extreme value E and its timing output F, a counter 40E that receives the maximum value timing output F and the shift clock CL, and outputs an extreme value position G, and the maximum value detection circuit 40D. Comparing the extreme value E output from
Reference pattern replacement signal H when the extreme value E is less than the threshold value
Comparing the extreme value position G output from the counter 40E with the maximum range threshold value, and outputting the reference pattern alternation signal I when the extreme value position exceeds the maximum range. Similarly, the comparison circuit 40G compares the extreme position G with the minimum range threshold value, and when the extreme position G is less than the minimum range, the reference pattern replacement signal J
And the logical sum of the reference pattern alternation signals H, I and J, which are output from the comparison circuit 40H and the gate 40C and the subsequent FI.
The OR gate 40I for outputting to the FO memory 40J, the extreme position G of the output of the counter 40E, and the reference pattern alternation signal H + I + J are temporarily stored, and the CPU bus 40K
And a FIFO (fastest-in-first-out) memory 40J for outputting to the. With the above configuration, the reference pattern is automatically updated when the extreme value E falls below a certain threshold value or when the extreme position G deviates from the set range. The change in the position of the extreme value detected by the correlators 40 and 42 is input to the computer 44, data processing is performed, and the deformation amount to be detected is calculated from the movement amount of the speckle pattern. The computer 44 gives a command to the stepping motor controller 46 to move the linear stage 48 on which the object 10 is placed in the x-axis direction, to move the speckle pattern in the x-axis direction, and through the timing circuit 50. Then, the necessary timing signals are input to the correlators 40 and 42. FIG. 7 shows the threshold values for the extreme value E when the linear stage 48 is moved by 6 mm in the x-axis direction.
The measurement examples of 0%, 70%, 60% or more are shown in comparison. The 100% measurement example is the same as the conventional example in which the reference pattern is updated every time and the previous frame is used as the reference pattern, while the 60% measurement example does not cause the reference pattern to be updated because the threshold value is low. , Is almost the same as the conventional example in which the reference pattern is fixed. On the other hand, the reference pattern is set to the set value 70 according to the present invention.
% To 90%, the linear stage 4
It is clear that the actual moving amount of 8 corresponds to the linear stage moving amount (measured value) obtained from the moving amount of the speckle pattern. In this embodiment, since each element of the light receiving element rows 20 and 24 is a strip type and two sets of light receiving element rows are provided, it is necessary to match the movement direction of the speckle pattern with the direction of the light receiving element row. None, and the components in each direction can be measured separately. The shape of the light-receiving element and the number of sets of light-receiving element rows are not limited to those in the above-described embodiment. For example, when only a predetermined movement component in the x-axis direction needs to be extracted, the light-receiving element row may be only one set. Further, it is also possible to provide three or more sets of light receiving element rows and perform more accurate measurement.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明に係る変形の測定方法の要旨を示す流
れ図、第2図は、スペツクル測定法の測定原理を示す斜
視図、第3図(A)、(B)、(C)は、同じく一次元
イメージセンサの出力波形、自己相関波形、相互相関波
形をそれぞれ示す線図、第4図は、本発明に係る変形の
測定方法を実施するための測定装置の構成を示す、一部
ブロツク線図を含む斜視図、第5図は、前記実施例にお
ける受光素子列を示す正面図、第6図は、同じく相関器
の構成を示すブロツク線図、第7図は、前記実施例にお
ける極値の閾値を変えた場合のリニアステージ移動量と
測定値の関係を示す線図、第8図は、従来のスペツクル
相関法の測定原理を示す斜視図である。 10……物体、 12……レーザ源、 13……レーザビーム、 20、24……受光素子列、 40、42……相関器、 40A……メモリ、 40B……相関用IC、 40C……ゲート、 40D……最大値検出回路、 40E……カウンタ、 40F、40G、40H……比較回路、 B……基準パターンデータ、 C……比較データ、 D……相関値、 44……コンピユータ、 48……リニアステージ、 50……タイミング回路。
FIG. 1 is a flow chart showing the outline of the deformation measuring method according to the present invention, FIG. 2 is a perspective view showing the measuring principle of the speckle measuring method, and FIGS. 3 (A), (B), and (C) are FIG. 4 is a diagram showing an output waveform, an autocorrelation waveform, and a cross-correlation waveform of the one-dimensional image sensor, respectively, and FIG. 4 shows a configuration of a measuring device for carrying out the deformation measuring method according to the present invention. FIG. 5 is a perspective view including a block diagram, FIG. 5 is a front view showing the light receiving element array in the above embodiment, FIG. 6 is a block diagram showing the structure of the correlator, and FIG. FIG. 8 is a diagram showing the relationship between the moving amount of the linear stage and the measured value when the threshold value of the extreme value is changed, and FIG. 8 is a perspective view showing the measuring principle of the conventional spectrum correlation method. 10 ... Object, 12 ... Laser source, 13 ... Laser beam, 20, 24 ... Photodetector array, 40, 42 ... Correlator, 40A ... Memory, 40B ... Correlation IC, 40C ... Gate , 40D ... maximum value detection circuit, 40E ... counter, 40F, 40G, 40H ... comparison circuit, B ... reference pattern data, C ... comparison data, D ... correlation value, 44 ... computer, 48 ... … Linear stage, 50… Timing circuit.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】変形前後の物体表面の一部をレーザビーム
で照射してスペツクル模様を現出し、該変形前後のスペ
ツクル模様をそれぞれ光電変換して得られる信号間の相
互相関関数を求め、該相互相関関数の極値の位置として
求められるスペツクル模様の移動量から物体の変形量を
決定する変形の測定方法において、 前記相互相関関数の極値が予め設定された値より低下す
るか、又は、前記極値の位置の移動が予め設定された範
囲より逸脱した時に、相互相関の基準パターンを更新す
ることを特徴とする変形の測定方法。
1. A cross-correlation function between signals obtained by exposing a speckle pattern by irradiating a part of an object surface before and after deformation with a laser beam and photoelectrically converting the speckle pattern before and after deformation, In the deformation measuring method for determining the deformation amount of the object from the movement amount of the speckle pattern obtained as the position of the extreme value of the cross correlation function, the extreme value of the cross correlation function is lower than a preset value, or, A method for measuring deformation, comprising updating a reference pattern of cross-correlation when the movement of the position of the extreme value deviates from a preset range.
JP15429888A 1988-06-22 1988-06-22 Deformation measurement method Expired - Fee Related JPH0629703B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP15429888A JPH0629703B2 (en) 1988-06-22 1988-06-22 Deformation measurement method
US07/367,659 US4967093A (en) 1988-06-22 1989-06-19 Deformation measuring method and device using cross-correlation function between speckle patterns with reference data renewal
DE8989111389T DE68904993T2 (en) 1988-06-22 1989-06-22 DEFORM MEASUREMENT METHOD AND DEVICE USING THE CROSS-CORRELATION FUNCTION BETWEEN SPECKLE IMAGES.
EP89111389A EP0347912B1 (en) 1988-06-22 1989-06-22 Deformation measuring method and device using cross-correlation function between speckle patterns

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15429888A JPH0629703B2 (en) 1988-06-22 1988-06-22 Deformation measurement method

Publications (2)

Publication Number Publication Date
JPH01320412A JPH01320412A (en) 1989-12-26
JPH0629703B2 true JPH0629703B2 (en) 1994-04-20

Family

ID=15581075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15429888A Expired - Fee Related JPH0629703B2 (en) 1988-06-22 1988-06-22 Deformation measurement method

Country Status (1)

Country Link
JP (1) JPH0629703B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03274402A (en) * 1990-03-26 1991-12-05 Rikagaku Kenkyusho Biaxial laser speckle strain gage
US7295324B2 (en) * 2004-07-13 2007-11-13 Mitutoyo Corporation System and method for improving accuracy in a speckle-based image correlation displacement sensor

Also Published As

Publication number Publication date
JPH01320412A (en) 1989-12-26

Similar Documents

Publication Publication Date Title
US4967093A (en) Deformation measuring method and device using cross-correlation function between speckle patterns with reference data renewal
EP0134597B2 (en) Measuring system based on the triangulation principle for the dimensional inspection of an object
US4862894A (en) Apparatus for monitoring bloodstream
JPH0428005Y2 (en)
US5329458A (en) Device and method for detecting position of edge of cutting tool
JP2771594B2 (en) Method and apparatus for measuring displacement of object
JPH0329806A (en) Measuring method of shape of object
US5061860A (en) Deformation measuring method and device using comb-type photosensitive element array
JPH0629703B2 (en) Deformation measurement method
JPS6244203B2 (en)
JP3175393B2 (en) Distance measuring method and device
CN110243760B (en) Line domain frequency domain optical coherence tomography system and longitudinal coordinate calibration method thereof
JPH07253304A (en) Multi-axial positioning unit and length measuring method therefor
JPH0629704B2 (en) Deformation measurement method
CN111708258A (en) Holographic raster scanning photoetching exposure monitoring device and adjusting method
EP0157431A1 (en) Procedure to measure the dimensions of a body in movement in a three-dimensional field, and an optoelectronic device to carry out such procedure
JPH0635921B2 (en) Speckle length meter
JP3192461B2 (en) Optical measuring device
JP2626611B2 (en) Object shape measurement method
JPH06221811A (en) Method for two-dimensional measurement of light and method and apparatus for measuring surface roughness
US4422737A (en) Device for obtaining topographic picture of surface of rotating object
KR0140663B1 (en) Sensing device for spreaded solder shape of pcb
JP2946381B2 (en) Surface roughness measuring method and device
SU731278A1 (en) Device for measuring small dimensions
JPS6011106A (en) Shape detecting device

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees