JPH06294593A - Heat exchanger - Google Patents

Heat exchanger

Info

Publication number
JPH06294593A
JPH06294593A JP5007173A JP717393A JPH06294593A JP H06294593 A JPH06294593 A JP H06294593A JP 5007173 A JP5007173 A JP 5007173A JP 717393 A JP717393 A JP 717393A JP H06294593 A JPH06294593 A JP H06294593A
Authority
JP
Japan
Prior art keywords
heat
heat storage
ethylene
storage body
olefin copolymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5007173A
Other languages
Japanese (ja)
Inventor
Mikio Sei
三喜男 清
Akira Sugawara
亮 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP5007173A priority Critical patent/JPH06294593A/en
Publication of JPH06294593A publication Critical patent/JPH06294593A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Abstract

PURPOSE:To hasten startup of a heat exchanger by providing a clearance between a heat accumulating body and a housing. CONSTITUTION:In a heat accumulating body 15, since an organic system accumulating material which reversibly phase-transfers between solid and liquid is supported by resin, heat is not lost. As the result, a wall for partitioning the heat accumulating body 15 from a heating medium is not required in a passage 18 of the heating medium, so that heat exchanging velocity is increased. Even if the volume of the heat accumulating body 15 is expanded as the temperature of the heat accumulating body 15 is raisesd by heat exchanging, the passage 18 of the heating medium is not blocked because there is the clearance between the heat accumulating body 15 and a housing 10, thereby heat exchanging is performed while holding the contact area of the heating medium and the heat accumulating body 15. Moreover, in the radiation of heat, the heat accumulating body 15 is contracted so as to make use of a clearance 24 as a passage of the heating medium, and the contact area of the heating medium and the heat accumulating body 15 is increased, thereby the efficiency of heat exchanging is further improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は相転移に伴う潜熱を利用
した蓄熱体から成る熱交換素子を備える熱交換器に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat exchanger having a heat exchange element composed of a heat storage body utilizing latent heat associated with a phase transition.

【0002】[0002]

【従来の技術】大量の熱を蓄えることのできる蓄熱材
を、自動車の加熱装置に用いることが特開昭55−16
4516号公報に開示されている。この装置の概略を図
6に示すと、エンジン(3)、エンジン(3)からの排
熱を蓄熱材で蓄熱する熱交換器(1)、この熱交換器
(1)の熱を車内に送風する送風器(6)、及びこれら
を結ぶ熱媒配管(2)から構成されている。図7に上記
熱交換器(1)内の構造を示すと、走行中のエンジンの
排熱をこの熱交換器(1)内の蓄熱体(8)に蓄えてお
き、蓄えた熱で車内の急速暖房、及びエンジン(3)を
再始動する際のアイドリング時間の短縮を行うものであ
る。この蓄熱体(8)は図8に示す如く、大きな熱量を
蓄えることのできる蓄熱材(13)と容器(14)より
構成されている。即ち上記蓄熱体(8)は蓄熱材(1
3)の固相と液相間の相転移に伴う潜熱を利用したもの
で、蓄熱材(13)は相転移により液体となった際の液
の流出を防ぐため樹脂等で構成された容器(14)に納
められている。蓄熱体(8)の上記容器(14)は固定
板(9)で熱交換器(1)のハウジング(10)に固定
され、エンジン(3)の排熱媒体である熱媒が入口(1
1)より入り、出口(12)より出る間に、熱媒と蓄熱
体(8)の蓄熱材(13)の間で熱交換される。
2. Description of the Related Art A heat storage material capable of storing a large amount of heat is used in a heating device of an automobile.
It is disclosed in Japanese Patent No. 4516. An outline of this device is shown in FIG. 6. An engine (3), a heat exchanger (1) for storing exhaust heat from the engine (3) with a heat storage material, and the heat of the heat exchanger (1) is blown into the vehicle. The air blower (6) and the heat medium pipe (2) connecting them. FIG. 7 shows the structure inside the heat exchanger (1). The exhaust heat of the running engine is stored in the heat storage body (8) inside the heat exchanger (1), and the stored heat is used to store the heat inside the vehicle. The purpose is to shorten the idling time when rapid heating and restarting the engine (3). As shown in FIG. 8, the heat storage body (8) is composed of a heat storage material (13) capable of storing a large amount of heat and a container (14). That is, the heat storage body (8) is a heat storage material (1
It utilizes the latent heat associated with the phase transition between the solid phase and the liquid phase in 3), and the heat storage material (13) is a container made of resin or the like to prevent the liquid from flowing out when it becomes liquid due to the phase transition ( 14). The container (14) of the heat storage body (8) is fixed to the housing (10) of the heat exchanger (1) by a fixing plate (9), and a heat medium which is an exhaust heat medium of the engine (3) is introduced into the inlet (1).
Heat is exchanged between the heat medium and the heat storage material (13) of the heat storage body (8) while entering from 1) and exiting from the outlet (12).

【0003】しかし、上述の蓄熱体(8)を備える熱交
換器(1)は、熱媒と蓄熱材(13)が伝熱抵抗を有す
る容器(14)を隔てて熱交換が行われるので、熱交換
の立ち上がりが遅くなる欠点がある。
However, in the heat exchanger (1) provided with the above-mentioned heat storage body (8), the heat medium and the heat storage material (13) perform heat exchange by separating the container (14) having heat transfer resistance from each other. There is a drawback that the heat exchange rises slowly.

【0004】そこで、仮に有機系蓄熱材を担持する樹脂
で蓄熱体を構成し、この蓄熱体に熱媒が直接接触する貫
通孔を設け、この蓄熱体をハウジングに収容して熱交換
すると、温度上昇に伴う蓄熱体の体積膨張により、ハウ
ジングから受ける反作用で上記貫通孔が閉塞し、熱交換
の効率を低下する欠点がある。
Therefore, if a heat accumulating body is made of a resin carrying an organic heat accumulating material, and a through hole is provided in which the heat medium directly contacts the heat accumulating body, and the heat accumulating body is housed in a housing to perform heat exchange, the temperature is changed. Due to the volume expansion of the heat storage body due to the rise, the through hole is blocked by the reaction received from the housing, and the heat exchange efficiency is reduced.

【0005】[0005]

【発明が解決しようとする課題】本発明は上記の欠点を
解消するためになされたもので、その目的とするところ
は、熱交換の立ち上がりが速い熱交換器を提供すること
にある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned drawbacks, and an object of the present invention is to provide a heat exchanger having a rapid heat exchange start-up.

【0006】[0006]

【課題を解決するための手段】本発明の熱交換器は、エ
チレン−α−オレフィン共重合体Aと、このエチレン−
α−オレフィン共重合体Aに担持された、固−液間を可
逆的に相転移する有機系蓄熱材を構成材料とする蓄熱体
(15)、この蓄熱体(15)に直接接触する熱媒の流
路(18)を備える熱交換素子(17)、及びこの熱交
換素子(17)を収容するハウジング(10)を備えた
熱交換器であって、上記蓄熱体(15)とハウジング
(10)の間に間隙(24)を設けていることを特徴と
する。
The heat exchanger of the present invention comprises an ethylene-α-olefin copolymer A and an ethylene-α-olefin copolymer A.
A heat storage body (15) having an organic heat storage material, which is carried on the α-olefin copolymer A and undergoes a reversible phase transition between solid and liquid, as a constituent material, and a heat medium which is in direct contact with the heat storage body (15). A heat exchanger comprising a heat exchange element (17) having a flow path (18) and a housing (10) accommodating the heat exchange element (17), the heat storage body (15) and the housing (10). ) Are provided with a gap (24).

【0007】[0007]

【作用】本発明の蓄熱体(15)は樹脂に固−液間を可
逆的に相転移する有機系蓄熱材が担持されているので流
失がなく、その結果熱媒の流路(18)に蓄熱体(1
5)と熱媒を仕切る壁が不要となり、熱媒と蓄熱体(1
5)とは直接接触するので、熱交換速度が高まる。熱交
換により蓄熱体(15)の温度が上昇するにしたがって
蓄熱体(15)が体積膨張しても、蓄熱体(15)とハ
ウジング(10)の間に間隙(24)があるので、ハウ
ジング(10)からの反作用を受けず、蓄熱体(15)
に設けた熱媒の流路(18)を閉塞することがなく、熱
媒と蓄熱体(15)の接触面積を保持して熱交換を行
う。また放熱の際には蓄熱体(15)が収縮し、上記間
隙(24)を熱媒の流路として利用する場合、熱媒と蓄
熱体(15)の接触面積が増大し熱交換の効率がさらに
向上する。
In the heat storage body (15) of the present invention, since an organic heat storage material that undergoes a reversible phase transition between solid and liquid is carried on the resin, there is no flow-out, and as a result, the heat medium flow path (18) is provided. Heat storage (1
5) The wall that separates the heat medium from the heat medium is no longer necessary,
Since it is in direct contact with 5), the heat exchange rate is increased. Even if the heat storage body (15) expands in volume as the temperature of the heat storage body (15) rises due to heat exchange, since there is a gap (24) between the heat storage body (15) and the housing (10), the housing ( Heat storage body (15) without receiving reaction from 10)
The heat exchange is performed by keeping the contact area between the heat medium and the heat storage body (15) without closing the flow path (18) of the heat medium provided in the. In addition, when the heat storage body (15) contracts during heat dissipation and the gap (24) is used as a flow path for the heat medium, the contact area between the heat medium and the heat storage body (15) increases, and the efficiency of heat exchange increases. Further improve.

【0008】以下、本発明を実施例として示した図面を
参照しながら説明する。図1は本発明の一実施例に係る
熱交換器を透視した斜視図である。
The present invention will be described below with reference to the drawings showing examples. FIG. 1 is a perspective view of a heat exchanger according to an embodiment of the present invention as seen through.

【0009】図1に示す如く、熱交換器(23)は円筒
形のハウジング(10)に熱交換素子(17)を収め、
上記ハウジング(10)の前後の端面に熱媒の入口(1
1)と出口(12)が設けられている。上記熱交換素子
(17)の蓄熱体(15)は円柱に賦形されており、こ
の蓄熱体(15)の円形の端面に、両端面間にわたって
連通する流路(18)が形成されている。この蓄熱体
(15)の円柱の側面とハウジング(10)の間には間
隙(24)が形成されている。
As shown in FIG. 1, the heat exchanger (23) contains a heat exchange element (17) in a cylindrical housing (10).
At the front and rear end faces of the housing (10), a heat medium inlet (1
1) and an outlet (12) are provided. The heat storage body (15) of the heat exchange element (17) is shaped like a cylinder, and a circular end surface of the heat storage element (15) is formed with a flow path (18) communicating between both end surfaces. . A gap (24) is formed between the cylindrical side surface of the heat storage body (15) and the housing (10).

【0010】本発明に用いられる上記蓄熱体(15)
は、エチレン−α−オレフィン共重合体Aと、このエチ
レン−α−オレフィン共重合体Aに担持された有機系蓄
熱材を構成材料とする。
The heat storage body (15) used in the present invention
Is composed of an ethylene-α-olefin copolymer A and an organic heat storage material supported by the ethylene-α-olefin copolymer A.

【0011】上記エチレン−α−オレフィン共重合体A
としては、例えば、α−オレフィンを数モル%程度含有
する、エチレンとα−オレフィンとの共重合体が用いら
れる。α−オレフィンとしては、例えば、プロピレン、
ブテン−1、ペンテン、ヘキセン−1、4−メチルペン
テン−1、オクテン−1等が挙げられる。上記エチレン
−α−オレフィン共重合体Aとして、例えば密度が0.
925g/cm3 未満の樹脂を有機系蓄熱材の担持体と
して用いると、蓄熱体(15)からの有機系蓄熱材の溶
出が防止される。このエチレン−α−オレフィン共重合
体Aの密度は溶出の点で0.910g/cm3 以下がよ
り好ましく、特に0.890g/cm3以下が最適であ
る。
The above ethylene-α-olefin copolymer A
For example, a copolymer of ethylene and α-olefin containing about several mol% of α-olefin is used. Examples of the α-olefin include propylene,
Butene-1, pentene, hexene-1, 4-methylpentene-1, octene-1, etc. are mentioned. The ethylene-α-olefin copolymer A has, for example, a density of 0.
When a resin of less than 925 g / cm 3 is used as a carrier for the organic heat storage material, the elution of the organic heat storage material from the heat storage body (15) is prevented. Density is more preferably 0.910 g / cm 3 or less in terms of dissolution of the ethylene -α- olefin copolymer A, is optimal in particular 0.890 g / cm 3 or less.

【0012】上記蓄熱体(15)は、蓄熱体(15)の
強度を向上させるために、樹脂として、上記エチレン−
α−オレフィン共重合体Aと共に、中密度ポリエチレ
ン、高密度ポリエチレン、及び上記エチレン−α−オレ
フィン共重合体Aより大きい密度を有するエチレン−α
−オレフィン共重合体Bのうち少なくとも1種以上のエ
チレンポリマーを用いると、蓄熱体(15)の形状保持
力を高めることができる。特に、エチレン−α−オレフ
ィン共重合体Aが密度0.900g/cm3 以下の場合
は、高温になると形状を保持し得ないので強度、及び形
状保持のため、エチレン−α−オレフィン共重合体Bの
添加は効果的である。上記エチレン−α−オレフィン共
重合体Bは上記エチレン−α−オレフィン共重合体Aよ
り大きい密度を有し、具体的には0.910g/cm3
以上が好ましく、特に0.930g/cm3 以上がさら
に好ましい。なお、上記中密度ポリエチレン、及び高密
度ポリエチレンは、JIS−K−6760で規定されて
いるものであって、中密度ポリエチレン、及び高密度ポ
リエチレンは、低密度ポリエチレンに比べて蓄熱体(1
5)の強度向上に効果的である。
The heat storage body (15) is made of ethylene-based resin as a resin in order to improve the strength of the heat storage body (15).
Along with α-olefin copolymer A, medium density polyethylene, high density polyethylene, and ethylene-α having a density higher than the above ethylene-α-olefin copolymer A.
-Using at least one ethylene polymer of the olefin copolymer B, the shape retention of the heat storage material (15) can be enhanced. In particular, when the density of the ethylene-α-olefin copolymer A is 0.900 g / cm 3 or less, the shape cannot be maintained at high temperature, so that the ethylene-α-olefin copolymer has strength and shape retention. The addition of B is effective. The ethylene-α-olefin copolymer B has a density higher than that of the ethylene-α-olefin copolymer A, specifically, 0.910 g / cm 3
The above is preferable, and 0.930 g / cm 3 or more is particularly preferable. The medium-density polyethylene and the high-density polyethylene are defined by JIS-K-6760, and the medium-density polyethylene and the high-density polyethylene have a heat storage body (1
It is effective for improving the strength of 5).

【0013】上記有機系蓄熱材は固−液間を可逆的に相
転移する性質を有する物質であって、この有機系蓄熱材
はエチレン−α−オレフィン共重合体Aよりも低融点
で、エチレン−α−オレフィン共重合体Aと相溶性を有
するものが望ましく、中密度ポリエチレン、及び高密度
ポリエチレンを用いる場合は中密度ポリエチレン、及び
高密度ポリエチレンとも相溶性を有するものが望まし
い。この有機系蓄熱材としては、特に限定はしないが、
具体的には、パラフィン、パラフィンワックス、イソパ
ラフィン、ポリエチレンワックス等のハイドロカーボ
ン、脂肪酸、及び脂肪酸エステル類(以下脂肪酸類と記
す)等が挙げられる。これらは1種のみを用いてもよい
し、2種以上を併用してもよい。なお、熱交換する媒体
である熱媒が水分を含む場合は、脂肪酸類を劣化させる
ので、ハイドロカーボンの方が好ましい。上記有機系蓄
熱材は、蓄熱の効率を保持する点より、20cal/g
以上の融解熱量を有する結晶性物質であることが望まし
い。
The above-mentioned organic heat storage material is a substance having a property of reversibly undergoing phase transition between solid and liquid, and this organic heat storage material has a lower melting point than ethylene-α-olefin copolymer A, Those having compatibility with the α-olefin copolymer A are desirable, and when medium density polyethylene and high density polyethylene are used, those having compatibility with medium density polyethylene and high density polyethylene are also desirable. The organic heat storage material is not particularly limited,
Specific examples thereof include hydrocarbons such as paraffin, paraffin wax, isoparaffin, and polyethylene wax, fatty acids, and fatty acid esters (hereinafter referred to as fatty acids). These may use only 1 type and may use 2 or more types together. When the heat medium, which is a medium for heat exchange, contains water, hydrocarbons are preferable because they deteriorate fatty acids. The organic heat storage material is 20 cal / g from the viewpoint of maintaining heat storage efficiency.
A crystalline substance having the above heat of fusion is desirable.

【0014】上記エチレン−α−オレフィン共重合体
A、および強度を向上するための上記エチレンポリマー
から蓄熱体(15)を構成した場合は、エチレンポリマ
ーを含む樹脂総量と、有機系蓄熱材の配合比率は、例え
ば樹脂は10〜70重量%、有機系蓄熱材は30〜90
重量%が適当である。上記樹脂の比率が上記範囲を下回
ると有機系蓄熱材が熱媒流路(18)へ溶出する恐れが
あり、有機系蓄熱材の比率が上記範囲を下回ると蓄熱量
が低下し熱交換量の減少につながる。さらに、エチレン
−α−オレフィン共重合体A、上記エチレンポリマー、
及び有機系蓄熱材の配合比率は、例えば、エチレン−α
−オレフィン共重合体Aは5〜60重量%、上記エチレ
ンポリマーは0〜65重量%、有機系蓄熱材は30〜9
0重量%、但し樹脂の合計は10〜70重量%が適当で
ある。エチレン−α−オレフィン共重合体Aの比率が上
記範囲を下回ると有機系蓄熱材が熱媒の流路(18)へ
溶出する恐れがあり、エチレン−α−オレフィン共重合
体Aの比率が上記範囲を越えると蓄熱量が低下する傾向
を示す。
When the heat storage material (15) is composed of the ethylene-α-olefin copolymer A and the ethylene polymer for improving the strength, the total amount of the resin containing the ethylene polymer and the organic heat storage material are blended. The ratio is, for example, 10 to 70% by weight for resin and 30 to 90 for organic heat storage material.
Weight percent is suitable. If the ratio of the resin is less than the above range, the organic heat storage material may be eluted into the heat medium flow path (18). If the ratio of the organic heat storage material is less than the above range, the heat storage amount decreases and the heat exchange amount Leads to a decrease. Furthermore, ethylene-α-olefin copolymer A, the above ethylene polymer,
The mixing ratio of the organic heat storage material is, for example, ethylene-α.
-Olefin copolymer A is 5 to 60% by weight, the ethylene polymer is 0 to 65% by weight, and the organic heat storage material is 30 to 9%.
0% by weight, but 10 to 70% by weight is suitable for the total amount of resin. If the ratio of the ethylene-α-olefin copolymer A is less than the above range, the organic heat storage material may be eluted into the flow path (18) of the heat medium, and the ratio of the ethylene-α-olefin copolymer A is above. If it exceeds the range, the heat storage amount tends to decrease.

【0015】上記エチレン−α−オレフィン共重合体A
に有機系蓄熱材を担持させるには、例えば、前記エチレ
ン−α−オレフィン共重合体Aの融点以上の温度、又ポ
リエチレンを使用する場合は、ポリエチレン、前記エチ
レン−α−オレフィン共重合体Aの融点以上の温度で混
練機等で混練し、この溶融混合物を成形することによっ
て実現できる。上記蓄熱体(15)は、例えば、押出成
形、射出成形等通常のプラスチックの成形方法で製造す
ることができる。上記蓄熱体(15)には、樹脂、及び
有機系蓄熱材の他に必要に応じて、各種無機のフィラ
ー、難燃剤、酸化防止剤等を添加し、分散させてもよ
い。
The above ethylene-α-olefin copolymer A
In order to support the organic heat storage material on, for example, a temperature of the melting point of the ethylene-α-olefin copolymer A or higher, or when polyethylene is used, polyethylene, the polyethylene-α-olefin copolymer A It can be realized by kneading with a kneader or the like at a temperature equal to or higher than the melting point and molding the molten mixture. The heat storage body (15) can be manufactured by a usual plastic molding method such as extrusion molding or injection molding. In addition to the resin and the organic heat storage material, various inorganic fillers, flame retardants, antioxidants and the like may be added to and dispersed in the heat storage body (15), if necessary.

【0016】本発明においては、熱交換素子(17)は
円柱形の蓄熱体(15)と、この蓄熱体(15)の両端
面間にわたって連通する熱媒の流路(18)で構成され
ている。この流路(18)を通過する熱媒と蓄熱体(1
5)とが直接接触するので熱交換が高速化される。上記
熱媒の流路(18)は、熱媒の流路(18)を有する蓄
熱体(15)を一段成形で形成することもできるし、ブ
ロック状に形成した蓄熱体(15)を旋盤、ボール盤等
の後加工によって形成してもよい。
In the present invention, the heat exchange element (17) is composed of a cylindrical heat storage body (15) and a heat medium passage (18) communicating between both end faces of the heat storage body (15). There is. A heat medium and a heat storage body (1
5) Direct contact with heat exchange speed. The heat medium flow path (18) can be formed by a single-step molding of the heat storage body (15) having the heat medium flow path (18), or the block-shaped heat storage body (15) can be turned by a lathe. It may be formed by post-processing such as a drilling machine.

【0017】上記蓄熱体(15)とハウジング(10)
の間に設けられている間隙(24)は、熱交換による温
度上昇で蓄熱体(15)が体積膨張する際に、蓄熱体
(15)の体積膨張を吸収するので、蓄熱体(15)の
体積膨張で蓄熱体(15)に設けた熱媒の流路(18)
を、膨張に伴ってハウジング(10)に与えた反作用を
受けて閉塞することなく、熱媒と蓄熱体(15)の接触
面積を保持して熱交換を行う。また放熱の際には蓄熱体
(15)の体積が収縮するので、上記間隙(24)を熱
媒の流路として利用してもよい。この間隙(24)を熱
媒の流路(18)とする場合は、熱媒と蓄熱体(15)
の接触面積が増大し熱交換の効率を向上することができ
る。この間隙(24)は使用する最高温度での蓄熱体
(15)の体積膨張以上の容積であることが好ましい。
上記間隙(24)としては、空間のみを意味するもので
なく、蓄熱体(15)の膨張を吸収するものならば、限
定されない。従って、間隙(24)は、例えば、軟質発
砲ウレタン、ガラス繊維等の圧縮性のある多項質の材料
を充填した層でもよいし、ハウジング(10)に蓄熱体
(15)をフィンで固定することによる空間でもよい。
The heat storage body (15) and the housing (10)
The gap (24) provided between the heat storage bodies (15) absorbs the volume expansion of the heat storage body (15) when the heat storage body (15) expands in volume due to a temperature rise due to heat exchange. Heat medium flow path (18) provided in heat storage body (15) by volume expansion
The heat exchange is performed by holding the contact area between the heat medium and the heat storage body (15) without being blocked by the reaction given to the housing (10) due to the expansion. Further, since the volume of the heat storage body (15) contracts during heat dissipation, the gap (24) may be used as a flow path for the heat medium. When this gap (24) is used as the flow path (18) for the heat medium, the heat medium and the heat storage body (15)
The contact area can be increased and the efficiency of heat exchange can be improved. It is preferable that the gap (24) has a volume equal to or larger than the volume expansion of the heat storage body (15) at the highest temperature used.
The gap (24) does not mean only the space, but is not limited as long as it absorbs the expansion of the heat storage body (15). Therefore, the gap (24) may be a layer filled with a compressible polynomial material such as soft foam urethane or glass fiber, or the heat storage body (15) may be fixed to the housing (10) with fins. The space by

【0018】上記熱媒としては、例えば、水、エチレン
グリコール、プロピレングリコール、及びこれらの水溶
液等の各種液体、空気等の各種ガスが挙げられる。
Examples of the heat medium include water, ethylene glycol, propylene glycol, various liquids such as aqueous solutions thereof, and various gases such as air.

【0019】[0019]

【実施例】以下、本発明の流路(18)の変化を熱交換
量の測定によって確認した実施例と比較例を挙げる。実
施例及び比較例で用いた樹脂の特性を表1に、有機系蓄
熱材の特性を表2に、配合を表3に示した。
[Examples] Examples and comparative examples in which the change of the flow path (18) of the present invention was confirmed by measuring the amount of heat exchange will be described below. The characteristics of the resins used in Examples and Comparative Examples are shown in Table 1, the characteristics of the organic heat storage material are shown in Table 2, and the composition is shown in Table 3.

【0020】実施例1 密度が0.925g/cm3 以下のエチレン−α−オレ
フィン共重合体Aとして、密度0.87g/cm3 のタ
フマーP0680(三井石油化学株式会社製)、高密度
ポリエチレンとして、密度0.957g/cm3 のS6
006M(昭和電工株式会社製)、有機系蓄熱材とし
て、結晶性アルキルハイドロカーボンであるHNP−9
(日本精蝋株式会社製)を用いた。なお、密度はJIS
−K−6760に基づき測定した。
Example 1 As an ethylene-α-olefin copolymer A having a density of 0.925 g / cm 3 or less, Tufmer P0680 (manufactured by Mitsui Petrochemical Co., Ltd.) having a density of 0.87 g / cm 3 and high density polyethylene , S6 with a density of 0.957 g / cm 3
006M (manufactured by Showa Denko KK), HNP-9 which is a crystalline alkyl hydrocarbon as an organic heat storage material.
(Manufactured by Nippon Seiro Co., Ltd.) was used. The density is JIS
-Measured based on K-6760.

【0021】上記タフマーP0680を20重量部(以
下部と記す)、S6006Mを10部、HNP−9を7
0部の比率で配合して成形材料とした。この成形材料を
2軸式混練押出機に供給し、150℃に加熱しながら混
練した溶融物を冷却し、直径100mm、長さ150m
mの図1、図2に示した円柱状の蓄熱体(15)を得
た。
20 parts by weight of Toughmer P0680 (hereinafter referred to as "part"), 10 parts of S6006M, and 7 parts of HNP-9.
It was compounded at a ratio of 0 part to obtain a molding material. This molding material is supplied to a twin-screw kneading extruder, and the kneaded melt is cooled while being heated to 150 ° C. to have a diameter of 100 mm and a length of 150 m.
A columnar heat storage body (15) shown in FIG. 1 and FIG.

【0022】上述の得られた蓄熱体(15)に熱媒の流
路(18)として半径6mmの貫通孔を91本設け、熱
交換素子(17)とした。この熱交換素子(17)を内
径105mm、長さ200mmのアルミ製の円筒形のハ
ウジング(10)に入れ、円柱状の蓄熱体(15)の側
面とハウジング(10)の間の間隙(24)として、軟
質発砲ウレタンの層を設けた。この円筒形のハウジング
(10)は、熱交換素子(17)の前後端面に熱媒の入
口(11)と出口(12)を設けて構成されている。こ
のハウジング(10)の外側には、断熱材としてグラス
ウール(19)が10mm巻かれている。これを、熱交
換器(23)とした。
The heat accumulator (15) obtained above was provided with 91 through holes each having a radius of 6 mm as a flow path (18) for a heat medium to obtain a heat exchange element (17). This heat exchange element (17) was placed in an aluminum cylindrical housing (10) having an inner diameter of 105 mm and a length of 200 mm, and a gap (24) between the side surface of the cylindrical heat storage body (15) and the housing (10). As a soft foam urethane layer was provided. This cylindrical housing (10) is configured by providing a heat medium inlet (11) and an outlet (12) on the front and rear end faces of a heat exchange element (17). On the outside of the housing (10), glass wool (19) is wound by 10 mm as a heat insulating material. This was made into the heat exchanger (23).

【0023】実施例2 密度が0.925g/cm3 以下のエチレン−α−オレ
フィン共重合体Aとして、密度0.89g/cm3 のE
UL130(住友化学工業株式会社製)、有機系蓄熱材
として、結晶性アルキルハイドロカーボンであるHNP
−9を用いた。
Example 2 As an ethylene-α-olefin copolymer A having a density of 0.925 g / cm 3 or less, E having a density of 0.89 g / cm 3
UL130 (Sumitomo Chemical Co., Ltd.), HNP which is a crystalline alkyl hydrocarbon as an organic heat storage material
-9 was used.

【0024】上記EUL130を30部、HNP−9を
70部の比率で配合して成形材料とした。この成形材料
を2軸式混練押出機に供給し、150℃に加熱しながら
混練した溶融物を冷却し、直径100mm、長さ150
mmの円柱状の蓄熱体(15)を得た。
A molding material was prepared by mixing 30 parts of EUL130 and 70 parts of HNP-9. This molding material is supplied to a twin-screw kneading extruder, and the kneaded melt is cooled while being heated to 150 ° C. to have a diameter of 100 mm and a length of 150.
A columnar heat storage body (15) having a size of mm was obtained.

【0025】この蓄熱体(15)を実施例1と同様に加
工し、熱交換素子(17)を得、この熱交換素子(1
7)を実施例1と同様の円筒形のハウジング(10)に
入れ、上記蓄熱体(15)をハウジング(10)にフィ
ンで固定し、蓄熱体(15)とハウジング(10)の間
の間隙(24)として、空隙を設けた。このハウジング
(10)の外側には、断熱材としてグラスウール(1
9)が10mm巻かれている。これを、熱交換器(2
3)とした。
This heat storage body (15) was processed in the same manner as in Example 1 to obtain a heat exchange element (17), and this heat exchange element (1)
7) is placed in a cylindrical housing (10) similar to that of the first embodiment, the heat storage body (15) is fixed to the housing (10) with fins, and a gap between the heat storage body (15) and the housing (10) is obtained. A void was provided as (24). On the outside of the housing (10), glass wool (1
9) is wound 10 mm. The heat exchanger (2
3).

【0026】比較例1 エチレン−α−オレフィン共重合体として、密度0.9
25g/cm3 のF15(東ソー株式会社製)、有機系
蓄熱材として、結晶性アルキルハイドロカーボンである
HNP−9を用いた。
Comparative Example 1 An ethylene-α-olefin copolymer having a density of 0.9
F15 (manufactured by Tosoh Corporation) of 25 g / cm 3 and HNP-9, which is a crystalline alkyl hydrocarbon, was used as an organic heat storage material.

【0027】上記F15を30部、HNP−9を70部
の比率で配合して成形材料とした。この成形材料を2軸
式混練押出機に供給し、150℃に加熱しながら混練し
た溶融物を冷却し、直径100mm、長さ150mmの
円柱状の蓄熱体(15)を得た。
A molding material was prepared by mixing 30 parts of F15 and 70 parts of HNP-9. This molding material was supplied to a twin-screw kneading extruder, and the kneaded melt was cooled while being heated to 150 ° C. to obtain a columnar heat storage body (15) having a diameter of 100 mm and a length of 150 mm.

【0028】この蓄熱体(15)を実施例1と同様に加
工し、熱交換素子(17)を得た。この熱交換素子(1
7)を内径100mm、長さ200mmのアルミ製の円
筒形のハウジング(10)に入れた。円柱状の蓄熱体
(15)の側面はハウジング(10)に直接接触した以
外は実施例1と同様にこの円筒形のハウジング(10)
に熱媒の入口(11)と出口(12)を設け、外側は断
熱材としてグラスウール(19)を10mm巻いた。こ
れを熱交換器とした。
This heat storage body (15) was processed in the same manner as in Example 1 to obtain a heat exchange element (17). This heat exchange element (1
7) was placed in an aluminum cylindrical housing (10) having an inner diameter of 100 mm and a length of 200 mm. This cylindrical housing (10) is the same as the first embodiment except that the side surface of the cylindrical heat storage body (15) is in direct contact with the housing (10).
An inlet (11) and an outlet (12) for the heat medium were provided on the outside, and glass wool (19) was wound 10 mm on the outside as a heat insulating material. This was used as a heat exchanger.

【0029】比較例2 密度が0.925g/cm3 以下のエチレン−α−オレ
フィン共重合体AとしてタフマーP0680、高密度ポ
リエチレンとしてS6006M、有機系蓄熱材として、
結晶性アルキルハイドロカーボンであるHNP−9を用
いた。
Comparative Example 2 Toughmer P0680 as an ethylene-α-olefin copolymer A having a density of 0.925 g / cm 3 or less, S6006M as a high-density polyethylene, and an organic heat storage material,
HNP-9, which is a crystalline alkyl hydrocarbon, was used.

【0030】上記タフマーP0680を20部、S60
06Mを10部、HNP−9を70部の比率で配合して
成形材料とした。この成形材料を2軸式混練押出機に供
給し、150℃に加熱しながら混練した溶融物を冷却
し、直径100mm、長さ150mmの円柱状の蓄熱体
(15)を得た。
20 parts of Toughmer P0680, S60
A molding material was prepared by mixing 10 parts of 06M and 70 parts of HNP-9. This molding material was supplied to a twin-screw kneading extruder, and the kneaded melt was cooled while being heated to 150 ° C. to obtain a columnar heat storage body (15) having a diameter of 100 mm and a length of 150 mm.

【0031】この蓄熱体(15)を実施例1と同様に加
工し、熱交換素子(17)を得た。この熱交換素子(1
7)を比較例1と同様の円筒形のハウジング(10)に
入れた。これを、熱交換器とした。
This heat storage body (15) was processed in the same manner as in Example 1 to obtain a heat exchange element (17). This heat exchange element (1
7) was put into the same cylindrical housing (10) as in Comparative Example 1. This was used as a heat exchanger.

【0032】比較例3 図3に示す如く、蓄熱材(20)としてHNP−9を厚
み1mmのポリプロピレン製の容器(21)に充填し、
熱交換素子とした。上記ポリプロピレン製の容器(2
1)は10mm×95mm×150mmを1個、10m
m×85mm×150mmを2個、10mm×70mm
×150mmを2個、10mm×40mm×150mm
を2個作製し、指示板で円筒型のハウジング(10)に
固定した。この円筒型のハウジング(10)の間の空間
(22)を熱媒の流路とした。このハウジング(10)
の外側は、断熱材としてグラスウール(19)が10m
m巻かれている。これを熱交換器とした。
Comparative Example 3 As shown in FIG. 3, HNP-9 as a heat storage material (20) was filled in a polypropylene container (21) having a thickness of 1 mm,
It was used as a heat exchange element. The polypropylene container (2
1) is 10 mm x 95 mm x 150 mm, 10 m each
Two m x 85 mm x 150 mm, 10 mm x 70 mm
2 x 150mm, 10mm x 40mm x 150mm
Two of them were prepared and fixed to a cylindrical housing (10) with an indicator plate. The space (22) between the cylindrical housings (10) was used as the flow path for the heat medium. This housing (10)
The outside of the is 10m of glass wool (19) as a heat insulating material.
It has been wound m. This was used as a heat exchanger.

【0033】比較例4 図4に示す如く、蓄熱材(20)として水酸化バリウム
(Ba(OH)2 ・8H2 O)を厚み1mmのポリプロ
ピレン製容器(21)に充填し、平板状の蓄熱体を作製
した。上記ポリプロピレン製の容器(21)は10mm
×95mm×150mmを1個、10mm×85mm×
150mmを2個、10mm×65mm×150mmを
2個作製し、指示板で円筒型のハウジング(10)に固
定した。この円筒型のハウジング(10)の間の空間
(22)を熱媒の流路とした。このハウジング(10)
の外側には、断熱材としてグラスウール(19)が10
mm巻かれている。これを熱交換器とした。
Comparative Example 4 As shown in FIG. 4, barium hydroxide (Ba (OH) 2 .8H 2 O) was filled as a heat storage material (20) into a polypropylene container (21) having a thickness of 1 mm to form a flat heat storage material. The body was made. The polypropylene container (21) is 10 mm
1 x 95 mm x 150 mm, 10 mm x 85 mm x
Two pieces of 150 mm were prepared and two pieces of 10 mm × 65 mm × 150 mm were prepared and fixed to a cylindrical housing (10) with an indicator plate. The space (22) between the cylindrical housings (10) was used as the flow path for the heat medium. This housing (10)
On the outside of the table, 10 glass wool (19) is used as a heat insulating material.
It is wound by mm. This was used as a heat exchanger.

【0034】得られた実施例1、2、及び比較例2、
3、4の熱交換器(23)に水を熱媒とした場合の放熱
量を測定した。熱交換器に90℃の水を5リットル/m
inの割合で2時間流した後、20℃の水を5リットル
/minの割合で流して熱を取り出した。放熱量は下式
により求めた。・放熱量=(出口の熱媒の温度−入口の
熱媒の温度)×熱媒の流量結果は図5のとおり実施例は
熱交換の立ち上がり速度が速かった。
The obtained Examples 1 and 2 and Comparative Example 2,
The amount of heat released was measured when water was used as the heat medium in the heat exchangers (23) of Nos. 3 and 4. 5 liter / m of water at 90 ° C in the heat exchanger
After flowing at a rate of in for 2 hours, water at 20 ° C. was caused to flow at a rate of 5 liter / min to take out heat. The heat radiation amount was calculated by the following formula. Heat dissipation amount = (temperature of heat medium at outlet−temperature of heat medium at inlet) × flow rate of heat medium As shown in FIG. 5, in the example, the rising speed of heat exchange was high.

【0035】なお、蓄熱体(15)の溶出について確認
した。得られた実施例1、2、及び比較例1、2の溶出
率を次の条件で求めた。熱交換器に90℃の熱媒を5リ
ットル/minの割合で2時間蓄熱した。次に20℃の
熱媒を5リットル/minの割合で30分間流し、30
分放熱する寒熱サイクルを50回行った。熱媒として
は、水、エチレングリコール、プロピレングリコールを
用いた。試験後、熱交換素子(17)を取り出し、熱媒
を除去し、熱交換素子(17)の減少した重量から溶出
率を計算した。 ・溶出率(%)=(熱交換素子の重量減少量/初期の熱
交換素子の重量)×100 結果は表4のとおり、比較例1のみ溶出があった。
The elution of the heat storage material (15) was confirmed. The dissolution rates of the obtained Examples 1 and 2 and Comparative Examples 1 and 2 were determined under the following conditions. A heat medium at 90 ° C. was stored in the heat exchanger at a rate of 5 liter / min for 2 hours. Next, a heating medium at 20 ° C. is caused to flow at a rate of 5 liters / min for 30 minutes,
A cold heat cycle for radiating heat for 50 minutes was performed. Water, ethylene glycol, and propylene glycol were used as the heat medium. After the test, the heat exchange element (17) was taken out, the heat medium was removed, and the elution rate was calculated from the reduced weight of the heat exchange element (17). Elution rate (%) = (weight reduction amount of heat exchange element / weight of initial heat exchange element) × 100 As shown in Table 4, only Comparative Example 1 was eluted.

【0036】[0036]

【表1】 [Table 1]

【0037】[0037]

【表2】 [Table 2]

【0038】[0038]

【表3】 [Table 3]

【0039】[0039]

【表4】 [Table 4]

【0040】[0040]

【発明の効果】本発明によれば、熱媒の流路(18)に
蓄熱体(15)と熱媒を仕切る壁が不要となり、熱媒と
蓄熱体(15)が直接接触し、且つ、温度の上昇により
蓄熱体(15)が体積膨張しても、熱媒と蓄熱体(1
5)に設けた流路(18)を閉塞しないので、熱媒の流
量は減少しないから熱交換の立ち上がりが速い熱交換器
が得られる。例えば、前述のエンジンからの排熱を利用
し蓄熱する熱交換器に有用である。
According to the present invention, the heat storage medium (15) and the heat storage medium (15) are not required to have a wall for partitioning the heat storage medium (15) in the flow path (18) of the heat medium, and the heat medium and the heat storage body (15) are in direct contact, and Even if the heat storage body (15) expands in volume due to a rise in temperature, the heat medium and the heat storage body (1
Since the flow path (18) provided in 5) is not closed, the flow rate of the heat medium does not decrease, so that a heat exchanger having a fast heat exchange start-up can be obtained. For example, it is useful for a heat exchanger that stores heat using the exhaust heat from the engine.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係る熱交換器を透視した斜視
図である。
FIG. 1 is a perspective view of a heat exchanger according to an embodiment of the present invention seen through.

【図2】本発明の実施例に係る熱交換器の断面図であ
る。
FIG. 2 is a sectional view of a heat exchanger according to an embodiment of the present invention.

【図3】従来の熱交換器の断面図である。FIG. 3 is a sectional view of a conventional heat exchanger.

【図4】従来の熱交換器の断面図である。FIG. 4 is a cross-sectional view of a conventional heat exchanger.

【図5】本発明の実施例及び比較例に係る熱交換素子の
放熱量の測定結果を示す。
FIG. 5 shows the measurement results of the heat radiation amount of the heat exchange elements according to the example and the comparative example of the present invention.

【図6】従来例の自動車用暖房装置の全体を示すブロッ
クである。
FIG. 6 is a block diagram showing an entire conventional vehicle heating system.

【図7】従来例の蓄熱器の説明図である。FIG. 7 is an explanatory diagram of a conventional heat storage device.

【図8】従来例の蓄熱体の説明図である。FIG. 8 is an explanatory diagram of a conventional heat storage body.

【符号の説明】[Explanation of symbols]

10 ハウジング 11 入口 12 出口 15 蓄熱体 17 熱交換素子 18 流路 19 グラスウール 20 蓄熱材 21 容器 22 空間 23 熱交換器 24 間隙 10 Housing 11 Inlet 12 Outlet 15 Heat Storage Element 17 Heat Exchange Element 18 Flow Path 19 Glass Wool 20 Heat Storage Material 21 Container 22 Space 23 Heat Exchanger 24 Gap

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年3月8日[Submission date] March 8, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0008[Correction target item name] 0008

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0008】以下、本発明を実施例として示した図面を
参照しながら説明する。図1は本発明の一実施例に係る
熱交換器を透視した斜視図である。なお、熱交換器の形
状は、これに限定されるものではない
The present invention will be described below with reference to the drawings showing examples. FIG. 1 is a perspective view of a heat exchanger according to an embodiment of the present invention as seen through. The shape of the heat exchanger
The shape is not limited to this .

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0012[Correction target item name] 0012

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0012】上記蓄熱体(15)は、蓄熱体(15)の
強度を向上させるために、樹脂として、上記エチレン−
α−オレフィン共重合体Aと共に、中密度ポリエチレ
ン、高密度ポリエチレン、及び上記エチレン−α−オレ
フィン共重合体Aより大きい密度を有するエチレン−α
−オレフィン共重合体Bのうち少なくとも1種以上のエ
チレンポリマーを用いると、蓄熱体(15)の形状保持
力を高めることができる。特に、エチレン−α−オレフ
ィン共重合体Aが密度0.900g/cm3 以下の場合
は、高温になると形状を保持し得ないので強度、及び形
状保持のため、エチレン−α−オレフィン共重合体Bの
添加は効果的である。上記エチレン−α−オレフィン共
重合体Bは上記エチレン−α−オレフィン共重合体Aよ
り大きい密度を有し、具体的には0.910g/cm3
以上が好ましく、特に0.930g/cm3 以上がさら
に好ましい。なお、上記中密度ポリエチレン、及び高密
度ポリエチレンは、JIS−K−6760で規定されて
いるものであって、高圧法の低密度ポリエチレンでは、
蓄熱体(15)の強度向上が達成できない
The heat storage body (15) is made of ethylene-based resin as a resin in order to improve the strength of the heat storage body (15).
Along with α-olefin copolymer A, medium density polyethylene, high density polyethylene, and ethylene-α having a density higher than the above ethylene-α-olefin copolymer A.
-Using at least one ethylene polymer of the olefin copolymer B, the shape retention of the heat storage material (15) can be enhanced. In particular, when the density of the ethylene-α-olefin copolymer A is 0.900 g / cm 3 or less, the shape cannot be maintained at high temperature, so that the ethylene-α-olefin copolymer has strength and shape retention. The addition of B is effective. The ethylene-α-olefin copolymer B has a density higher than that of the ethylene-α-olefin copolymer A, specifically, 0.910 g / cm 3
The above is preferable, and 0.930 g / cm 3 or more is particularly preferable. The medium-density polyethylene and the high-density polyethylene are specified by JIS-K-6760, and in the low-density polyethylene of the high pressure method,
The strength of the heat storage body (15) cannot be improved .

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0013[Correction target item name] 0013

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0013】上記有機系蓄熱材は固−液間を可逆的に相
転移する性質を有する物質であって、エチレン−α−オ
レフィン共重合体Aと相溶性を有するものが望ましく、
中密度ポリエチレン、及び高密度ポリエチレンを用いる
場合は中密度ポリエチレン、及び高密度ポリエチレンと
も相溶性を有するものが望ましい。この有機系蓄熱材
は、樹脂として、エチレン−α−オレフィン共重合体A
のみを用いる場合は、エチレン−α−オレフィン共重合
体Aよりも低融点であり、上記複数の樹脂を用いる場合
は、エチレン−α−オレフィン共重合体A、エチレン−
α−オレフィン共重合体B、中密度ポリエチレン、及び
高密度ポリエチレンのうち少なくとも1種より低融点で
あることが望ましい。この有機系蓄熱材としては、特に
限定はしないが、具体的には、パラフィン、パラフィン
ワックス、イソパラフィン、ポリエチレンワックス等の
ハイドロカーボン、脂肪酸、及び脂肪酸エステル類(以
下脂肪酸類と記す)等が挙げられる。これらは1種のみ
を用いてもよいし、2種以上を併用してもよい。なお、
熱交換する媒体である熱媒が水分を含む場合は、脂肪酸
類を劣化させるので、ハイドロカーボンの方が好まし
い。上記有機系蓄熱材は、蓄熱の効率を保持する点よ
り、20cal/g以上の融解熱量を有する結晶性物質
であることが望ましい。
The above-mentioned organic heat storage material is a substance having a property of reversibly undergoing phase transition between solid and liquid, and it is desirable that the material has compatibility with the ethylene-α-olefin copolymer A,
When medium density polyethylene and high density polyethylene are used, those having compatibility with medium density polyethylene and high density polyethylene are desirable. This organic heat storage material
Is an ethylene-α-olefin copolymer A as a resin
Ethylene-α-olefin copolymerization when only used
When using a plurality of resins having a melting point lower than that of body A
Is ethylene-α-olefin copolymer A, ethylene-
α-olefin copolymer B, medium density polyethylene, and
Lower melting point than at least one of high density polyethylene
Is desirable . The organic heat storage material is not particularly limited, but specific examples thereof include hydrocarbons such as paraffin, paraffin wax, isoparaffin, and polyethylene wax, fatty acids, and fatty acid esters (hereinafter referred to as fatty acids). . These may use only 1 type and may use 2 or more types together. In addition,
When the heat medium that is a medium for exchanging heat contains water, hydrocarbons are preferable because they deteriorate fatty acids. The organic heat storage material is preferably a crystalline substance having a heat of fusion of 20 cal / g or more from the viewpoint of maintaining heat storage efficiency.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0017[Correction target item name] 0017

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0017】上記蓄熱体(15)とハウジング(10)
の間に設けられている間隙(24)は、熱交換による温
度上昇で蓄熱体(15)が体積膨張する際に、蓄熱体
(15)の体積膨張を吸収するので、蓄熱体(15)の
体積膨張で蓄熱体(15)に設けた熱媒の流路(18)
を、膨張に伴ってハウジング(10)に与えた反作用を
受けて閉塞することなく、熱媒と蓄熱体(15)の接触
面積を保持して熱交換を行う。また放熱の際には蓄熱体
(15)の体積が収縮するので、上記間隙(24)を熱
媒の流路として利用してもよい。この間隙(24)を熱
媒の流路(18)とする場合は、熱媒と蓄熱体(15)
の接触面積が増大し熱交換の効率を向上することができ
る。この間隙(24)は使用する最高温度での蓄熱体
(15)の体積膨張以上の容積であることが好ましい。
上記間隙(24)としては、空間のみを意味するもので
なく、蓄熱体(15)の膨張を吸収するものならば、限
定されない。従って、間隙(24)は、例えば、軟質発
砲ウレタン、ガラス繊維等の圧縮性のある多孔質の材料
を充填した層でもよいし、ハウジング(10)に蓄熱体
(15)をフィンで固定することによる空間でもよい。
The heat storage body (15) and the housing (10)
The gap (24) provided between the heat storage bodies (15) absorbs the volume expansion of the heat storage body (15) when the heat storage body (15) expands in volume due to a temperature rise due to heat exchange. Heat medium flow path (18) provided in heat storage body (15) by volume expansion
The heat exchange is performed by holding the contact area between the heat medium and the heat storage body (15) without being blocked by the reaction given to the housing (10) due to the expansion. Further, since the volume of the heat storage body (15) contracts during heat dissipation, the gap (24) may be used as a flow path for the heat medium. When this gap (24) is used as the flow path (18) for the heat medium, the heat medium and the heat storage body (15)
The contact area can be increased and the efficiency of heat exchange can be improved. It is preferable that the gap (24) has a volume equal to or larger than the volume expansion of the heat storage body (15) at the highest temperature used.
The gap (24) does not mean only the space, but is not limited as long as it absorbs the expansion of the heat storage body (15). Therefore, the gap (24) may be a layer filled with a compressive porous material such as soft foam urethane or glass fiber, or the heat storage body (15) may be fixed to the housing (10) with fins. The space by

【手続補正5】[Procedure Amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0032[Name of item to be corrected] 0032

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0032】比較例3 図3に示す如く、蓄熱材(20)としてHNP−9を厚
み1mmのポリプロピレン製の容器(21)に充填し、
熱交換素子とした。上記ポリプロピレン製の容器(2
1)は10mm×95mm×150mmを1個、10m
m×85mm×150mmを2個、10mm×70mm
×150mmを2個、10mm×40mm×150mm
を2個作製し、支持板で円筒型のハウジング(10)に
固定した。この円筒型のハウジング(10)の間の空間
(22)を熱媒の流路とした。このハウジング(10)
の外側は、断熱材としてグラスウール(19)が10m
m巻かれている。これを熱交換器とした。
Comparative Example 3 As shown in FIG. 3, HNP-9 as a heat storage material (20) was filled in a polypropylene container (21) having a thickness of 1 mm,
It was used as a heat exchange element. The polypropylene container (2
1) is 10 mm x 95 mm x 150 mm, 10 m each
Two m x 85 mm x 150 mm, 10 mm x 70 mm
2 x 150mm, 10mm x 40mm x 150mm
2 were prepared and fixed to a cylindrical housing (10) with a support plate. The space (22) between the cylindrical housings (10) was used as the flow path for the heat medium. This housing (10)
The outside of the is 10m of glass wool (19) as a heat insulating material.
It has been wound m. This was used as a heat exchanger.

【手続補正6】[Procedure correction 6]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0033[Correction target item name] 0033

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0033】比較例4 図4に示す如く、蓄熱材(20)として水酸化バリウム
(Ba(OH)2 ・8H2 O)を厚み1mmのポリプロ
ピレン製容器(21)に充填し、平板状の蓄熱体を作製
した。上記ポリプロピレン製の容器(21)は10mm
×95mm×150mmを1個、10mm×85mm×
150mmを2個、10mm×65mm×150mmを
2個作製し、支持板で円筒型のハウジング(10)に固
定した。この円筒型のハウジング(10)の間の空間
(22)を熱媒の流路とした。このハウジング(10)
の外側には、断熱材としてグラスウール(19)が10
mm巻かれている。これを熱交換器とした。
Comparative Example 4 As shown in FIG. 4, barium hydroxide (Ba (OH) 2 .8H 2 O) was filled as a heat storage material (20) into a polypropylene container (21) having a thickness of 1 mm to form a flat heat storage material. The body was made. The polypropylene container (21) is 10 mm
1 x 95 mm x 150 mm, 10 mm x 85 mm x
Two pieces of 150 mm were prepared and two pieces of 10 mm × 65 mm × 150 mm were prepared and fixed to a cylindrical housing (10) with a support plate. The space (22) between the cylindrical housings (10) was used as the flow path for the heat medium. This housing (10)
On the outside of the table, 10 glass wool (19) is used as a heat insulating material.
It is wound by mm. This was used as a heat exchanger.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 エチレン−α−オレフィン共重合体A
と、このエチレン−α−オレフィン共重合体Aに担持さ
れた、固−液間を可逆的に相転移する有機系蓄熱材を構
成材料とする蓄熱体(15)、この蓄熱体(15)に直
接接触する熱媒の流路(18)を備える熱交換素子(1
7)、及びこの熱交換素子(17)を収容するハウジン
グ(10)を備えた熱交換器であって、上記蓄熱体(1
5)とハウジング(10)の間に間隙(24)を設けて
いることを特徴とする熱交換器。
1. An ethylene-α-olefin copolymer A
And a heat storage material (15) having an organic heat storage material, which is supported on the ethylene-α-olefin copolymer A and undergoes a reversible phase transition between solid and liquid, as a constituent material, and this heat storage material (15) A heat exchange element (1) including a heat medium flow path (18) in direct contact
7) and a housing (10) for accommodating the heat exchange element (17), the heat storage body (1)
A heat exchanger characterized in that a gap (24) is provided between 5) and the housing (10).
【請求項2】 上記エチレン−α−オレフィン共重合体
の密度が0.925g/cm3 未満であることを特徴と
する請求項1の熱交換器。
2. The heat exchanger according to claim 1, wherein the ethylene-α-olefin copolymer has a density of less than 0.925 g / cm 3 .
【請求項3】 上記蓄熱体(15)が、さらに中密度ポ
リエチレン、高密度ポリエチレン、及び上記エチレン−
α−オレフィン共重合体Aより大きい密度を有するエチ
レン−α−オレフィン共重合体Bのうち少なくとも1種
以上のエチレンポリマーを構成材料とすることを特徴と
する請求項1又は2の熱交換器。
3. The heat storage body (15) further comprises medium density polyethylene, high density polyethylene, and ethylene.
The heat exchanger according to claim 1 or 2, wherein at least one ethylene polymer among ethylene-α-olefin copolymers B having a density higher than that of α-olefin copolymer A is used as a constituent material.
【請求項4】 上記有機系蓄熱材が結晶性アルキルハイ
ドロカーボン、結晶性脂肪酸、及び結晶性脂肪酸エステ
ルから選ばれる少なくとも1つであることを特徴とする
請求項1乃至3いずれかの熱交換器。
4. The heat exchanger according to claim 1, wherein the organic heat storage material is at least one selected from crystalline alkyl hydrocarbons, crystalline fatty acids, and crystalline fatty acid esters. .
JP5007173A 1993-01-20 1993-01-20 Heat exchanger Pending JPH06294593A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5007173A JPH06294593A (en) 1993-01-20 1993-01-20 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5007173A JPH06294593A (en) 1993-01-20 1993-01-20 Heat exchanger

Publications (1)

Publication Number Publication Date
JPH06294593A true JPH06294593A (en) 1994-10-21

Family

ID=11658695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5007173A Pending JPH06294593A (en) 1993-01-20 1993-01-20 Heat exchanger

Country Status (1)

Country Link
JP (1) JPH06294593A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6298152A (en) * 1985-10-22 1987-05-07 Agency Of Ind Science & Technol Heat storage apparatus
JPH04252288A (en) * 1991-01-28 1992-09-08 Matsushita Electric Works Ltd Product with heat accumulating function

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6298152A (en) * 1985-10-22 1987-05-07 Agency Of Ind Science & Technol Heat storage apparatus
JPH04252288A (en) * 1991-01-28 1992-09-08 Matsushita Electric Works Ltd Product with heat accumulating function

Similar Documents

Publication Publication Date Title
US5765389A (en) Cooling unit with integral thermal energy storage
BR102013017724A2 (en) COMPOSITION OF RUBBER BASED ON SILICONE AND MCP ELASTOMER, THEIR PREPARATION PROCESS, FLEXIBLE ELEMENT AND THERMAL CONTROL / REGULATION SYSTEM
EP2073952B1 (en) Thermal control of an operating machine through a system for storing thermal energy based on phase-change materials
KR20200111195A (en) Battery holder and battery pack
JPH06294593A (en) Heat exchanger
JP2019116570A (en) Heat storage resin composition, manufacturing method therefor and molded body
WO1997018260A1 (en) Pre-expanded polyethylene beads and process for the production thereof
JPH06159964A (en) Heat exchnaging element
JPH06279757A (en) Heat exchanger
JPS59170180A (en) Heat accumulative material of latent heat type
JP2006199760A (en) Method for producing polyethylene-based flame-retardant resin foam, and tubular thermal insulation material and thermal insulation piping using the tubular thermal insulation material
JPS59232164A (en) Latent heat type thermal energy storage material
JPH0933184A (en) Heat exchanger
WO2008075503A1 (en) Pre-expanded noncrosslinked polypropylene resin beads and in-mold expansion moldings
ES2300678T3 (en) USE OF A MELAMINE FOAM / FORMALDEHYDE AS A COOLING ACCUMULATOR.
JPH1123065A (en) Heat storing heat dissipating device
JPS59142276A (en) Latent heat type multi-layer heat storage material
CN211265564U (en) Battery pack
JPS599029A (en) Method and device for manufacturing flexible foamed product
EP0481564A2 (en) Oily matter containing heat storage material and manufacturing method thereof
JP2019157830A (en) Heat storage system
JPH0914877A (en) Heat exchange element
JPH0894270A (en) Heat storage device and heat exchanger using the heat storage device
JP2000038576A (en) Material for carrying heat-reserving material and heat reservoir
CN219497904U (en) Cooling assembly, battery pack with cooling assembly and vehicle