JPH06294355A - Exhaust circulation control device for diesel engine - Google Patents

Exhaust circulation control device for diesel engine

Info

Publication number
JPH06294355A
JPH06294355A JP5083689A JP8368993A JPH06294355A JP H06294355 A JPH06294355 A JP H06294355A JP 5083689 A JP5083689 A JP 5083689A JP 8368993 A JP8368993 A JP 8368993A JP H06294355 A JPH06294355 A JP H06294355A
Authority
JP
Japan
Prior art keywords
exhaust gas
gas recirculation
differential pressure
target value
control valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5083689A
Other languages
Japanese (ja)
Inventor
Junichi Kawashima
純一 川島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP5083689A priority Critical patent/JPH06294355A/en
Publication of JPH06294355A publication Critical patent/JPH06294355A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition

Landscapes

  • Exhaust-Gas Circulating Devices (AREA)

Abstract

PURPOSE:To control an exhaust circulation rate minutely and accurately under various operation conditions, and eliminate influence of fluctuation of discharge pressure caused by an exhaust filter or the like. CONSTITUTION:An exhaust circulation control valve 2 which is controlled in its opening according to a duty ratio of a control signal is provided on an exhaust circulation passage, while an intake throttle valve is provided on an intake passage. The duty ratio is controlled so as to keep a target value of differencial pressure DELTAP1 in respect to an orifice which is provided on a joint part of the exhaust circulation passage and the intake passage in a low speed and low load area where the intake throttle valve shows an intermediate or small opening. The duty ratio is controlled so as to keep a target value of differencial pressure DELTAP2 in respect to the exhaust circulation control valve 2 in an intermediate speed and intermediate load area where the intake throttle valve is fully opened. The target value of DELTAP2 is calculated by searching a reference differencial pressure and a reference duty ratio from a map and obtaining the relation in respect to the present duty ratio in order to eliminate influence of discharge pressure.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明はディーゼル機関の排気
還流量を機関運転条件に応じて制御する排気還流制御装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas recirculation control device for controlling an exhaust gas recirculation amount of a diesel engine according to engine operating conditions.

【0002】[0002]

【従来の技術】一般にディーゼル機関の排気還流装置に
おいては、排気還流通路に介装された排気還流制御弁
を、所定の運転条件に対応して全開もしくは全閉に切換
制御することで、排気還流を行うか否かを制御している
に過ぎない。また、近時は、吸気通路の排気還流通路合
流部より上流側に吸気絞弁を設け、この吸気絞弁の開度
制御により排気還流制御弁の上下差圧を変化させて、排
気還流量を段階的に制御し得るようにした排気還流制御
装置も提案されている(例えば、日産自動車株式会社昭
和62年6月発行の「サービス周報第578号」B−1
20頁参照)。
2. Description of the Related Art Generally, in an exhaust gas recirculation system for a diesel engine, exhaust gas recirculation is controlled by switching an exhaust gas recirculation control valve installed in an exhaust gas recirculation passage to a fully open or fully closed state in accordance with predetermined operating conditions. It just controls whether or not to do. In addition, recently, an intake throttle valve is provided on the upstream side of the confluence portion of the exhaust gas recirculation passage in the intake passage. An exhaust gas recirculation control device which can be controlled stepwise has also been proposed (for example, "Service Weekly Report No. 578" B-1 issued by Nissan Motor Co., Ltd. in June 1987).
(See page 20).

【0003】[0003]

【発明が解決しようとする課題】しかしながら上記従来
の排気還流制御装置においては、機関回転数,負荷等の
機関運転条件に応じて、排気還流制御弁の開閉状態およ
び吸気絞弁の開度を一義的に制御する構成であるため、
経時的な特性の変化を逃れることができない。例えば、
ディーゼル機関で問題となる排気微粒子を捕集するため
に排気系に排気微粒子捕集用フィルタを介装したような
場合には、排気微粒子の捕集に伴って圧力損失が増大
し、排気圧力が上昇することになるが、このように排気
圧力が上昇すると、上記従来の排気還流制御装置では、
排気還流制御弁を通過する排気還流量が増加してしま
い、スモークや排気微粒子の増加あるいはHCの悪化等
を招く、という不具合がある。
However, in the above-mentioned conventional exhaust gas recirculation control device, the open / closed state of the exhaust gas recirculation control valve and the opening degree of the intake throttle valve are uniquely determined according to the engine operating conditions such as the engine speed and the load. Since it is a configuration that is controlled dynamically,
It cannot escape the change in characteristics over time. For example,
When an exhaust particulate collection filter is installed in the exhaust system to collect exhaust particulates, which is a problem in diesel engines, the pressure loss increases with the collection of exhaust particulates, and the exhaust pressure increases. Although it will rise, when the exhaust pressure rises in this way, in the above conventional exhaust gas recirculation control device,
There is a problem that the amount of exhaust gas recirculation passing through the exhaust gas recirculation control valve increases, resulting in smoke, an increase in exhaust particulates, deterioration of HC, and the like.

【0004】尚、排気還流通路における適宜位置の圧
力、例えば排気還流制御弁上下の差圧から排気流量を計
測することも可能ではあるが、運転条件によって検出精
度が低下する。例えば排気還流制御弁が全開近い状態で
はその上下の差圧が非常に小さくなってしまうため、こ
れに基づく排気還流量制御は困難である。
Although it is possible to measure the exhaust gas flow rate from the pressure at an appropriate position in the exhaust gas recirculation passage, for example, the differential pressure between the upper and lower sides of the exhaust gas recirculation control valve, the detection accuracy decreases depending on the operating conditions. For example, when the exhaust gas recirculation control valve is almost fully opened, the pressure difference between the upper and lower sides of the valve becomes very small, so it is difficult to control the exhaust gas recirculation amount based on this.

【0005】[0005]

【課題を解決するための手段】この発明に係るディーゼ
ル機関の排気還流制御装置は、図1に示すように、ディ
ーゼル機関の運転条件を検出する運転条件検出手段1
と、排気系から吸気系へ至る排気還流通路に介装され、
排気還流量を制御する排気還流制御弁2と、この排気還
流制御弁と吸気系との間に設けたオリフィスの上流,下
流の差圧ΔP1を検出する第1差圧検出手段3と、上記
排気還流制御弁2の上流,下流の差圧ΔP2を検出する
第2差圧検出手段4と、機関運転条件に基づき、どちら
の差圧による制御を実行するかを選択する選択手段5
と、選択された差圧の目標値を機関運転条件に応じて設
定する目標値設定手段6と、選択された差圧の検出値が
上記の差圧目標値に一致するように上記排気還流制御弁
2の開度を制御する開度制御手段7と、を備えたことを
特徴としている。
An exhaust gas recirculation control system for a diesel engine according to the present invention, as shown in FIG. 1, is an operating condition detecting means 1 for detecting an operating condition of a diesel engine.
And is installed in the exhaust gas recirculation passage from the exhaust system to the intake system,
An exhaust gas recirculation control valve 2 for controlling the exhaust gas recirculation amount, a first differential pressure detection means 3 for detecting a differential pressure ΔP1 upstream and downstream of an orifice provided between the exhaust gas recirculation control valve and the intake system, and the exhaust gas. A second differential pressure detecting means 4 for detecting a differential pressure ΔP2 upstream and downstream of the recirculation control valve 2, and a selecting means 5 for selecting which differential pressure is to be controlled based on engine operating conditions.
And a target value setting means 6 for setting a selected target value of the differential pressure according to the engine operating conditions, and the exhaust gas recirculation control so that the detected value of the selected differential pressure matches the target value of the differential pressure. The opening degree control means 7 which controls the opening degree of the valve 2 is provided, It is characterized by the above-mentioned.

【0006】また請求項2の発明では、図2に示すよう
に、上記目標値設定手段6が、運転条件に応じて差圧Δ
P2の基準値を設定する基準差圧設定手段11と、運転
条件に応じて排気還流制御弁2の開度の基準値を設定す
る基準開度設定手段12と、排気還流制御弁2の現在の
制御開度と上記基準開度とによって上記基準差圧を補正
し、差圧ΔP2の目標値を設定する第2目標値設定手段
13とを備えている。
According to the second aspect of the present invention, as shown in FIG. 2, the target value setting means 6 causes the differential pressure Δ to change in accordance with the operating conditions.
The reference differential pressure setting means 11 for setting the reference value of P2, the reference opening setting means 12 for setting the reference value of the opening degree of the exhaust gas recirculation control valve 2 in accordance with the operating conditions, and the current exhaust gas recirculation control valve 2 A second target value setting means 13 is provided which corrects the reference differential pressure by the control opening and the reference opening and sets a target value of the differential pressure ΔP2.

【0007】[0007]

【作用】排気還流通路に設けたオリフィスの流量係数を
A1とすれば、排気還流量Qeは、オリフィス上下の差
圧ΔP1を用いて、Qe=A1√(ΔP1)として示さ
れる。従って、この差圧ΔP1が運転条件に対応した差
圧目標値となるように排気還流制御弁2の開度を制御す
れば、排気還流量Qe自体が目標値に正しく維持され
る。
When the flow coefficient of the orifice provided in the exhaust gas recirculation passage is A1, the exhaust gas recirculation amount Qe is expressed as Qe = A1√ (ΔP1) using the differential pressure ΔP1 between the upper and lower sides of the orifice. Therefore, if the opening degree of the exhaust gas recirculation control valve 2 is controlled so that the differential pressure ΔP1 becomes the differential pressure target value corresponding to the operating condition, the exhaust gas recirculation amount Qe itself is correctly maintained at the target value.

【0008】同様に、排気還流制御弁2も一種のオリフ
ィスとしてみなすことができるので、その流量係数をA
2とすれば、排気還流量Qeは、排気還流制御弁2上下
の差圧ΔP2を用いて、Qe=A2√(ΔP2)として
示される。従って、この差圧ΔP2が運転条件に対応し
た差圧目標値となるように排気還流制御弁2の開度を制
御すれば、排気還流量Qe自体が目標値に正しく維持さ
れる。
Similarly, since the exhaust gas recirculation control valve 2 can also be regarded as a kind of orifice, its flow coefficient is A
If it is 2, the exhaust gas recirculation amount Qe is shown as Qe = A2√ (ΔP2) using the differential pressure ΔP2 between the upper and lower sides of the exhaust gas recirculation control valve 2. Therefore, if the opening degree of the exhaust gas recirculation control valve 2 is controlled so that the differential pressure ΔP2 becomes the differential pressure target value corresponding to the operating condition, the exhaust gas recirculation amount Qe itself is correctly maintained at the target value.

【0009】ここで、例えば、低速低負荷領域では、大
量の排気還流量が要求されるため、排気還流制御弁2の
開度が全開に近くなり、差圧ΔP2は小さい。これに対
し、オリフィス上下の差圧ΔP1は大きくなる。特に、
大量の排気還流を確保すべく吸気絞りを行う場合には、
差圧ΔP1は一層発達する。従って、選択手段5により
差圧ΔP1を制御の対象として選択することにより、精
度よい排気還流量制御を行える。
Here, for example, in the low speed and low load region, a large amount of exhaust gas recirculation amount is required, so that the opening degree of the exhaust gas recirculation control valve 2 is close to full opening, and the differential pressure ΔP2 is small. On the other hand, the differential pressure ΔP1 across the orifice becomes large. In particular,
When performing intake throttle to secure a large amount of exhaust gas recirculation,
The differential pressure ΔP1 further develops. Therefore, by selecting the differential pressure ΔP1 as the control target by the selection means 5, the exhaust gas recirculation amount control can be accurately performed.

【0010】また、排気還流量が少なくなる中速中負荷
領域では、オリフィス上下の差圧ΔP1は小さい。これ
に対し排気還流制御弁2の開度が小さくなることから、
その上下の差圧ΔP2は発達する。従って、選択手段5
により差圧ΔP2を制御の対象として選択することによ
り、精度よい排気還流量制御を行える。
Further, in the medium-speed / medium-load region where the exhaust gas recirculation amount is small, the differential pressure ΔP1 across the orifice is small. On the other hand, since the opening degree of the exhaust gas recirculation control valve 2 becomes smaller,
The differential pressure ΔP2 above and below that develops. Therefore, the selection means 5
Thus, the exhaust gas recirculation amount control can be performed accurately by selecting the differential pressure ΔP2 as the control target.

【0011】一方、排気還流制御弁2上下の差圧ΔP2
を制御の対象として選択した場合、その流量係数A2が
開度によって変化する。これは、予め既知の特性として
求めることが可能であるが、請求項2の発明では、排気
系での圧力損失による排圧上昇などの影響を排除すべく
差圧ΔP2の目標値が修正される。つまり、基準差圧設
定手段11および基準開度設定手段12により、運転条
件に応じた各基準値が設定され、排気還流制御弁2の現
在の制御開度が基準開度と異なる場合に、両開度の値を
用いて基準差圧を補正することによって、差圧ΔP2の
目標値が求められる。
On the other hand, the differential pressure ΔP2 above and below the exhaust gas recirculation control valve 2
When is selected as the control target, the flow rate coefficient A2 changes depending on the opening degree. This can be obtained as a known characteristic in advance, but in the invention of claim 2, the target value of the differential pressure ΔP2 is corrected so as to eliminate the influence such as the exhaust pressure increase due to the pressure loss in the exhaust system. . That is, when the reference differential pressure setting means 11 and the reference opening degree setting means 12 set respective reference values according to the operating conditions, and the current control opening degree of the exhaust gas recirculation control valve 2 is different from the reference opening degree, both By correcting the reference differential pressure using the value of the opening degree, the target value of the differential pressure ΔP2 is obtained.

【0012】[0012]

【実施例】以下、この発明の一実施例を図面に基づいて
詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below in detail with reference to the drawings.

【0013】図3は、この発明に係る排気還流制御装置
の一実施例を示す構成説明図であって、ディーゼル機関
の燃焼室21に吸気弁22を介して吸気通路23が接続
されているとともに、排気弁24を介して排気通路25
が接続されている。上記吸気通路23には、バタフライ
バルブ型の吸気絞弁26が介装されている。この吸気絞
弁26は、図示せぬアクチュエータによって駆動される
もので、全開位置,中開度位置,小開度位置の3位置に
段階的に制御可能となっている。
FIG. 3 is a structural explanatory view showing an embodiment of an exhaust gas recirculation control device according to the present invention, in which an intake passage 23 is connected to a combustion chamber 21 of a diesel engine via an intake valve 22. , Exhaust passage 25 through exhaust valve 24
Are connected. A butterfly valve type intake throttle valve 26 is provided in the intake passage 23. The intake throttle valve 26 is driven by an actuator (not shown), and can be controlled stepwise in three positions: a fully open position, a middle opening position, and a small opening position.

【0014】排気還流通路27は、ディーゼル機関の排
気通路25から吸気通路23へまたがって形成されてお
り、その通路途中に、ダイヤフラム式の排気還流制御弁
28が介装されている。尚、排気還流通路27の先端
は、吸気通路23の吸気絞弁26より下流側に接続され
ている。
The exhaust gas recirculation passage 27 is formed from the exhaust passage 25 of the diesel engine to the intake passage 23, and a diaphragm type exhaust gas recirculation control valve 28 is interposed in the passage. The tip of the exhaust gas recirculation passage 27 is connected to the intake passage 23 downstream of the intake throttle valve 26.

【0015】上記排気還流制御弁28の負圧室29に
は、負圧源となるバキュームポンプ30から負圧通路4
0を介して負圧が導入されるようになっており、負圧通
路40に介装されたデューティ制御型電磁弁31のデュ
ーティ比制御により排気還流制御弁28の開度が可変制
御されるようになっている。上記バキュームポンプ30
は、図示せぬ燃料噴射ポンプとともにディーゼル機関の
出力によって駆動されている。
In the negative pressure chamber 29 of the exhaust gas recirculation control valve 28, the vacuum pump 30 serving as a negative pressure source and the negative pressure passage 4 are provided.
Negative pressure is introduced through 0, and the opening degree of the exhaust gas recirculation control valve 28 is variably controlled by the duty ratio control of the duty control type solenoid valve 31 provided in the negative pressure passage 40. It has become. The above vacuum pump 30
Is driven by the output of a diesel engine together with a fuel injection pump (not shown).

【0016】上記排気還流通路27の先端つまり吸気通
路23との合流部には、オリフィス32が設けられてい
る。そして、このオリフィス32の上流側つまり該オリ
フィス32と排気還流制御弁28との間の圧力P2と、
下流側つまり吸気絞弁26下流の吸気通路23内の圧力
Piとの差圧ΔP1を検出するように、第1差圧センサ
33が設けられている。同様に、排気還流制御弁28の
上流側の圧力Peと下流側の圧力P2との差圧ΔP2を
検出するように、第2差圧センサ34が設けられてい
る。尚、各部の圧力を個々に圧力センサにて検出し、差
圧を演算するようにしてもよい。
An orifice 32 is provided at the tip of the exhaust gas recirculation passage 27, that is, at the junction with the intake passage 23. The pressure P2 on the upstream side of the orifice 32, that is, between the orifice 32 and the exhaust gas recirculation control valve 28,
A first differential pressure sensor 33 is provided so as to detect the differential pressure ΔP1 with the pressure Pi in the intake passage 23 on the downstream side, that is, on the downstream side of the intake throttle valve 26. Similarly, the second differential pressure sensor 34 is provided so as to detect the differential pressure ΔP2 between the upstream pressure Pe and the downstream pressure P2 of the exhaust gas recirculation control valve 28. The pressure of each part may be individually detected by the pressure sensor to calculate the differential pressure.

【0017】これらの差圧センサ33,34の検出信号
は、マイクロコンピュータシステムを用いたコントロー
ルユニット35に入力されている。また、36は、機関
の負荷Q例えば燃料噴射ポンプのコントロールレバー開
度を検出する負荷センサ、37は、機関の回転数Neを
検出する回転数センサ、38は、機関の冷却水温Twを
検出する水温センサであり、これらの検出信号もコント
ロールユニット35に入力されている。そして、該コン
トロールユニット35の出力信号によって上記電磁弁3
1や吸気絞弁26が制御されている。
The detection signals of these differential pressure sensors 33, 34 are input to a control unit 35 using a microcomputer system. Further, 36 is a load sensor for detecting the load Q of the engine, for example, a control lever opening degree of the fuel injection pump, 37 is a rotation speed sensor for detecting the rotation speed Ne of the engine, and 38 is a cooling water temperature Tw of the engine. It is a water temperature sensor, and these detection signals are also input to the control unit 35. Then, according to the output signal of the control unit 35, the solenoid valve 3
1 and the intake throttle valve 26 are controlled.

【0018】次に図4は、上記構成における排気還流制
御の内容を示すフローチャートであり、以下、このフロ
ーチャートに基づいて上記実施例の作用を説明する。
尚、このフローチャートに示すルーチンは一定時間毎に
繰り返し実行される。
Next, FIG. 4 is a flow chart showing the contents of the exhaust gas recirculation control in the above construction, and the operation of the above embodiment will be described below based on this flow chart.
The routine shown in this flowchart is repeatedly executed at regular intervals.

【0019】先ず、ステップ1(フローチャート中には
S1等と略記する)で、ディーゼル機関の回転数Ne、
負荷Q、および冷却水温Twを各センサの出力信号から
読み込み、ステップ2で冷却水温Twが所定温度Tw1
以上であるか否かを判定する。水温TwがTw1に達し
ない未暖機時には排気還流を行わないものとし、デュー
ティ比Dを0とする(ステップ4)。同様に、ステップ
3で、回転数Neおよび負荷Qに基づき、排気還流を行
うべき運転領域であるか否かを判定する。排気還流領域
以外であれば、やはりステップ4でデューティ比Dを0
とする。図5は、回転数Neおよび負荷Qに対する要求
排気還流率の特性を示したものであり、この図に明らか
なように、高速高負荷側では排気還流が停止し、かつ排
気還流領域の中でも低速低負荷側で要求排気還流率が高
くなる。
First, in step 1 (abbreviated as S1 etc. in the flowchart), the engine speed Ne of the diesel engine,
The load Q and the cooling water temperature Tw are read from the output signals of the respective sensors, and in step 2, the cooling water temperature Tw is the predetermined temperature Tw1.
It is determined whether or not the above. When the water temperature Tw has not reached Tw1, the exhaust gas recirculation is not performed and the duty ratio D is set to 0 (step 4). Similarly, in step 3, based on the rotation speed Ne and the load Q, it is determined whether or not the operation region is where the exhaust gas recirculation should be performed. If it is outside the exhaust gas recirculation region, the duty ratio D is also set to 0 in step 4.
And FIG. 5 shows the characteristics of the required exhaust gas recirculation rate with respect to the rotational speed Ne and the load Q. As is clear from this figure, the exhaust gas recirculation is stopped on the high speed and high load side, and at the low speed in the exhaust gas recirculation region. The required exhaust gas recirculation rate increases on the low load side.

【0020】排気還流を行うべき条件であれば、ステッ
プ5へ進み、差圧センサ33,34がそれぞれ検出する
差圧ΔP1およびΔP2を読み込む。また、ステップ
6,7で、吸気絞弁26の開閉状態をその制御マップか
ら判定する。図6は、吸気絞弁26の制御マップを示す
もので、排気還流領域の中でも要求排気還流率の低い中
速中負荷領域では吸気絞弁26を全開とし、逆に要求排
気還流率の高い低速低負荷側では小開度とする。そし
て、両者の中間では、中開度に制御している。
If the condition is such that exhaust gas recirculation is to be performed, the routine proceeds to step 5, where the differential pressures ΔP1 and ΔP2 detected by the differential pressure sensors 33 and 34 are read. Further, in steps 6 and 7, the open / closed state of the intake throttle valve 26 is determined from the control map. FIG. 6 is a control map of the intake throttle valve 26. In the exhaust gas recirculation region, the intake throttle valve 26 is fully opened in the medium speed / medium load region where the required exhaust gas recirculation ratio is low, and conversely, when the required exhaust gas recirculation ratio is high. The opening is small on the low load side. And in the middle of both, it is controlled to the middle opening.

【0021】ステップ7で中開度もしくは小開度と判定
した場合には、ステップ8以降へ進み、オリフィス32
上下の差圧ΔP1に着目して制御を行う。つまり、この
場合は、図6に示したように低速低負荷領域であり、か
つ要求排気還流率が高い。そのため、排圧が余り高くな
く、かつ排気還流制御弁28が全開近い状態となるた
め、差圧ΔP2は小さい。これに対し、オリフィス32
上下の差圧ΔP1は、排気還流量が多いことから高くな
り、しかも吸気絞弁26により吸気通路23内の圧力P
iが低下することから、一層発達する。図7は、差圧Δ
P1と排気還流量Qeとの関係を示したもので、吸気絞
弁26が中開度もしくは小開度となる領域では、差圧Δ
P1の値が大きく、かつ差圧ΔP1の変化に対する排気
還流量Qeの変化はなだらかとなる。従って、この差圧
ΔP1を用いて排気還流制御弁28の開度をフィードバ
ック制御することにより、排気還流量Qeを非常に高精
度に制御できる。
If it is determined in step 7 that the opening degree is medium or small, the process proceeds to step 8 and subsequent steps, and the orifice 32 is opened.
The control is performed by focusing on the upper and lower differential pressure ΔP1. That is, in this case, as shown in FIG. 6, it is in the low speed and low load region and the required exhaust gas recirculation rate is high. Therefore, the exhaust pressure is not so high and the exhaust gas recirculation control valve 28 is in a state of being almost fully opened, so that the differential pressure ΔP2 is small. On the other hand, the orifice 32
The upper and lower differential pressure ΔP1 is increased due to the large amount of exhaust gas recirculation, and the intake throttle valve 26 causes the pressure P in the intake passage 23 to rise.
It develops further because i decreases. FIG. 7 shows the differential pressure Δ
The relationship between P1 and the exhaust gas recirculation amount Qe is shown. In the region where the intake throttle valve 26 has a medium opening or a small opening, the differential pressure Δ
The value of P1 is large, and the change of the exhaust gas recirculation amount Qe with respect to the change of the differential pressure ΔP1 becomes gentle. Therefore, by performing feedback control of the opening degree of the exhaust gas recirculation control valve 28 using this differential pressure ΔP1, the exhaust gas recirculation amount Qe can be controlled with extremely high accuracy.

【0022】具体的には、ステップ8で、図8に示す制
御マップに基づき差圧ΔP1の目標値ΔP1T を、運転
条件(回転数Neおよび負荷Q)に応じて設定する。そ
して、ステップ9で、検出した差圧ΔP1と差圧目標値
ΔP1T とを比較し、実際の差圧ΔP1が目標値ΔP1
T より小さければデューティ比Dを増加させ(ステップ
10)、また目標値ΔP1T 以上であればデューティ比
Dを減少させる(ステップ11)。このようにしてデュ
ーティ比Dが決定された制御信号が、ステップ12で出
力される。
Specifically, in step 8, the target value ΔP1 T of the differential pressure ΔP1 is set according to the operating conditions (rotational speed Ne and load Q) based on the control map shown in FIG. Then, in step 9, the detected differential pressure ΔP1 is compared with the differential pressure target value ΔP1 T, and the actual differential pressure ΔP1 is calculated as the target value ΔP1.
If it is smaller than T , the duty ratio D is increased (step 10), and if it is the target value ΔP1 T or more, the duty ratio D is decreased (step 11). The control signal with the duty ratio D thus determined is output in step 12.

【0023】つまり、常に実際の差圧ΔP1が目標値Δ
P1T と一致するようにフィードバック制御がなされ
る。前述したように、オリフィス32の流量係数をA1
とすれば、排気還流量Qeは、Qe=A1√(ΔP1)
として与えられる。尚、オリフィス32は固定オリフィ
スであるため、流量係数A1は固定値である。
That is, the actual differential pressure ΔP1 is always the target value Δ
Feedback control is performed so as to coincide with P1 T. As described above, the flow coefficient of the orifice 32 is set to A1.
Then, the exhaust gas recirculation amount Qe is Qe = A1√ (ΔP1)
Given as. Since the orifice 32 is a fixed orifice, the flow coefficient A1 has a fixed value.

【0024】一方、ステップ7で吸気絞弁26が全開で
あると判定した場合には、ステップ13以降へ進み、排
気還流制御弁28上下の差圧ΔP2に着目して制御を行
う。つまり、この場合は、図6に示したように中速中負
荷領域であり、かつ要求排気還流率が比較的低い。その
ため、排圧が比較的高くなるとともに、排気還流制御弁
28の開度が小さく、その上下の差圧ΔP2は発達す
る。これに対し、オリフィス32上下の差圧ΔP1は、
排気還流量が少ないことから小さくなり、しかも吸気絞
弁26が全開で吸気通路23内の圧力Piが略大気圧と
なることから、一層その発達が抑制される。従って、こ
の場合には、排気還流制御弁28上下の差圧ΔP2を用
いることで、高精度なフィードバック制御を実現でき
る。
On the other hand, when it is determined in step 7 that the intake throttle valve 26 is fully open, the process proceeds to step 13 and subsequent steps, and the control is performed by focusing on the differential pressure ΔP2 between the upper and lower exhaust gas recirculation control valves 28. That is, in this case, as shown in FIG. 6, it is in the medium speed / medium load region, and the required exhaust gas recirculation rate is relatively low. Therefore, the exhaust pressure becomes relatively high, the opening degree of the exhaust gas recirculation control valve 28 becomes small, and the differential pressure ΔP2 above and below the exhaust gas recirculation control valve 28 develops. On the other hand, the differential pressure ΔP1 across the orifice 32 is
Since the exhaust gas recirculation amount is small, the exhaust gas recirculation amount is small. Further, since the intake throttle valve 26 is fully opened and the pressure Pi in the intake passage 23 is substantially atmospheric pressure, the development thereof is further suppressed. Therefore, in this case, highly accurate feedback control can be realized by using the differential pressure ΔP2 between the upper and lower sides of the exhaust gas recirculation control valve 28.

【0025】具体的には、ステップ13で、そのときの
運転条件に対応した差圧ΔP2の基準値つまり基準差圧
ΔP2S を、図10に示す制御マップに基づいて設定す
る。また、ステップ14で、そのときの運転条件に対応
したデューティ比Dの基準値つまり基準デューティ比D
S を、図11に示す制御マップに基づいて設定する。こ
れらの基準値は、排気フィルタにおける圧力損失の増加
等がないものと仮定した場合の標準的な値を示す。次
に、ステップ15およびステップ16で、実際に検出さ
れた差圧ΔP2とその目標値ΔP2T とを比較する。こ
の差圧ΔP2の目標値ΔP2T は、後述するステップ1
9で算出された値が用いられる。尚、排気フィルタにお
ける圧力損失の増加等が無ければ、該目標値ΔP2T
基準差圧ΔP2S と等しい。
Specifically, in step 13, the reference value of the differential pressure ΔP2 corresponding to the operating condition at that time, that is, the reference differential pressure ΔP2 S is set based on the control map shown in FIG. In step 14, the reference value of the duty ratio D corresponding to the operating condition at that time, that is, the reference duty ratio D
S is set based on the control map shown in FIG. These reference values are standard values on the assumption that there is no increase in pressure loss in the exhaust filter. Next, in steps 15 and 16, the actually detected differential pressure ΔP2 is compared with its target value ΔP2 T. The target value ΔP2 T of the differential pressure ΔP2 is obtained in step 1 described later.
The value calculated in 9 is used. If there is no increase in pressure loss in the exhaust filter, the target value ΔP2 T is equal to the reference differential pressure ΔP2 S.

【0026】実際の差圧ΔP2が目標値ΔP2T よりも
小さい場合にはデューティ比Dを増加させ(ステップ1
7)、また目標値ΔP2T より大きい場合にはデューテ
ィ比Dを減少させる(ステップ18)。このようにして
デューティ比Dが決定された制御信号は、やはりステッ
プ12で出力される。つまり、常に実際の差圧ΔP2が
目標値ΔP2T と一致するようにフィードバック制御が
なされる。
When the actual differential pressure ΔP2 is smaller than the target value ΔP2 T , the duty ratio D is increased (step 1
7) On the other hand, if it is larger than the target value ΔP2 T , the duty ratio D is decreased (step 18). The control signal for which the duty ratio D is determined in this way is also output in step 12. That is, feedback control is always performed so that the actual differential pressure ΔP2 matches the target value ΔP2 T.

【0027】ステップ15で実際の差圧ΔP2と目標値
P2T とが一致した状態となったときには、ステップ1
9へ進み、そのときのデューティ比Dと基準デューティ
比DS および基準差圧ΔP2S を用いて目標値ΔP2T
を算出する。詳しくは、ΔP2T =(DS /D)2・Δ
P2S として求める。
When it is determined in step 15 that the actual differential pressure ΔP2 and the target value P2 T coincide with each other, step 1
9, the target value ΔP2 T is calculated using the duty ratio D, the reference duty ratio D S, and the reference differential pressure ΔP2 S at that time.
To calculate. Specifically, ΔP2 T = (D S / D) 2 · Δ
Calculate as P2 S.

【0028】つまり、排気還流制御弁28を一種のオリ
フィスとみなせば、その流量係数をA2として、排気還
流量Qeは、Qe=A2√(ΔP2)として表される
が、この場合には、流量係数A2は固定値ではなく、図
9に示すように、排気還流制御弁28の開度によって変
化する。但し、差圧ΔP2を制御の対象とする排気還流
量Qeの少ない領域では、図9に破線で示すように、比
較的傾きの小さい直線で近似することができる。また、
バキュームポンプ30により安定した負圧が供給される
上記構成では、排気還流制御弁28のリフト量と駆動信
号のデューティ比Dとは比例関係にある。従って、直線
近似した範囲内では、流量係数A2について、比例定数
をCとして、A2=C・Dの関係が成立する。
That is, if the exhaust gas recirculation control valve 28 is regarded as a kind of orifice, its flow coefficient is represented by A2, and the exhaust gas recirculation amount Qe is expressed by Qe = A2√ (ΔP2). The coefficient A2 is not a fixed value but changes depending on the opening degree of the exhaust gas recirculation control valve 28, as shown in FIG. However, in the region where the exhaust gas recirculation amount Qe in which the differential pressure ΔP2 is controlled is small, it can be approximated by a straight line having a relatively small inclination as shown by the broken line in FIG. Also,
In the above configuration in which a stable negative pressure is supplied by the vacuum pump 30, the lift amount of the exhaust gas recirculation control valve 28 and the duty ratio D of the drive signal are in a proportional relationship. Therefore, within the linearly approximated range, the relationship of A2 = C · D is established for the flow coefficient A2, where C is the proportional constant.

【0029】この関係を用いれば、目標とする排気還流
量Qeは、基準デューティ比DS と基準差圧ΔP2S
を用いて、Qe=A2√(ΔP2S )=C・DS √(Δ
P2S )として求められる。
Using this relationship, the target exhaust gas recirculation amount Qe is Qe = A2√ (ΔP2 S ) = C · D S √ (Δ, using the reference duty ratio D S and the reference differential pressure ΔP2 S.
P2 S ).

【0030】ここで、排気フィルタの目詰まり等により
排圧が変化すると、一定の差圧ΔP2(目標値ΔP2
T )にフィードバック制御した際の現実のデューティ比
Dが変化する。そして、このままでは流量係数A2が変
化するので、排気還流量Qeに誤差が発生してしまう。
Here, when the exhaust pressure changes due to clogging of the exhaust filter or the like, a constant differential pressure ΔP2 (target value ΔP2
The actual duty ratio D when feedback control is performed to T ) changes. Then, since the flow rate coefficient A2 changes as it is, an error occurs in the exhaust gas recirculation amount Qe.

【0031】このデューティ比Dの変化に拘わらず所定
の排気還流量Qeを確保するためには、新たな目標値Δ
P2T として、Qe=C・DS √(ΔP2S )=C・D
√(ΔP2T )の関係が成立する必要があるので、この
式から、逆に、必要な目標値ΔP2T が、ΔP2T
(DS /D)2・ΔP2S として求められる。従って、
このようにステップ19において逐次目標値ΔP2T
算出することにより、排圧が変化したような場合でも排
気還流量Qeを所期の値に精度よく制御することができ
る。
In order to secure the predetermined exhaust gas recirculation amount Qe regardless of the change of the duty ratio D, a new target value Δ
As P2 T , Qe = C · D S √ (ΔP2 S ) = C · D
Since the relationship of √ (ΔP2 T ) needs to be established, from this expression, conversely, the required target value ΔP2 T is ΔP2 T =
It is calculated as (D S / D) 2 · ΔP2 S. Therefore,
Thus, by successively calculating the target value ΔP2 T in step 19, the exhaust gas recirculation amount Qe can be accurately controlled to a desired value even when the exhaust pressure changes.

【0032】尚、オリフィス32上下の差圧ΔP1を制
御の対象とした前述の領域では、オリフィス32が固定
オリフィスであることから、排圧変化の影響を受けるこ
とはない。
In the above-mentioned region in which the pressure difference ΔP1 between the upper and lower sides of the orifice 32 is controlled, since the orifice 32 is a fixed orifice, it is not affected by the exhaust pressure change.

【0033】このように上記実施例によれば、差圧ΔP
1を対象としたフィードバック制御と差圧ΔP2を対象
としたフィードバック制御を運転条件により切り換えて
実行するようにしたので、広範な運転条件の下で常に高
精度に排気還流量Qeを制御できる。しかも、排気フィ
ルタの目詰まりなどにより排圧が上昇したような場合あ
るいはエアクリーナエレメントの目詰まりなどにより吸
気圧力が変化したような場合でも、これに影響されずに
所期の排気還流量Qeを維持することができる。
Thus, according to the above embodiment, the differential pressure ΔP
Since the feedback control for 1 and the feedback control for the differential pressure ΔP2 are switched and executed depending on the operating conditions, the exhaust gas recirculation amount Qe can be controlled with high accuracy under a wide range of operating conditions. Moreover, even if the exhaust pressure rises due to clogging of the exhaust filter or the intake pressure changes due to clogging of the air cleaner element, the desired exhaust gas recirculation amount Qe is maintained without being affected by this. can do.

【0034】尚、上記実施例では、差圧ΔP1と差圧Δ
P2との制御の切換を吸気絞弁26の開度切換点と一致
させて行うようにしたが、この発明はこれに限定される
ものではない。
In the above embodiment, the differential pressure ΔP1 and the differential pressure Δ
Although the control switching between P2 and P2 is made to coincide with the opening switching point of the intake throttle valve 26, the present invention is not limited to this.

【0035】次に図12は、排気還流制御弁28に、そ
のリフト量Lを検出するリフトセンサ39を設けた実施
例を示している。この実施例によれば、図9に示した特
性から流量係数A2を一層正確に求めることができ、差
圧ΔP2を用いたフィードバック制御における排圧等に
対する補正が一層高精度となる。尚、この場合、前述し
た実施例の基準デューティ比DS に代えて基準リフト量
S が所定の制御マップにより与えられる。また、ΔP
2の目標値ΔP2T は、ΔP2T =(LS /L)2・Δ
P2S として逐次算出される。
Next, FIG. 12 shows an embodiment in which the exhaust gas recirculation control valve 28 is provided with a lift sensor 39 for detecting the lift amount L thereof. According to this embodiment, the flow rate coefficient A2 can be obtained more accurately from the characteristics shown in FIG. 9, and the correction for the exhaust pressure and the like in the feedback control using the differential pressure ΔP2 becomes even more accurate. In this case, the reference lift amount L S is given by a predetermined control map instead of the reference duty ratio D S of the above-described embodiment. Also, ΔP
The target value ΔP2 T of 2 is ΔP2 T = (L S / L) 2 · Δ
It is sequentially calculated as P2 S.

【0036】[0036]

【発明の効果】以上の説明で明らかなように、この発明
に係るディーゼル機関の排気還流制御装置によれば、排
気還流制御弁の上下差圧ΔP2あるいはその下流側に設
けたオリフィスの上下差圧ΔP1のいずれかにより排気
還流制御弁の開度をフィードバック制御するようにした
ので、排気還流量をきめ細かく制御できる。特に、運転
条件に応じて最適な方を制御の対象として選択し、その
差圧を目標値に保つようにフィードバック制御するの
で、広範な運転条件の下で常に高精度な排気還流量制御
を実現できる。
As is apparent from the above description, according to the exhaust gas recirculation control device for a diesel engine of the present invention, the vertical differential pressure ΔP2 of the exhaust gas recirculation control valve or the vertical differential pressure of the orifice provided downstream thereof. Since the opening degree of the exhaust gas recirculation control valve is feedback-controlled by any of ΔP1, the exhaust gas recirculation amount can be finely controlled. In particular, the most suitable one is selected as the control target according to the operating conditions, and feedback control is performed so that the differential pressure is maintained at the target value, so highly accurate exhaust gas recirculation amount control is achieved under a wide range of operating conditions. it can.

【0037】また請求項2のように差圧ΔP2の目標値
を基準開度と実際の制御開度とにより補正するようにす
れば、例えば排気フィルタの圧力損失の増加やエアクリ
ーナエレメントの目詰まり等の影響を排除でき、排除還
流量の過不足を生じることがない。つまり経時的な特性
の変化を防止でき、排気還流量の増加によるスモークの
悪化等を未然に防止できる。
Further, if the target value of the differential pressure ΔP2 is corrected by the reference opening and the actual control opening as in claim 2, for example, the pressure loss of the exhaust filter increases and the air cleaner element becomes clogged. Can be eliminated, and the excess and deficiency of the excluded reflux amount will not occur. That is, it is possible to prevent the characteristics from changing with time, and to prevent the smoke from being deteriorated due to the increase in the exhaust gas recirculation amount.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明に係る排気還流制御装置の構成を示す
クレーム対応図。
FIG. 1 is a claim correspondence diagram showing a configuration of an exhaust gas recirculation control device according to the present invention.

【図2】請求項2の発明の構成を示すクレーム対応図。FIG. 2 is a claim correspondence diagram showing the configuration of the invention of claim 2;

【図3】この発明の一実施例の機械的構成を示す構成説
明図。
FIG. 3 is a structural explanatory view showing a mechanical structure of an embodiment of the present invention.

【図4】この実施例における排気還流制御の内容を示す
フローチャート。
FIG. 4 is a flowchart showing the contents of exhaust gas recirculation control in this embodiment.

【図5】運転条件に対する排気還流率の特性を示す特性
図。
FIG. 5 is a characteristic diagram showing characteristics of exhaust gas recirculation rate with respect to operating conditions.

【図6】運転条件に対する吸気絞弁の開度特性を示す特
性図。
FIG. 6 is a characteristic diagram showing an opening characteristic of an intake throttle valve with respect to operating conditions.

【図7】差圧ΔP1と排気還流量との関係を示す特性
図。
FIG. 7 is a characteristic diagram showing a relationship between a differential pressure ΔP1 and an exhaust gas recirculation amount.

【図8】運転条件に対する差圧ΔP1の目標値の特性を
示す特性図。
FIG. 8 is a characteristic diagram showing characteristics of a target value of the differential pressure ΔP1 with respect to operating conditions.

【図9】排気還流制御弁のリフト量とその流量係数A2
との関係を示す特性図。
FIG. 9 is a lift amount of the exhaust gas recirculation control valve and its flow coefficient A2.
The characteristic view showing the relationship with.

【図10】運転条件に対する基準差圧ΔP2S の特性を
示す特性図。
FIG. 10 is a characteristic diagram showing characteristics of a reference differential pressure ΔP2 S with respect to operating conditions.

【図11】運転条件に対する基準デューティ比DS の特
性を示す特性図。
FIG. 11 is a characteristic diagram showing characteristics of a reference duty ratio D S with respect to operating conditions.

【図12】リフトセンサを設けた実施例を示す構成説明
図。
FIG. 12 is a structural explanatory view showing an embodiment in which a lift sensor is provided.

【符号の説明】[Explanation of symbols]

1…運転条件検出手段 2…排気還流制御弁 3…第1差圧検出手段 4…第2差圧検出手段 5…選択手段 6…目標値設定手段 7…開度制御手段 11…基準差圧設定手段 12…基準開度設定手段 13…第2目標値設定手段 DESCRIPTION OF SYMBOLS 1 ... Operating condition detection means 2 ... Exhaust gas recirculation control valve 3 ... 1st differential pressure detection means 4 ... 2nd differential pressure detection means 5 ... Selection means 6 ... Target value setting means 7 ... Opening degree control means 11 ... Reference differential pressure setting Means 12 ... Reference opening setting means 13 ... Second target value setting means

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ディーゼル機関の運転条件を検出する運
転条件検出手段と、 排気系から吸気系へ至る排気還流通路に介装され、排気
還流量を制御する排気還流制御弁と、 この排気還流制御弁と吸気系との間に設けたオリフィス
の上流,下流の差圧ΔP1を検出する第1差圧検出手段
と、 上記排気還流制御弁の上流,下流の差圧ΔP2を検出す
る第2差圧検出手段と、 機関運転条件に基づき、どちらの差圧による制御を実行
するかを選択する選択手段と、 選択された差圧の目標値を機関運転条件に応じて設定す
る目標値設定手段と、 選択された差圧の検出値が上記の差圧目標値に一致する
ように上記排気還流制御弁の開度を制御する開度制御手
段と、 を備えたことを特徴とするディーゼル機関の排気還流制
御装置。
1. An operating condition detecting means for detecting an operating condition of a diesel engine, an exhaust gas recirculation control valve for controlling an exhaust gas recirculation amount, which is interposed in an exhaust gas recirculation passage extending from an exhaust system to an intake system, and the exhaust gas recirculation control. A first differential pressure detecting means for detecting a differential pressure ΔP1 upstream and downstream of an orifice provided between the valve and the intake system, and a second differential pressure detecting a differential pressure ΔP2 upstream and downstream of the exhaust gas recirculation control valve. A detection means, a selection means for selecting which of the differential pressures to perform control based on the engine operating conditions, and a target value setting means for setting a target value of the selected differential pressure according to the engine operating conditions, An exhaust gas recirculation system for a diesel engine, comprising: an opening degree control means for controlling the opening degree of the exhaust gas recirculation control valve so that the detected value of the selected differential pressure matches the differential pressure target value. Control device.
【請求項2】 上記目標値設定手段が、 運転条件に応じて差圧ΔP2の基準値を設定する基準差
圧設定手段と、 運転条件に応じて排気還流制御弁の開度の基準値を設定
する基準開度設定手段と、 排気還流制御弁の現在の制御開度と上記基準開度とによ
って上記基準差圧を補正し、差圧ΔP2の目標値を設定
する第2目標値設定手段と、 を備えていることを特徴とする請求項1記載のディーゼ
ル機関の排気還流制御装置。
2. The target value setting means sets a reference differential pressure setting means for setting a reference value of the differential pressure ΔP2 according to operating conditions, and a reference value of the opening degree of the exhaust gas recirculation control valve according to operating conditions. And a second target value setting means that corrects the reference differential pressure by the current control opening of the exhaust gas recirculation control valve and the reference opening, and sets a target value of the differential pressure ΔP2. The exhaust gas recirculation control device for a diesel engine according to claim 1, further comprising:
JP5083689A 1993-04-12 1993-04-12 Exhaust circulation control device for diesel engine Pending JPH06294355A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5083689A JPH06294355A (en) 1993-04-12 1993-04-12 Exhaust circulation control device for diesel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5083689A JPH06294355A (en) 1993-04-12 1993-04-12 Exhaust circulation control device for diesel engine

Publications (1)

Publication Number Publication Date
JPH06294355A true JPH06294355A (en) 1994-10-21

Family

ID=13809465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5083689A Pending JPH06294355A (en) 1993-04-12 1993-04-12 Exhaust circulation control device for diesel engine

Country Status (1)

Country Link
JP (1) JPH06294355A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015121167A (en) * 2013-12-24 2015-07-02 トヨタ自動車株式会社 Control device of internal combustion engine
JP2016176385A (en) * 2015-03-19 2016-10-06 日野自動車株式会社 Variable geometry turbocharger control device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015121167A (en) * 2013-12-24 2015-07-02 トヨタ自動車株式会社 Control device of internal combustion engine
JP2016176385A (en) * 2015-03-19 2016-10-06 日野自動車株式会社 Variable geometry turbocharger control device

Similar Documents

Publication Publication Date Title
US6230697B1 (en) Integrated internal combustion engine control system with high-precision emission controls
US4466416A (en) Exhaust gas recirculation control method and apparatus for a diesel engine
JP3365197B2 (en) EGR control device for internal combustion engine
EP1245818B1 (en) Air-fuel ratio control apparatus and method for internal combustion engine
JPS58150063A (en) Exhaust gas recirculation device of internal-combustion engine
JPH06294355A (en) Exhaust circulation control device for diesel engine
JP3250322B2 (en) EGR control device for diesel engine
JPH06336957A (en) Egr control device for diesel engine
JPH10238414A (en) Control device for egr
JP3907262B2 (en) Evaporative fuel purge system for engine
JP3580558B2 (en) EGR device
JPH06323200A (en) Exhaust gas recirculation control device for diesel engine
JPH08270508A (en) Exhaust circulating device for internal combustion engine
JP2717442B2 (en) Engine exhaust gas recirculation control device
JP2663296B2 (en) Engine exhaust gas recirculation control device
JP2858285B2 (en) Fuel supply control device for internal combustion engine
JPH06294317A (en) Regenerating timing detecting device of exhaust particulate collecting device for diesel engine
JP3470468B2 (en) Control unit for diesel engine
JP2861672B2 (en) Evaporative fuel processor for engine
JPH08109854A (en) Exhaust reflux control device for internal combustion engine
JP3430729B2 (en) Control unit for diesel engine
JP3312455B2 (en) Evaporative fuel processor for engine
JPH0429074Y2 (en)
JPS63992Y2 (en)
JPH073003Y2 (en) Exhaust gas recirculation system for internal combustion engine