JPH06296062A - Visible light semiconductor laser device - Google Patents
Visible light semiconductor laser deviceInfo
- Publication number
- JPH06296062A JPH06296062A JP5714994A JP5714994A JPH06296062A JP H06296062 A JPH06296062 A JP H06296062A JP 5714994 A JP5714994 A JP 5714994A JP 5714994 A JP5714994 A JP 5714994A JP H06296062 A JPH06296062 A JP H06296062A
- Authority
- JP
- Japan
- Prior art keywords
- main surface
- laser device
- semiconductor laser
- visible light
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Semiconductor Lasers (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明はAlGaInP(アルミ
ニウム−ガリウム−インジウム−燐)系可視光半導体レ
−ザ装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an AlGaInP (aluminum-gallium-indium-phosphorus) based visible light semiconductor laser device.
【0002】[0002]
【従来の技術】MOCVD法(有機金属化学気相成長
法)は、GaInP結晶成長のための一つの有効な方法
である。しかし、この方法により成長したGaInP結
晶には、しばしば多くの結晶欠陥が観察される。例え
ば、(100)面を表面とするGaAs(ガリウム・砒
素)基板上に、GaInP結晶をMOCVD法により成
長させると、成長表面に、断面が楕円球状の隆起(ヒロ
ック)からなる結晶欠陥が1cm2当り6,000個程度
発生する。2. Description of the Related Art MOCVD (metal organic chemical vapor deposition) is one effective method for growing GaInP crystals. However, many crystal defects are often observed in the GaInP crystal grown by this method. For example, when a GaInP crystal is grown by MOCVD on a GaAs (gallium arsenide) substrate having a (100) surface as a surface, a crystal defect consisting of a hillock having an elliptic cross section in the growth surface has a crystal defect of 1 cm 2. About 6,000 pieces are generated.
【0003】先行技術としてのJournal of Crystal Gro
wth,17(1972),189−206には、CVD法によ
りGaAs基板上にGaAsを成長させる際に、基板と
して、その面方位を(100)面から[110]方向に
2°〜5°傾けたものを用いることにより、成長結晶表
面における、不所望なピラミッド状ヒロックの発生を大
きく減少し得ることが記載されている。Journal of Crystal Gro as prior art
wth, 17 (1972), 189-206, when growing GaAs on a GaAs substrate by the CVD method, the plane orientation of the substrate is inclined from the (100) plane to the [110] direction by 2 ° to 5 °. It is described that the use of the above-mentioned one can greatly reduce the generation of undesired pyramidal hillocks on the surface of the grown crystal.
【0004】また、Journal of Crystal Growth,68
(1984),483−489には、MOCVD法を用いて製
造したAlGaInP系半導体レ−ザ装置が記載されて
いる。図4にその構造を示す。In addition, Journal of Crystal Growth, 68
(1984), 483-489, describes an AlGaInP-based semiconductor laser device manufactured by using the MOCVD method. The structure is shown in FIG.
【0005】図において、(21)は、n型GaAsか
らなる基板で、その一主面(21a)には(100)面
から[110]方向に2°傾斜した面が用いられてい
る。In the figure, (21) is a substrate made of n-type GaAs, and one main surface (21a) thereof has a surface inclined by 2 ° from the (100) surface in the [110] direction.
【0006】(22)は基板(21)の一主面(21
a)上に0.7μm厚みで積層されたn型GaAsから
なるバッファ層、(23)は該バッファ層(22)上に
1.4μm厚みで積層されたn型(Al0.3Ga0.7)
0.5In0.5Pからなるn型クラッド層、(24)は該n
型クラッド層(23)上に0.23μm厚みで積層され
たアンド−プGa0.5In0.5Pからなる活性層、(2
5)は該活性層(24)上に1.4μm厚みで積層され
たp型(Al0.3Ga0.7)0.5In0.5Pからなるp型ク
ラッド層、(26)は該p型クラッド層(25)上に
1.0μm厚みで積層されたp型GaAsからなるキャ
ップ層である。Reference numeral (22) denotes one main surface (21) of the substrate (21).
a) a buffer layer made of n-type GaAs having a thickness of 0.7 μm deposited on the buffer layer, and (23) an n-type (Al 0.3 Ga 0.7 ) layer having a thickness of 1.4 μm deposited on the buffer layer (22).
An n-type clad layer made of 0.5 In 0.5 P, (24)
An active layer made of AND-Ga 0 .5 In 0 .5 P laminated on the mold clad layer (23) to a thickness of 0.23 μm, (2
5) is a p-type clad layer composed of p-type (Al 0.3 Ga 0.7 ) 0.5 In 0.5 P laminated on the active layer (24) to a thickness of 1.4 μm, and (26) is the p-type clad layer (25) It is a cap layer made of p-type GaAs, which is stacked on top of this with a thickness of 1.0 μm.
【0007】(27)は上記キャップ層(26)上に積
層されたSiO2からなるブロック層で、キャップ層
(26)に達する幅20〜23μmのストライプ溝(2
8)を有する。(29)は露出したキャップ層(26)
上及びブロック層(27)上にZn膜、Au膜がこの順
に被着されたAu/Zn電極からなるp型電極、(3
0)は上記基板(21)の他主面(21b)上に、Ni
膜、Ge膜、Au膜がこの順に被着されたAu/Ge/
Ni電極からなるn型電極である。(27) is a block layer made of SiO 2 laminated on the cap layer (26), and has stripe grooves (2 with a width of 20 to 23 μm reaching the cap layer (26).
8). (29) is an exposed cap layer (26)
A p-type electrode composed of an Au / Zn electrode, in which a Zn film and an Au film are deposited in this order on the upper layer and the block layer (27), (3
0) is Ni on the other main surface (21b) of the substrate (21).
Film / Ge film / Au film deposited in this order on Au / Ge /
It is an n-type electrode made of a Ni electrode.
【0008】[0008]
【発明が解決しようとする課題】斯るJournal of Cryst
al Growth,68(1984),483−489に記載された
従来装置では、製造された各装置毎の発振しきい値電流
のばらつきが大きく、製造歩留りが悪いといった問題が
あった。[Problems to be Solved by the Invention] Such Journal of Cryst
In the conventional device described in al Growth, 68 (1984), 483-489, there is a problem in that the variation in the oscillation threshold current of each manufactured device is large and the manufacturing yield is low.
【0009】そこで本発明者らは斯る従来装置において
各半導体層を積層した後、最上部のキャップ層表面を調
べたところ、結晶欠陥(ヒロック)が多く観察された。Therefore, when the present inventors examined the surface of the uppermost cap layer after stacking each semiconductor layer in such a conventional device, many crystal defects (hillocks) were observed.
【0010】即ち、Journal of Crystal Growth、17
(1972),189−206に記載されているGaAs基板
の成長面として(100)面から[110]方向に2°
〜5°傾斜した面を用いることは、CVD法によるGa
As結晶の成長において有効であり、MOCVD法によ
るAlGaInP系半導体結晶の成長にとっては有効で
はない。That is, Journal of Crystal Growth, 17
(1972), 189-206, the growth surface of the GaAs substrate is 2 ° in the [110] direction from the (100) plane.
The use of a surface inclined by ~ 5 ° makes Ga by the CVD method
It is effective in the growth of As crystals and not in the growth of AlGaInP-based semiconductor crystals by the MOCVD method.
【0011】したがって、本発明は、製造される装置毎
の発振しきい値電流のばらつきが小さく、製造歩留りの
良いAlGaInP系半導体レ−ザ装置を提供するもの
である。Therefore, the present invention provides an AlGaInP-based semiconductor laser device having a small variation in the oscillation threshold current for each manufactured device and a high manufacturing yield.
【0012】[0012]
【課題を解決するための手段】本発明装置は、(10
0)面から[011]方向に5°以上傾斜した面を主面
とするGaAs基板と、該主面上に形成された活性層を
含むAlGaInP系半導体層と、を備えたことを特徴
とする。The device of the present invention is (10)
A GaAs substrate whose main surface is a surface inclined by 5 ° or more in the [011] direction from the (0) plane, and an AlGaInP-based semiconductor layer including an active layer formed on the main surface. .
【0013】また、本発明装置は、(100)面から
[011]方向に5°以上傾斜した面を主面とする第1
導電型のGaAs基板と、該主面上に形成された第1導
電型のAlGaInPクラッド層と、該クラッド層上に
形成された活性層と、該活性層上に形成された第2導電
型のAlGaInPクラッド層と、を備えたことを特徴
とする。In the device of the present invention, the main surface is the surface inclined by 5 ° or more in the [011] direction from the (100) surface.
A conductive type GaAs substrate, a first conductive type AlGaInP clad layer formed on the main surface, an active layer formed on the clad layer, and a second conductive type second layer formed on the active layer. And an AlGaInP clad layer.
【0014】また、本発明装置は、(100)面から
[011]方向に5°以上傾斜した面を主面とするGa
As基板と、該主面上に被着形成されることで上記方向
への傾斜に因り初期成長過程の結晶欠陥の発生が抑圧さ
れた半導体層と、該半導体層上に形成された活性層を含
むAlGaInP系半導体層と、を備えことを特徴とす
る。Further, in the device of the present invention, the main surface is a surface inclined by 5 ° or more in the [011] direction from the (100) surface.
An As substrate, a semiconductor layer in which the generation of crystal defects in the initial growth process due to the inclination in the above direction is suppressed by being deposited on the main surface, and an active layer formed on the semiconductor layer are formed. And an AlGaInP-based semiconductor layer containing the same.
【0015】また、本発明装置は、(100)面から
[011]方向に5°以上傾斜した面を主面とするGa
As基板と、該主面上に被着形成された結晶欠陥の発生
が抑圧された半導体層と、該半導体層上に形成された活
性層を含むAlGaInP系半導体層と、を備えたこと
を特徴とする。Further, the device of the present invention has a Ga main surface having a surface inclined by 5 ° or more in the [011] direction from the (100) surface.
An As substrate, a semiconductor layer deposited on the main surface in which generation of crystal defects is suppressed, and an AlGaInP-based semiconductor layer including an active layer formed on the semiconductor layer are provided. And
【0016】特に、前記活性層がGaInPからなるこ
とを特徴とする。In particular, the active layer is made of GaInP.
【0017】また、本発明装置は、(100)面から
[011]方向に5°以上傾斜した面を主面とするGa
As基板と、該主面上に形成され上記方向への傾斜に因
り短波長化された発振光を生じるGaInPからなる活
性層と、を備えたことを特徴とする。Further, in the device of the present invention, a main surface is a surface inclined by 5 ° or more from the (100) surface in the [011] direction.
It is characterized by comprising an As substrate and an active layer made of GaInP formed on the main surface and generating oscillated light whose wavelength is shortened due to the inclination in the above direction.
【0018】また、本発明装置は、(100)面から
[011]方向に5°以上傾斜した面を主面とするGa
As基板と、該主面上に形成され上記方向への傾斜に因
りフォトルミネッセンスの発光エネルギーが増大するG
aInPからなる活性層と、を備えたことを特徴とす
る。Further, in the device of the present invention, the main surface is a surface inclined by 5 ° or more in the [011] direction from the (100) surface.
An As substrate and a G formed on the main surface, in which the emission energy of photoluminescence increases due to the inclination in the above direction G
and an active layer made of aInP.
【0019】また、本発明装置は、(100)面から
[011]方向に5°以上傾斜した面を主面とするGa
As基板と、該主面上に形成され上記方向への傾斜に因
り短波長化された発振光を生じるGaInPからなる活
性層を含むAlGaInP系半導体層と、を備えたこと
を特徴とする。Further, in the device of the present invention, the main surface is a Ga having a surface inclined by 5 ° or more in the [011] direction from the (100) surface
An As substrate, and an AlGaInP-based semiconductor layer including an active layer made of GaInP, which is formed on the main surface and generates oscillation light whose wavelength is shortened due to the inclination in the above direction, are provided.
【0020】また、本発明装置は、(100)面から
[011]方向に5°以上傾斜した面を主面とするGa
As基板と、該主面上に形成され上記方向への傾斜に因
りフォトルミネッセンスの発光エネルギーが増大するG
aInPからなる活性層を含むAlGaInP系半導体
層と、を備えたことを特徴とする。Further, the device of the present invention has a Ga main surface having a plane inclined by 5 ° or more in the [011] direction from the (100) plane.
An As substrate and a G formed on the main surface, in which the emission energy of photoluminescence increases due to the inclination in the above direction G
and an AlGaInP-based semiconductor layer including an active layer made of aInP.
【0021】特に、前記傾斜した面が5°〜7°傾斜し
た面であることを特徴とする。In particular, the inclined surface is a surface inclined by 5 ° to 7 °.
【0022】更に、前記傾斜した面が研摩面であること
を特徴とする。Further, the inclined surface is a polished surface.
【0023】[0023]
【作用】本発明によれば、特定方位に傾いた基板結晶成
長面の作用により、成長初期において、結晶欠陥である
ヒロックの原因となるGaのドロップレットの発生が大
幅に低減できることとなり、その基板上に形成されたA
lGaInP系の各半導体層は結晶性良く形成される。According to the present invention, by the action of the substrate crystal growth surface tilted in a specific direction, the generation of Ga droplets, which causes hillocks which are crystal defects, can be significantly reduced at the initial stage of growth, and the substrate can be significantly reduced. A formed above
Each of the 1GaInP-based semiconductor layers is formed with good crystallinity.
【0024】また、特定方位に傾いた基板結晶成長面の
作用により、GaInPのフォトルミネッセンスの発光
エネルギが大きくなる。即ち、活性層がGaInPから
なる場合には、発振光の短波長化が図れる。Further, due to the action of the substrate crystal growth surface tilted in a specific direction, the emission energy of the photoluminescence of GaInP becomes large. That is, when the active layer is made of GaInP, the wavelength of oscillation light can be shortened.
【0025】[0025]
【実施例】図1に本発明に係る半導体レーザ装置を製造
するための装置のブロック図を示す。この装置自体は周
知であり、GaAs基板(1)は、反応容器(2)内に
おいて、サセプタ(3)上に固定される。サセプタ
(3)は成長時に8〜10rpmの速度で回転駆動され
る。流水路(4)が容器(2)の外壁に密着して容器
(2)を冷却し、一方、容器(2)を取り巻くRFコイ
ル(5)がサセプタ(3)の加熱を可能にする。容器
(2)の排気は、フィルタ(6)を介してロ−タリポン
プ(7)の作用で行われる。容器(2)に導入される反
応ガス発生は、TMGa(トリメチルガリウム)液槽
(8)やTMIn(トリメチルインジウム)液槽(9)
に、夫々定流量器(10)を通じてH2(水素ガス)を
流し込み、バブリングすることにより達成される。その
他の反応ガスやキャリアガスとしてPH3(フオスフィ
ン)やH2が夫々定流量器(10)を通じて反応容器
(2)に適宜導入される。1 is a block diagram of an apparatus for manufacturing a semiconductor laser device according to the present invention. This device itself is well known, and the GaAs substrate (1) is fixed on the susceptor (3) in the reaction vessel (2). The susceptor (3) is rotationally driven at a speed of 8 to 10 rpm during growth. The running water channel (4) is in close contact with the outer wall of the container (2) to cool the container (2), while the RF coil (5) surrounding the container (2) enables heating of the susceptor (3). The container (2) is evacuated by the action of the rotary pump (7) through the filter (6). The reaction gas generated in the container (2) is generated by the TMGa (trimethylgallium) liquid tank (8) and the TMIn (trimethylindium) liquid tank (9).
To H 2 (hydrogen gas) through the constant flow rate device (10) and bubbling. PH 3 (phosphine) and H 2 as other reaction gas and carrier gas are appropriately introduced into the reaction vessel (2) through the constant flow rate device (10).
【0026】斯る装置において、基板(1)の温度を6
40℃に保持し、PH3ガス/(TMGaガス+TMI
nガス)=約500の流量比で各ガスを容器(2)内に
導入すると共に、容器内圧力を70Torrに維持して減圧
MOCVD法により、約1.2μmの厚さのInGaP
結晶成長を行った。尚、成長開始前の基板加熱時に、周
知の如く、アルシンガスを流し、基板からのAsの散逸
を防止するのが良い。In such an apparatus, the temperature of the substrate (1) is set to 6
Hold at 40 ℃, PH 3 gas / (TMGa gas + TMI
n gas) = about 500 and each gas is introduced into the container (2), and the pressure inside the container is maintained at 70 Torr by the low pressure MOCVD method to form InGaP having a thickness of about 1.2 μm.
Crystal growth was performed. As is well known, at the time of heating the substrate before the start of growth, it is preferable to flow arsine gas to prevent As from escaping from the substrate.
【0027】上記成長に際し、基板面方位を各種選択し
た場合の、成長結晶に対する結晶欠陥(ヒロック)密度
(1cm2当りのヒロック数)の測定結果、並びにアルゴ
ンレ−ザ(波長約5145Å)励起によるフォトルミネッセ
ンス測定結果を下表に示す。At the time of the above-mentioned growth, the measurement result of the crystal defect (hillock) density (the number of hillocks per 1 cm 2 ) with respect to the grown crystal when various substrate plane orientations are selected, and the photo by the argon laser (wavelength about 5145Å) excitation The luminescence measurement results are shown in the table below.
【0028】[0028]
【表1】 [Table 1]
【0029】この測定結果より、本実施例によれば、欠
陥が非常に少なく、結晶性の良好なInGaP結晶を得
られることが判る。From these measurement results, it can be seen that according to this example, an InGaP crystal having very few defects and good crystallinity can be obtained.
【0030】また、(100)面から[011]方向の
角度が大きい程、GaInP結晶の発光エネルギーが大
きくなることが判る。即ち、(100)面から[01
1]方向に5°以上傾斜した面を用いた活性層がGaI
nPからなる半導体レーザ装置の場合、発振波長の短波
長化が可能となる。It is also found that the larger the angle in the [011] direction from the (100) plane, the greater the emission energy of the GaInP crystal. That is, from the (100) plane, [01
1] the active layer using a plane inclined by 5 ° or more in the direction
In the case of a semiconductor laser device made of nP, the oscillation wavelength can be shortened.
【0031】本実施例において、成長条件は適宜変更で
き、例えば成長温度は620℃〜670℃の範囲で適当
である。しかし、基板面方位の(100)面から[01
1]方向への傾斜角は5°以上、好ましくは5°〜7°
の範囲に設定されねばならず、さもなければ、結晶欠陥
密度の減少に対する十分な効果を得られない。In this embodiment, the growth conditions can be changed as appropriate, and for example, the growth temperature is suitable in the range of 620 ° C to 670 ° C. However, from the (100) plane of the substrate plane orientation, [01
1] direction has an inclination angle of 5 ° or more, preferably 5 ° to 7 °
Must be set in the range of 1 or otherwise, a sufficient effect for reducing the crystal defect density cannot be obtained.
【0032】本方法は、InGaP結晶の成長のみなら
ず、Alを少量含むInGaAlP結晶の成長にも有効
に適用され得る。The present method can be effectively applied not only to the growth of InGaP crystals but also to the growth of InGaAlP crystals containing a small amount of Al.
【0033】上述したように、GaAs基板上にGaI
nP結晶あるいはAlGaInP結晶を成長させる際
に、前記基板として、その面方位を(100)面から
[011]方向に、5°以上傾けるのがよい。As described above, GaI is formed on the GaAs substrate.
When growing an nP crystal or an AlGaInP crystal, it is preferable that the substrate be tilted in the plane orientation from the (100) plane to the [011] direction by 5 ° or more.
【0034】本方法によって、良質のInGaP結晶あ
るいはInGaAlP結晶を作成できるため、斯る結晶
を用いたダブルヘテロ接合レ−ザダイオ−ドを実現でき
る。図2にその一実施例を示す。Since a high quality InGaP crystal or InGaAlP crystal can be produced by this method, a double heterojunction laser diode using such a crystal can be realized. FIG. 2 shows an example thereof.
【0035】図において、(11)はキャリア濃度2×
1018cm-3のn型GaAsからなる基板で、その一主面
(11a)を研摩により(100)面から[011]方
向に5°以上、例えば5°傾斜したものである。In the figure, (11) is a carrier concentration of 2 ×
This is a substrate of 10 18 cm −3 made of n-type GaAs, and one main surface (11a) thereof is inclined by 5 ° or more, for example, 5 ° in the [011] direction from the (100) surface by polishing.
【0036】(12)はバッファ層、(13)はn型ク
ラッド層、(14)は活性層、(15)はp型クラッド
層、(16)はキャップ層で、これらの層は成長温度6
20〜670℃例えば670℃、反応室内圧力70Torr
の減圧MOCVD法を用いて、基板(11)の一主面
(11a)上に順次積層される。下表にこれらの層の他
の形成条件を示す。(12) is a buffer layer, (13) is an n-type clad layer, (14) is an active layer, (15) is a p-type clad layer, and (16) is a cap layer.
20 to 670 ° C., for example 670 ° C., reaction chamber pressure 70 Torr
Using the low pressure MOCVD method of (1), the layers are sequentially laminated on the one main surface (11a) of the substrate (11). The table below shows other conditions for forming these layers.
【0037】[0037]
【表2】 [Table 2]
【0038】(17)はキャップ層(16)上にスパッ
タ法を用いて積層されたSiO2からなるブロック層
で、キャップ層(16)に達する幅6μmのストライプ
溝(18)がエッチング形成されている。Reference numeral (17) is a block layer made of SiO 2 laminated on the cap layer (16) by a sputtering method, and a stripe groove (18) having a width of 6 μm reaching the cap layer (16) is formed by etching. There is.
【0039】(19)は露出したキャップ層(16)上
及びブロック層(17)上にCr膜、Au膜がこの順に
真空蒸着されたAu/Cr電極からなるp型電極、(2
0)は基板(11)の他主面(11b)上にCr膜、S
n膜、Au膜がこの順に真空蒸着されたAu/Sn/C
r電極からなるn型電極である。これらの電極は400
℃の熱処理によって、キャップ層(16)あるいは基板
(11)とオ−ミック接触する。(19) is a p-type electrode consisting of an Au / Cr electrode in which a Cr film and an Au film are vacuum-deposited in this order on the exposed cap layer (16) and block layer (17), (2)
0) is a Cr film or S on the other main surface (11b) of the substrate (11).
Au / Sn / C in which an n film and an Au film are vacuum-deposited in this order.
It is an n-type electrode composed of an r electrode. These electrodes are 400
The heat treatment at ℃ makes ohmic contact with the cap layer (16) or the substrate (11).
【0040】また、装置の動作電圧の増加を抑える目的
で、p型クラッド層(15)とキャップ層(16)の間
にGa0.5In0.5Pからなる周知の中間層を設けてもよ
い。A known intermediate layer of Ga 0.5 In 0.5 P may be provided between the p-type cladding layer (15) and the cap layer (16) for the purpose of suppressing an increase in operating voltage of the device.
【0041】以上の構造を有する本実施例装置を25個
作製し、室温、パルス駆動で動作させた時の発振しきい
値電流を測定した。その結果を図3(a)に示す。また
比較例として、基板(11)の一主面(11a)を(1
00)面から[110]方向に2°傾斜した面とし、バ
ッファ層(12)をGaAsとし、他は本実施例装置と
同じ構造の比較装置を25個作製し、同様な測定を行っ
た。その結果を図3(b)に示す。Twenty-five devices of this example having the above structure were manufactured, and the oscillation threshold current when operating at room temperature by pulse driving was measured. The result is shown in FIG. In addition, as a comparative example, one main surface (11a) of the substrate (11) is
Twenty-five comparative devices having the same structure as the device of this example except that the buffer layer (12) was GaAs and the buffer layer (12) was inclined by 2 ° in the [110] direction from the (00) face and the same measurement was performed. The result is shown in FIG.
【0042】図3(a)及び(b)から、本実施例装置
では、比較装置に比べて、発振しきい値電流のばらつき
が少ないことがわかる。また、本実施例装置と比較装置
でMOCVD法による各半導体層の形成の後、各キャッ
プ層表面を観察したところ、比較装置で1000〜10
000個/cm2発生していたヒロックが本実施例装置で
は100個/cm2以下であった。これより本実施例装置
の発振しきい値電流にばらつきが少ないのは、このヒロ
ックが少なくなったこと、即ち形成される半導体層の結
晶性が向上したことによるものと考えられる。From FIGS. 3A and 3B, it can be seen that the device of this embodiment has less variation in the oscillation threshold current than the comparative device. Further, when the surface of each cap layer was observed after forming each semiconductor layer by the MOCVD method with the device of this example and the comparative device, it was found that 1000 to 10 with the comparative device.
The number of hillocks generated at 000 pieces / cm 2 was 100 pieces / cm 2 or less in the apparatus of this embodiment. From this, it is considered that the reason why the oscillation threshold current of the device of this embodiment has less variation is that the hillocks are reduced, that is, the crystallinity of the formed semiconductor layer is improved.
【0043】本実施例装置では基板(11)の一主面
(11a)に、(100)面から[011]方向に5°
傾斜した面を用いたが、斯る傾斜角は5°以上であれば
よく、好ましくは5〜7°である。即ち傾斜角が5°未
満では形成される半導体層の結晶性の向上に十分な効果
が得られず、7°より大では傾斜面の形成に時間がかか
り、製造上実用的でないからである。In the apparatus of this embodiment, the main surface (11a) of the substrate (11) is 5 ° in the [011] direction from the (100) surface.
Although an inclined surface was used, the inclination angle may be 5 ° or more, preferably 5 to 7 °. That is, if the inclination angle is less than 5 °, sufficient effect cannot be obtained for improving the crystallinity of the semiconductor layer to be formed, and if it exceeds 7 °, it takes time to form the inclined surface, which is not practical in manufacturing.
【0044】また、本発明はブロック層にSiO2を用
いるオキサイドストライプ型のレ−ザに限らず、各種構
造の半導体レ−ザ装置に適用できることは勿論である。Further, the present invention is not limited to the oxide stripe type laser using SiO 2 for the block layer, and it goes without saying that the present invention can be applied to semiconductor laser devices of various structures.
【0045】[0045]
【発明の効果】本発明によれば、下地面であるGaAs
基板の(100)面から[011]方向に所定の角度と
した主面の影響を受けて、後工程で形成する層の結晶欠
陥の発生、特に初期成長過程における結晶欠陥の発生を
抑圧でき、ひいては、可視光半導体レーザ装置としての
発振しきい値電流のばらつきが小さく、製造歩留りが向
上することとなる。According to the present invention, the underlayer GaAs
Due to the influence of the principal surface having a predetermined angle in the [011] direction from the (100) plane of the substrate, it is possible to suppress the generation of crystal defects in a layer formed in a later step, particularly the crystal defects in the initial growth process, As a result, the variation in the oscillation threshold current of the visible light semiconductor laser device is small, and the manufacturing yield is improved.
【0046】また、GaAs基板の主面を(100)面
から[011]方向に所定の角度傾斜させるので、活性
層がGaInPからなる場合には、該GaInPは下地
面である主面の影響を受けて、活性層から発生する発振
光の短波長化ができる。Further, since the main surface of the GaAs substrate is tilted from the (100) surface in the [011] direction by a predetermined angle, when the active layer is made of GaInP, the GaInP influences the main surface which is the underlying surface. Accordingly, the wavelength of the oscillation light generated from the active layer can be shortened.
【0047】特に、所定の角度は5〜7°である場合に
好ましい効果が得られる。Particularly, when the predetermined angle is 5 to 7 °, a preferable effect is obtained.
【図1】本発明に係る半導体レーザ装置を製造するため
の装置のブロック図である。FIG. 1 is a block diagram of an apparatus for manufacturing a semiconductor laser device according to the present invention.
【図2】本発明装置の一実施例を示す断面図である。FIG. 2 is a sectional view showing an embodiment of the device of the present invention.
【図3】図3(a)及び図3(b)は本発明の実施例装
置及び比較装置の発振しきい値電流を夫々測定した特性
図である。FIG. 3 (a) and FIG. 3 (b) are characteristic diagrams in which the oscillation threshold currents of the example device of the present invention and the comparative device are measured, respectively.
【図4】従来装置を示す断面図である。FIG. 4 is a cross-sectional view showing a conventional device.
11 n型GaAs基板 11a 一主面 13 n型クラッド層 14 活性層 15 p型クラッド層 11 n-type GaAs substrate 11a One main surface 13 n-type clad layer 14 active layer 15 p-type clad layer
Claims (11)
以上傾斜した面を主面とするGaAs基板と、該主面上
に形成された活性層を含むAlGaInP系半導体層
と、を備えたことを特徴とする可視光半導体レ−ザ装
置。1. A 5 ° angle from the (100) plane in the [011] direction.
A visible light semiconductor laser device comprising: a GaAs substrate having the inclined surface as a main surface; and an AlGaInP-based semiconductor layer including an active layer formed on the main surface.
以上傾斜した面を主面とする第1導電型のGaAs基板
と、該主面上に形成された第1導電型のAlGaInP
クラッド層と、該クラッド層上に形成された活性層と、
該活性層上に形成された第2導電型のAlGaInPク
ラッド層と、を備えたことを特徴とする可視光半導体レ
−ザ装置。2. A 5 ° angle from the (100) plane in the [011] direction.
A first conductivity type GaAs substrate having the inclined surface as a main surface, and a first conductivity type AlGaInP formed on the main surface
A clad layer, an active layer formed on the clad layer,
A visible light semiconductor laser device, comprising: a second conductivity type AlGaInP clad layer formed on the active layer.
以上傾斜した面を主面とするGaAs基板と、該主面上
に被着形成されることで上記方向への傾斜に因り初期成
長過程の結晶欠陥の発生が抑圧された半導体層と、該半
導体層上に形成された活性層を含むAlGaInP系半
導体層と、を備えことを特徴とする可視光半導体レ−ザ
装置。3. A 5 ° angle from the (100) plane in the [011] direction.
The GaAs substrate having the inclined surface as the main surface, the semiconductor layer in which the generation of crystal defects in the initial growth process due to the inclination in the above direction is suppressed by being deposited on the main surface, and the semiconductor A visible light semiconductor laser device comprising an AlGaInP-based semiconductor layer including an active layer formed on the layer.
以上傾斜した面を主面とするGaAs基板と、該主面上
に被着形成された結晶欠陥の発生が抑圧された半導体層
と、該半導体層上に形成された活性層を含むAlGaI
nP系半導体層と、を備えたことを特徴とする可視光半
導体レ−ザ装置。4. A 5 ° angle from the (100) plane in the [011] direction.
An AlGaI including a GaAs substrate having the inclined surface as a main surface, a semiconductor layer deposited on the main surface in which generation of crystal defects is suppressed, and an active layer formed on the semiconductor layer
A visible light semiconductor laser device comprising an nP-based semiconductor layer.
特徴とする請求項1、2、3、又は4記載の可視光半導
体レ−ザ装置。5. The visible light semiconductor laser device according to claim 1, wherein the active layer is made of GaInP.
以上傾斜した面を主面とするGaAs基板と、該主面上
に形成され上記方向への傾斜に因り短波長化された発振
光を生じるGaInPからなる活性層と、を備えたこと
を特徴とする可視光半導体レ−ザ装置。6. A 5 ° angle from the (100) plane in the [011] direction.
A GaAs substrate having the inclined surface as a main surface, and an active layer made of GaInP that is formed on the main surface and generates oscillation light whose wavelength is shortened due to the inclination in the above direction Visible light semiconductor laser device.
以上傾斜した面を主面とするGaAs基板と、該主面上
に形成され上記方向への傾斜に因りフォトルミネッセン
スの発光エネルギーが増大するGaInPからなる活性
層と、を備えたことを特徴とする可視光半導体レ−ザ装
置。7. A 5 ° angle from the (100) plane in the [011] direction.
A GaAs substrate having the inclined surface as the main surface, and an active layer made of GaInP formed on the main surface and whose photoluminescence emission energy increases due to the inclination in the above direction are characterized by being provided. Visible light semiconductor laser device.
以上傾斜した面を主面とするGaAs基板と、該主面上
に形成され上記方向への傾斜に因り短波長化された発振
光を生じるGaInPからなる活性層を含むAlGaI
nP系半導体層と、を備えたことを特徴とする可視光半
導体レ−ザ装置。8. A 5 ° angle from the (100) plane in the [011] direction.
An AlGaI layer including a GaAs substrate whose main surface is the inclined surface, and an active layer made of GaInP which is formed on the main surface and generates oscillation light whose wavelength is shortened due to the inclination in the above direction.
A visible light semiconductor laser device comprising an nP-based semiconductor layer.
以上傾斜した面を主面とするGaAs基板と、該主面上
に形成され上記方向への傾斜に因りフォトルミネッセン
スの発光エネルギーが増大するGaInPからなる活性
層を含むAlGaInP系半導体層と、を備えたことを
特徴とする可視光半導体レ−ザ装置。9. A 5 ° angle from the (100) plane in the [011] direction.
A GaAs substrate having the inclined surface as a main surface, and an AlGaInP-based semiconductor layer including an active layer made of GaInP formed on the main surface and whose emission energy of photoluminescence increases due to the inclination in the above direction are provided. A visible light semiconductor laser device.
面であることを特徴とする請求項1、2、3、4、5、
6、7、8、又は9記載の可視光半導体レ−ザ装置。10. The inclined surface is a surface inclined by 5 ° to 7 °, 1, 2, 3, 4, 5,
The visible light semiconductor laser device according to 6, 7, 8 or 9.
特徴とする請求項1、2、3、4、5、6、7、8、
9、又は10記載の可視光半導体レ−ザ装置。11. The inclined surface is a polished surface, and the inclined surface is a polished surface.
9. The visible light semiconductor laser device according to 9 or 10.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6057149A JP2804714B2 (en) | 1988-09-29 | 1994-03-28 | Method for manufacturing visible light semiconductor laser device |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24514888 | 1988-09-29 | ||
JP63-245148 | 1988-09-29 | ||
JP6057149A JP2804714B2 (en) | 1988-09-29 | 1994-03-28 | Method for manufacturing visible light semiconductor laser device |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1068784A Division JPH0682887B2 (en) | 1988-09-29 | 1989-03-20 | Visible light semiconductor laser device and method for growing compound semiconductor crystal |
Related Child Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP31138695A Division JP2804736B2 (en) | 1988-09-29 | 1995-11-29 | Visible light semiconductor laser device |
JP7311388A Division JPH08213714A (en) | 1988-09-29 | 1995-11-29 | Light emitting device |
JP7311387A Division JPH08227858A (en) | 1988-09-29 | 1995-11-29 | Manufacture of semiconductor crystal |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06296062A true JPH06296062A (en) | 1994-10-21 |
JP2804714B2 JP2804714B2 (en) | 1998-09-30 |
Family
ID=26398176
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6057149A Expired - Lifetime JP2804714B2 (en) | 1988-09-29 | 1994-03-28 | Method for manufacturing visible light semiconductor laser device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2804714B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6465812B1 (en) | 1999-09-27 | 2002-10-15 | Sharp Kabushiki Kaisha | Semiconductor light emitting device |
US6518159B1 (en) | 1999-10-28 | 2003-02-11 | Sharp Kabushiki Kaisha | Semiconductor laser device and a method for fabricating the same |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63178574A (en) * | 1987-01-20 | 1988-07-22 | Toshiba Corp | Manufacture of semiconductor laser device |
JPH01128423A (en) * | 1987-11-12 | 1989-05-22 | Sharp Corp | Semiconductor device |
JPH01239891A (en) * | 1988-03-22 | 1989-09-25 | Hitachi Ltd | Semiconductor structure |
-
1994
- 1994-03-28 JP JP6057149A patent/JP2804714B2/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63178574A (en) * | 1987-01-20 | 1988-07-22 | Toshiba Corp | Manufacture of semiconductor laser device |
JPH01128423A (en) * | 1987-11-12 | 1989-05-22 | Sharp Corp | Semiconductor device |
JPH01239891A (en) * | 1988-03-22 | 1989-09-25 | Hitachi Ltd | Semiconductor structure |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6465812B1 (en) | 1999-09-27 | 2002-10-15 | Sharp Kabushiki Kaisha | Semiconductor light emitting device |
US6518159B1 (en) | 1999-10-28 | 2003-02-11 | Sharp Kabushiki Kaisha | Semiconductor laser device and a method for fabricating the same |
Also Published As
Publication number | Publication date |
---|---|
JP2804714B2 (en) | 1998-09-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3688843B2 (en) | Nitride semiconductor device manufacturing method | |
US6362496B1 (en) | Semiconductor light emitting device having a GaN-based semiconductor layer, method for producing the same and method for forming a GaN-based semiconductor layer | |
JP2002217115A (en) | Crystal film, crystal substrate, and semiconductor device | |
US7183578B2 (en) | Semiconductor apparatus, method for growing nitride semiconductor and method for producing semiconductor apparatus | |
JP2001342100A (en) | Manufacturing method of substrate for epitaxial growth and manufacturing method of semiconductor device using substrate for this epitaxial growth | |
JP2000012897A (en) | Manufacture of nitrogen compd. semiconductor film and nitrogen compd. semiconductor element | |
JP4916434B2 (en) | Nitride semiconductor device and manufacturing method thereof | |
JP2003142728A (en) | Manufacturing method of semiconductor light emitting element | |
JP3712770B2 (en) | Method for manufacturing group 3 nitride semiconductor and semiconductor device | |
JP2003229645A (en) | Quantum well structure, semiconductor element employing it and its fabricating method | |
JPH11150296A (en) | Nitride semiconductor element and its manufacture | |
JPH07297446A (en) | Group iii nitride semiconductor light emitting element | |
US5016252A (en) | Semiconductor laser device | |
US5411915A (en) | Method of manufacturing a single crystal layers | |
JP3727106B2 (en) | Method of manufacturing group III nitride semiconductor laser diode | |
JP2003347660A (en) | Method of manufacturing nitride semiconductor device | |
JPH08274372A (en) | Group iii nitride semiconductor light emitting element | |
US5146466A (en) | Semiconductor laser device | |
JP3646502B2 (en) | Method for manufacturing group 3 nitride semiconductor device | |
JP4211358B2 (en) | Nitride semiconductor, nitride semiconductor device and manufacturing method thereof | |
JPH06296062A (en) | Visible light semiconductor laser device | |
JP2804736B2 (en) | Visible light semiconductor laser device | |
JPH08227858A (en) | Manufacture of semiconductor crystal | |
JPH09266355A (en) | Semiconductor light emitting device | |
JPH08213714A (en) | Light emitting device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080717 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 10 Free format text: PAYMENT UNTIL: 20080717 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 11 Free format text: PAYMENT UNTIL: 20090717 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090717 Year of fee payment: 11 |