JPH06293902A - Sintering material having spiral small hole and its rotation-controlled extrusionmolding method - Google Patents

Sintering material having spiral small hole and its rotation-controlled extrusionmolding method

Info

Publication number
JPH06293902A
JPH06293902A JP8185793A JP8185793A JPH06293902A JP H06293902 A JPH06293902 A JP H06293902A JP 8185793 A JP8185793 A JP 8185793A JP 8185793 A JP8185793 A JP 8185793A JP H06293902 A JPH06293902 A JP H06293902A
Authority
JP
Japan
Prior art keywords
spiral
rotation
molded
die
small holes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8185793A
Other languages
Japanese (ja)
Inventor
Shigemi Hosoda
成己 細田
Yukiro Yoshimura
征郎 吉村
Hitoshi Iwata
仁志 岩田
Iwao Kashiwagi
巌 柏木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP8185793A priority Critical patent/JPH06293902A/en
Publication of JPH06293902A publication Critical patent/JPH06293902A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • B21C23/02Making uncoated products
    • B21C23/04Making uncoated products by direct extrusion
    • B21C23/14Making other products
    • B21C23/147Making drill blanks

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To easily obtain a sintering material having a highly precise spiral small hole with a desired lead value by restricting the periphery of a compact leaving a die having a spiral pin and revolving the compact on its axis at a speed conforming to the extrusion rate of the compact. CONSTITUTION:A plastic kneaded body is charged into an extruder 1, pressed, twisted along the inner recess and protrusion 2a and 2b of the die 2 having a spiral pin 3 and extruded. The periphery of the extrudate is restricted by a rotating die 5, mounted freely rotatably on the outlet of the die 2, and a sintering material having a spiral small hole with the desired lead value is obtained. The obtained material has a small hole enhanced in spiral precision, and a sintering material having a spiral small hole with the error in the angle between the spiral and the axis of the small hole kept within + or -2.5 deg. is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、切削油供給孔を有す
る、いわゆる油孔付ツイストドリルに代表される軸心の
回りに螺旋状に連なる小孔を有する焼結材およびその押
出し成形方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sintered material having cutting oil supply holes, which has small holes spirally connected around an axis represented by a so-called oil drill twist drill, and an extrusion molding method thereof. .

【0002】[0002]

【従来の技術】粉末冶金材料、セラミックス等の素材分
野でも、中空製品が広く製造されている。このうち、押
出し成形法によるものは、可塑性混練体を中空部に対応
する形状のマンドレル、ピン等を有するダイから押出し
て中空材を得るもので、同一断面形状の長尺製品の製造
に適している。中空製品のうちでも油孔付ツイストドリ
ルに代表される中空製品は、中空孔が軸心の回りに螺旋
状に連なってねじれていることが必要であり、次に述べ
るような製造方法が採用されている。溶製材または粉末
材による棒状出発材から製造される油孔付ツイストドリ
ル用素材は、棒状素材に、軸心に平行にドリルでストレ
−トに一対の孔をあけ、この材料を所望の孔径となるま
で引抜き加工した後、該引抜き材を小孔が所定のリ−ド
になるように機械的にねじり加工を加えて製造される。
Hollow products are widely manufactured in the field of powder metallurgy materials, ceramics and the like. Among them, the extrusion molding method is a method of extruding a plastic kneaded body from a die having a mandrel having a shape corresponding to the hollow portion, a pin, etc. to obtain a hollow material, which is suitable for producing a long product having the same cross-sectional shape. There is. Among hollow products, hollow products represented by twist drills with oil holes require that the hollow holes be twisted in a spiral pattern around the axis, and the manufacturing method described below is adopted. ing. Materials for twist drills with oil holes, which are manufactured from rod-shaped starting materials made of ingot or powder, have a pair of holes drilled in the rod with a drill parallel to the axis, and the material with the desired hole diameter. It is manufactured by mechanically twisting the drawn material so that the small holes have a predetermined lead.

【0003】粉末冶金焼結材であって高速度工具鋼等か
ら製造する場合は、押出し成形法によりストレ−ト孔の
素材を得て焼結後、さらに前記棒状出発材と同様に機械
的にねじりを与えて螺旋状の孔を形成する方法が行われ
ている。また、特開昭61−227101号,特開平1
−156405号公報には、原料粉末による可塑性混錬
体を押出しと同時にねじりを付与して螺旋状の小孔を有
するドリル用成形体を得る成形方法が開示されている。
In the case of a powder metallurgical sintered material which is manufactured from high speed tool steel or the like, a material for a straight hole is obtained by an extrusion molding method, sintered, and then mechanically mechanically similar to the rod-shaped starting material. A method of applying a twist to form a spiral hole is used. In addition, JP-A-61-227101 and JP-A-1
Japanese Patent Laid-Open No. 156405 discloses a molding method for obtaining a molded product for a drill having a spiral small hole by extruding a plastic kneaded product made of a raw material powder and imparting a twist at the same time.

【0004】本出願人は、成形ままで、直ちに切り粉排
出用のねじれ溝が得られる焼結用素材のねじり押出し方
法を、また、ねじれ孔とねじれ溝が得られる焼結用素材
のねじり押出し装置および押出し方法を開発し、特開平
1−96305号,特願昭63−182994号として
出願した。しかし、一般に焼結時の曲りの発生は避け難
く、曲り矯正に際し切り粉排出用のねじれ溝を有する焼
結材は、矯正精度、折損に対し、不利となり易いため、
ねじり溝は設けないものが多い。
The applicant of the present invention has proposed a method for twisting and extruding a sintering material which can immediately obtain a twist groove for discharging chips as it is molded, and a twist extrusion of a sintering material which can obtain a twist hole and a twist groove. An apparatus and an extrusion method were developed and applied as Japanese Patent Application Laid-Open No. 1-96305 and Japanese Patent Application No. 63-182994. However, it is generally difficult to avoid the occurrence of bending during sintering, and a sintered material having a twist groove for discharging chips when straightening the bending is liable to be disadvantageous with respect to straightening accuracy and breakage.
Many do not have twist grooves.

【0005】[0005]

【発明が解決しようとする課題】上述したような、スト
レ−トの小孔を有する素材を得た後、機械的にねじりを
与えて螺旋状の小孔を得る方法は、高価なねじり装置が
必要であり、製造工程も多くなるのでコスト高となると
いう問題点がある。これらのツイストドリルの製造にお
いて、切り粉排出用のねじれ溝のない素材の場合、切削
または研削により、ねじれ溝を形成する必要があり、こ
の際、素材は生産効率の面から、可能な限り長尺のもの
が望ましい。しかし、小孔の位置、つまり軸心に対する
小孔の角度やリードに誤差があると、小孔がねじれ溝内
に開口する危険がある。本発明の第1の目的は、小孔の
位置精度の高い螺旋状小孔を有する焼結材を提供するこ
とである。
As described above, the method of obtaining a spiral small hole by mechanically twisting it after obtaining the material having the small hole of the straight, requires an expensive twisting device. Since it is necessary and the number of manufacturing processes increases, there is a problem that the cost increases. In the production of these twist drills, in the case of a material without a twist groove for discharging chips, it is necessary to form a twist groove by cutting or grinding, and in this case, the material is as long as possible from the viewpoint of production efficiency. It is desirable to have a shaku. However, if there is an error in the position of the small hole, that is, the angle of the small hole with respect to the axis or the lead, there is a risk that the small hole opens in the twist groove. A first object of the present invention is to provide a sintered material having spiral small holes with high accuracy of small hole position.

【0006】また、最近、可塑性混錬体の取扱い技術や
焼結技術等の進歩に従って、焼結時の収縮率を狭い範囲
内に収めることが可能となった。したがって、高寸法精
度の焼結体を得るためには、成形体(グリーン)の精度
向上が主要な課題となっている。また、押出し成形時と
同時に螺旋状小孔を得る方法は、特開昭61−2271
01号,特開平1−156405号にみられるような方
法があるが、これらの方法は、ダイの内周のねじれ溝を
形成し、これにより被成形材に自転性向を付与する方法
である。しかし、これらの方法ではダイの開口の中央部
を押出される被成形材は直進しようとする力が働くため
に金型の内周のねじれ溝に沿えきれず、成形された焼結
用素材の螺旋状小孔のリ−ドはダイの内周のねじれ溝の
リードと一致せず、ダイの内周のねじれ溝リ−ドよりも
大きくなり、かつ誤差の量は、混練体および押出速度等
の条件により、大きく変動するという問題点がある。
Further, recently, with the progress of the handling technique and the sintering technique of the plastic kneaded body, it has become possible to keep the shrinkage rate during sintering within a narrow range. Therefore, in order to obtain a sintered body with high dimensional accuracy, improving the accuracy of the green body is a major issue. A method for obtaining spiral small holes at the same time as extrusion molding is disclosed in JP-A-61-2721.
No. 01, Japanese Patent Laid-Open No. 1-156405, these methods are methods of forming a twist groove on the inner circumference of the die, thereby imparting a rotational tendency to the material to be molded. However, in these methods, the material to be extruded at the center of the die opening cannot move along the twist groove on the inner circumference of the mold because the force to move straight is exerted. The lead of the spiral small hole does not match the lead of the twist groove on the inner circumference of the die and is larger than the lead of the twist groove on the inner circumference of the die, and the amount of error depends on the kneading body and extrusion speed. There is a problem that it greatly fluctuates depending on the condition of.

【0007】また、特開平1−96305号,特願昭6
3−182994号では、ダイの内腔の上流側の中央部
にねじれフィンを配設して、ダイの内周のねじれ溝と供
に被成形材に自転性向を付与しているが、フィンとダイ
内周とに間隔があるため、この間では被成形材は直進し
ようとするため充分なねじれを付与できない。このた
め、成形された焼結用素材の螺旋状小孔のリ−ドはダイ
の内周のねじれ溝のリ−ドよりもやはり大きくなる。ま
た、被押出材のリードの誤差やバラツキを抑制するた
め、ダイや螺旋状孔に対応するピンを回転する提案もあ
るが、高い混練体の圧力をシールしつつ、これらを回転
することは、実用上ほぼ不可能である。
Further, Japanese Patent Application Laid-Open No. 1-96305 and Japanese Patent Application No.
In No. 3-182994, a twist fin is arranged in the central portion on the upstream side of the inner cavity of the die, and the twisted groove on the inner circumference of the die is used to impart a rotational tendency to the material to be molded. Since there is a space from the inner circumference of the die, the material to be molded tends to go straight during this interval, and thus sufficient twist cannot be imparted. Therefore, the lead of the spiral small hole of the formed sintering material is still larger than the lead of the spiral groove on the inner circumference of the die. In addition, there is a proposal to rotate the pin corresponding to the die or the spiral hole in order to suppress the error or variation in the lead of the extruded material, but while sealing the high pressure of the kneading body, these can be rotated. It is practically impossible.

【0008】本発明の第2の目的は、以上の問題点に鑑
み、粉末冶金法による焼結用素材の押出し成形に当たっ
て、ねじれの量またはリ−ドの精度の高い螺旋状小孔を
有する焼結用素材を得ることができる押出し方法を提供
することである。本発明でいう焼結用素材とは、成形の
後に焼結工程を経て製造される焼結部材の素材を意味す
る。
In view of the above problems, the second object of the present invention is to perform extrusion molding of a sintering material by the powder metallurgy method, in which the amount of twist or the accuracy of the lead is high. An object of the present invention is to provide an extrusion method capable of obtaining a binding material. The term "sintering material" as used in the present invention means a material for a sintered member manufactured through a sintering process after molding.

【0009】[0009]

【課題を解決するための手段】本発明者らは、精度の高
いリ−ドの螺旋状小孔を有する焼結用素材を得るために
種々検討を重ねた結果、ダイ開口から押出されてきた被
成形材の外周面を把持して回転する手段を設けることに
より、前述のように不足しがちである被成形材の自転を
補い、または不足分を見込んで、製作された押出ダイに
よる過度な自転を抑制する等、自転を規制することに想
到した。これにより、混練体のシールの問題を回避し得
るのである。また、この自転を規制する手段を得たこと
により、押出長さ測定装置、自転角度測定装置等を付加
することにより、閉ループ、フィードバック制御が可能
となる。この制御方法を採用することにより、また前述
のように焼結収縮率の変動幅の低下により、従来得られ
なかった高い小孔の位置精度の焼結材を得ることが可能
となった。
DISCLOSURE OF THE INVENTION The inventors of the present invention have conducted various studies in order to obtain a sintering raw material having highly accurate spiral small holes of a lead, and as a result, have been extruded from a die opening. By providing a means for gripping and rotating the outer peripheral surface of the material to be molded, the rotation of the material to be molded, which tends to be insufficient as described above, is compensated for, or the shortage is taken into consideration, and the excessive amount of the extrusion die produced is used. I came up with the idea of restricting rotation, such as suppressing rotation. This can avoid the problem of sealing the kneaded body. Further, by obtaining the means for regulating the rotation, by adding an extrusion length measuring device, a rotation angle measuring device, etc., closed loop and feedback control becomes possible. By adopting this control method and by reducing the fluctuation range of the sintering shrinkage rate as described above, it becomes possible to obtain a sintered material with a high positional accuracy of small holes which has not been obtained in the past.

【0010】すなわち、本発明は、軸心の回りに螺旋状
に連なる小孔を有する棒状の粉末焼結材であって、該棒
状材の両端部を除く少なくとも300mmの長さ内における
前記小孔が定リードの螺旋に沿うと仮定した時の該螺旋
と該小孔の前記軸心の回りの角度誤差が±3.6°以内で
あることを特徴とする螺旋状小孔を有する焼結材、可塑
性混練体を、軸心の回りに螺旋状に連なる小孔を有する
棒状に押出し成形する方法において、前記可塑性混練体
を、開口内に前記小孔に対応するピンを有するダイを通
して押出す第1の段階および前記により押出された被成
形材をその外周で拘束して該被成形材の自転を規制する
第2の段階を包含することを特徴とする自転規制押出し
成形方法、ならびに、軸心の回りに螺旋状に連なる小孔
を有する焼結用素材の押出し成形方法において、前記押
出しは、原料である可塑性混練体を、内周面に螺旋状に
連なる凹凸を有しかつ開口内に前記小孔に対応するピン
を有するダイを通して押出す第1の段階ならびに前記に
より押出された被成形材をその外周で拘束して前記被成
形材の自転を規制する自転規制手段による第2の段階か
らなり、前記第2の段階以降の前記被成形材の押出し長
さを測定する押出長さ測定装置、該第2の段階以降の被
成形材の回転角度を測定する回転角度測定装置および前
記両測定装置それぞれの測定値を入力され、これ等を予
め設定された値と比較して前記自転規制手段の回転角度
を制御する制御装置により、前記小孔の前記軸心に対す
る位置誤差を縮少する方向に制御することを特徴とする
螺旋状小孔を有する焼結用素材の自転規制押出し成形方
法である。
That is, the present invention relates to a rod-shaped powder sintered material having small holes spirally connected to each other around an axis, the small holes having a length of at least 300 mm excluding both ends of the rod-shaped material. The angle error between the spiral and the small hole around the axis is within ± 3.6 ° when it is assumed that the small lead follows the spiral of the constant lead. In a method of extruding a kneading body into a rod shape having small holes spirally connected around an axis, the plastic kneading body is extruded through a die having a pin corresponding to the small holes in the opening. A rotation-regulated extrusion molding method, which comprises a step and a second step of restraining the rotation of the molded material by restraining the molded material extruded by the outer periphery thereof, and the rotation around the axis. Pressing the sintering material with small holes spirally connected to each other In the extrusion molding method, the first step of extruding the plastic kneaded material as a raw material through a die having spirally continuous irregularities on the inner peripheral surface and having pins corresponding to the small holes in the openings. And a second step by a rotation restricting means for restricting the rotation of the molded material by restraining the molded material extruded by the outer periphery thereof, and the extrusion length of the molded material after the second step. The extrusion length measuring device for measuring the height, the rotation angle measuring device for measuring the rotation angle of the material to be molded after the second step, and the measurement values of both the measuring devices are input, and these are preset. Sintering having spiral small holes, characterized in that the position of the small hole with respect to the axis is controlled by a control device for controlling the rotation angle of the rotation restricting means in comparison with the value. Of material rotation It is out molding method.

【0011】[0011]

【作用】本願の第1発明の焼結体は、高い螺旋精度の小
孔を有する。このため、研削、切削等によるドリルの切
り粉排出溝加工を行なう際、この加工を長尺のままで、
かつ加工機械への簡便な位置決めで行なえるから、この
加工を高能率化することが可能となる。次に、本願の方
法発明によると、被成形材をダイから出た所で、その外
周を拘束して前記被成形材の軸心の回りで前記被成形材
の押出し速度に合わせた速度で回転させることにより、
所望のリ−ド値の螺旋状小孔を有する焼結用素材を容易
に得ることができる。
The sintered body of the first invention of the present application has small holes with high spiral precision. For this reason, when performing cutting dust discharge groove processing of the drill by grinding, cutting, etc., this processing is long,
Moreover, since the positioning can be performed easily on the processing machine, it is possible to improve the efficiency of this processing. Next, according to the method invention of the present application, when the material to be molded exits from the die, the outer periphery of the material is constrained to rotate around the axis of the material to be molded at a speed matching the extrusion speed of the material to be molded. By letting
A sintering material having spiral small holes with a desired lead value can be easily obtained.

【0012】本願の第2発明において、ダイの内周面に
螺旋状に連なる凹凸をつけることにより、被成材体はダ
イの螺旋状凹凸で自転性向を与えられながら押出され、
さらに、外周で拘束して自転が規制されて目的のリ−ド
に成形されていくが、被成形材はダイの凹凸で予めねじ
られているため、拘束手段で与えられるべき回転力は小
さくてよく、拘束による変形やスリップを減少すること
が可能で、成形体の押出し速度に合わせた自転速度を前
記突起に与えることにより容易に正確なリ−ドの螺旋状
小孔を有し、また研削等による外径仕上代の少ない焼結
材を得ることができる。また、本願の第2発明におい
て、被成形材の自転を規制する第2の段階における被成
形材の拘束方法として、該被成形材の外周面に先端を食
い込ませて、該被成形材の軸心の回りで回転する複数の
突起によるものは、構造が簡単で、被成形材の押出方向
の運動に対する抵抗が少ないので望ましい。
In the second invention of the present application, by providing the inner peripheral surface of the die with spirally continuous irregularities, the workpiece material is extruded while being given a rotational tendency by the spiral irregularities of the die,
Furthermore, the rotation is restricted by the outer circumference and the rotation is regulated to form the desired lead, but since the material to be formed is pre-twisted due to the unevenness of the die, the rotational force to be given by the restraining means is small. Well, it is possible to reduce deformation and slip due to restraint, and by providing the protrusion with a rotation speed that matches the extrusion speed of the molded body, it is easy to have accurate lead spiral small holes, and grinding It is possible to obtain a sintered material with a small outer diameter finishing cost due to the above. Further, in the second invention of the present application, as a method of restraining the molded material in the second step of restricting the rotation of the molded material, the tip of the peripheral surface of the molded material is bited into the shaft of the molded material. A plurality of protrusions that rotate around the center is desirable because it has a simple structure and has little resistance to the movement of the material to be molded in the extrusion direction.

【0013】さらに、前記被成形材の自転を規制する手
段を得たことで、閉ループ自動制御系を構築することが
可能となった。本願の第3発明は、この閉ループ自動制
御系の構成を示したものであるが、自転規制手段以外の
構成要素に特に特色はない。しかし、この閉ループが完
成することにより、極めて高い螺旋精度のグリーンが製
造可能となり、これにより、高精度の焼結体を得ること
が可能となった。すなわち、前述のように混錬体の取扱
い技術、焼結技術の進歩により焼結に伴う収縮率を狭い
範囲内に制御することが可能となったことと相俟って、
高精度の焼結体が得られる。
Furthermore, by obtaining the means for restricting the rotation of the material to be molded, it becomes possible to construct a closed loop automatic control system. The third invention of the present application shows the configuration of the closed-loop automatic control system, but the components other than the rotation restricting means have no particular feature. However, by completing this closed loop, it became possible to manufacture a green with extremely high spiral precision, which made it possible to obtain a highly accurate sintered body. That is, in combination with the fact that the kneaded body handling technology and the progress of the sintering technology have made it possible to control the shrinkage rate associated with sintering within a narrow range as described above,
A highly accurate sintered body can be obtained.

【0014】なお、被成形の自転を規制するための拘束
手段としては、後述の実施例に示す軸心方向に連なるフ
ィンまたはへら状の突起によるものが適当であり、被成
形材と同心の円への接線を軸心として遊転可能に支持さ
れた多数の円板もしくはルレットの回転駒用の円板とす
るもの(これらは、被成形材の外周面に先端部または円
周部を食い込ませる)、さらにはキャタピラ状の転動体
を被成形材の回りに多数配列するものであってもよい。
As a restraint means for restricting the rotation of the object to be molded, it is appropriate to use fins or spatula-shaped projections continuous in the axial direction, which will be described later in Examples, and to be concentric with the material to be molded. With a large number of discs rotatably supported around the tangent to the shaft or discs for the rotating piece of the roulette (these are designed to bite the tip or the periphery of the outer peripheral surface of the material to be molded) ), And a large number of caterpillar-shaped rolling elements may be arranged around the material to be molded.

【0015】[0015]

【実施例】次に実施例に基いて本発明を詳述する。図1
は、本願の第2発明による自転規制押出し成形を実施し
た装置の要部を示す断面図である。可塑性混練体は、シ
リンダ1aとスクリュ1bからなる押出し機1により加
圧される。押出し機1の出口部に、内周面に螺旋状に連
なる凹凸を有し、この凹凸部の谷部2aの谷径が14.
6mm,山部2bの内径が12.6mm,凸部8ヶ所,
螺旋リ−ド56.7mmのダイ2がねじにより取り付け
られている。前記ダイ2の内腔内には外径2.08mm
φ,間隔6.28mm,リ−ド56.7mmのねじれピ
ン3を有するマンドレルがそのスパイダホルダ4の外径
により位置決めされ保持されている。さらに、前記ダイ
2の出口に隣接して、突起先端5aの内径が14.3m
m,突起付け根5bの内径が15mm,突起部の数8箇
の回転金型5がダイ2との間にボールベアリングを介し
て自由回転可能に装架されている。なお、回転金型5の
先方には、V字状溝を有するトレイを配し、押出し長さ
は、700mmとした。
EXAMPLES The present invention will be described in detail with reference to Examples. Figure 1
FIG. 6 is a cross-sectional view showing a main part of an apparatus that has been subjected to rotation-regulated extrusion molding according to the second invention of the present application. The plastic kneaded body is pressed by an extruder 1 including a cylinder 1a and a screw 1b. At the outlet of the extruder 1, there is a spiral concavo-convex pattern on the inner peripheral surface, and the valley diameter of the valley section 2a of this concavo-convex section is 14.
6 mm, the inner diameter of the peak portion 2b is 12.6 mm, 8 convex portions,
The die 2 having a spiral lead of 56.7 mm is attached by screws. An outer diameter of 2.08 mm in the inner cavity of the die 2.
A mandrel having a twist pin 3 having a φ, a gap of 6.28 mm and a lead of 56.7 mm is positioned and held by the outer diameter of the spider holder 4. Further, adjacent to the outlet of the die 2, the inner diameter of the projection tip 5a is 14.3 m.
m, the inner diameter of the root 5b of the protrusion is 15 mm, and the rotating mold 5 having eight protrusions is mounted between the die 2 and the die 2 so as to be freely rotatable through a ball bearing. A tray having a V-shaped groove was arranged in front of the rotary mold 5, and the extrusion length was 700 mm.

【0016】(実施例1)上述した装置から、先ず、回
転金型5を取外し、押出し機1を駆動して、AISI
T15に相当する合金組成の粉末を、予め、バインダと
混合混練して可塑性混練体とした被成形材を押出した。
被成形材は、スパイダホルダ4を通過した後、ダイの内
径凹凸部に沿ってねじられながら、押出されていく。ダ
イ2でのねじれが不充分のため、螺旋状孔のリ−ドは7
9.4mm〜85.6mmとなった。すなわち、ダイお
よびピンのリード56.7mmに対し、被成形材のリー
ドは、40〜51%増であった。また、孔はマンドレル
に沿ってねじれていないため楕円形断面となった。な
お、この時の押出速度は、18.9〜20.6mm/se
cであった。なお、本実験のように、押出しのみによる
もののリードは、押出し速度依頼性が高く、押出し速度
の増加と共にリードも大きくなる関係となる。
(Embodiment 1) First, the rotary mold 5 is removed from the above-mentioned apparatus, and the extruder 1 is driven to make the AISI.
A powder having an alloy composition corresponding to T15 was previously mixed and kneaded with a binder to extrude a material to be molded into a plastic kneaded body.
After passing through the spider holder 4, the material to be molded is extruded while being twisted along the inner diameter irregularities of the die. Due to insufficient twist in the die 2, the lead of the spiral hole is 7
It became 9.4 mm-85.6 mm. That is, the lead of the molding material was increased by 40 to 51% with respect to the die and pin lead of 56.7 mm. Also, the hole had an elliptical cross section because it was not twisted along the mandrel. The extrusion speed at this time was 18.9 to 20.6 mm / se.
It was c. It should be noted that, as in the present experiment, the lead obtained by only the extrusion has a high extrusion speed requirement, and the lead also becomes large as the extrusion speed increases.

【0017】(実施例2)回転金型5を取付け、これを
20rpmと一定駆動回転とし、他は、実施例1と同条
件で押出しテストを行なった。得られた被成形品のリー
ドは、56.8〜61.8mmと、ダイおよびピンのリ
ードに対し、0.2〜9.0%増となり、回転金型の自
動規制効果が大きいことを伺わせる。しかし、実施例1
での実験によるリードのバラツキ(11%)に対する改
善効果は少ないことがわかる。 (実施例3)実施例2で用いた装置に、被成形材の押出
し長さ測定装置、被成形材の前面の回転角を測定する角
度測定装置および制御装置を組込も自転回転の規制制御
系を構成し、実施例2とほぼ同様にして、成形品のリー
ド目標を56.7mmとして自動制御押出し成形した。
(Example 2) A push-out test was conducted under the same conditions as in Example 1 except that a rotating mold 5 was attached and this was rotated at a constant drive speed of 20 rpm. The lead of the obtained molded product was 56.8 to 61.8 mm, which was an increase of 0.2 to 9.0% from the lead of the die and the pin, and it was confirmed that the automatic regulation effect of the rotary mold is great. Let However, Example 1
It can be seen that the effect of improving the lead variation (11%) is small in the experiment conducted at. (Embodiment 3) The apparatus used in Embodiment 2 is incorporated with an extrusion length measuring device for a material to be molded, an angle measuring device for measuring a rotation angle of a front surface of the material to be molded, and a control device, but the rotation control is controlled. A system was constructed and in the same manner as in Example 2, the lead target of the molded product was set to 56.7 mm, and automatic control extrusion molding was performed.

【0018】被成形材の押出し速度は18.9mm/s
ec〜20.6mm/secと変動したが、回転金型5
の回転数は20.0rpm〜21.8rpmとこれに追
従制御された。そして、被成形材を所定の長さまで押出
して切断し、外形14.7mmφ,内径2.09mm
φ,孔間隔6.24mm,螺旋状孔のリ−ド56.5〜
56.9mm(リードの誤差率 0.7%)の高螺旋精
度の焼結用素材を得た。この焼結用素材を乾燥後、還元
雰囲気中で400〜600℃で2時間保持して、脱バイ
ンダを行い、この脱バインダ体を1200〜1250℃
で2時間の真空焼結を行った。焼結後、各部の寸法測定
を行った結果、外形11.9mmφ,内径1.71mm
φ,孔間距離5.08mm,螺旋状孔のリ−ド46.0
〜46.3mmとなり、目標とする寸法を得ることがで
きた。このリードのバラツキの比は、0.3/46.1
5=0.65%であり、軸心に対する角度誤差として
は、0.65×360≒2.3°(±1.15°)であ
る。
The extrusion speed of the material to be molded is 18.9 mm / s.
ec ~ 20.6 mm / sec, but the rotating mold 5
The number of rotations of 20.0 rpm-21.8 rpm was tracked and controlled. Then, the material to be molded is extruded to a predetermined length and cut to have an outer diameter of 14.7 mmφ and an inner diameter of 2.09 mm.
φ, hole spacing 6.24 mm, spiral hole lead 56.5
A high spiral precision sintering material of 56.9 mm (lead error rate 0.7%) was obtained. After the sintering material is dried, it is held in a reducing atmosphere at 400 to 600 ° C. for 2 hours to remove the binder, and the binder-removed body is cooled to 1200 to 1250 ° C.
Vacuum sintering was performed for 2 hours. After sintering, the dimensions of each part were measured. As a result, the outer diameter was 11.9 mmφ and the inner diameter was 1.71 mm.
φ, hole distance 5.08 mm, spiral hole lead 46.0
It was ~ 46.3 mm, and the target dimension could be obtained. The variation ratio of this lead is 0.3 / 46.1.
5 = 0.65%, and the angle error with respect to the axis is 0.65 × 360≈2.3 ° (± 1.15 °).

【0019】図2は、実施例3とほぼ同じ要領でグリー
ンを成形した後、焼結した製品の斜視図である。該材料
10は、軸心の回りに螺旋状に連なる小孔10aを有す
るとともに、その外周面10bにはダイのねじれ溝に起
因する螺旋溝10cと回転金型の突起に起因する筋状の
溝10dが形成されている。本図の例においては、双方
の溝10cと10dをほぼ同じ深さとなるよう、したが
って焼結後の仕上代を最小となるよう配慮したものであ
る。なお、筋状の溝10dは、軸心に平行でない(螺旋
状)。これは、自転規制作用を発揮していることを物語
るものである。尚、本実施例および比較例では、押出し
成形機はスクリュタイプを使用したが、ピストンによる
押出し機いわゆるプランジャタイプの押出し成形機を使
用しても効果は同様である。
FIG. 2 is a perspective view of a product obtained by forming a green and sintering it in the same manner as in Example 3. The material 10 has a small hole 10a spirally connected around the axis, and has a spiral groove 10c due to the twist groove of the die and a streak groove due to the protrusion of the rotary die on the outer peripheral surface 10b thereof. 10d is formed. In the example of this figure, the grooves 10c and 10d are designed to have substantially the same depth, and thus the finishing allowance after sintering is minimized. The streak-shaped groove 10d is not parallel to the axis (spiral). This shows that it exerts a rotation regulating effect. In this embodiment and the comparative example, the screw type extruder was used, but the same effect can be obtained by using a piston type extruder, a so-called plunger type extruder.

【0020】[0020]

【発明の効果】以上述べたように、本願の第1発明の焼
結材は、高い螺旋精度の小孔を有するので、長尺材のま
ま、かつ簡便なチャッキング方法で、切り粉排出溝加工
が行なえ、油孔付ツイストドリルの大幅なコストダウン
を実現可能とするものである。また、本願の第2発明
は、高い螺旋精度の押出し製品の製造に際し、被押出し
材の自転を償い、または抑制することを可能とするもの
であり、さらに本願の第3発明である閉ループを構成す
るための一要素をなすものである。本願の第3発明は、
第2発明の自転規制手段を用いて極めて高い螺旋精度を
有するグリーンを容易に製造可能とするもので、これに
より本願の第1発明の焼結品を得ることを可能としたも
のである。
As described above, since the sintered material of the first invention of the present application has small holes with high spiral precision, it is a long material and can be easily chucked by a simple chucking method. It can be processed, and a large cost reduction of twist drills with oil holes can be realized. Further, the second invention of the present application is capable of compensating or suppressing the rotation of the material to be extruded when manufacturing an extruded product with high spiral accuracy, and further constitutes a closed loop which is the third invention of the present application. It is one of the elements to do. The third invention of the present application is
By using the rotation restricting means of the second invention, it is possible to easily manufacture a green having extremely high spiral precision, and thereby it is possible to obtain the sintered product of the first invention of the present application.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る螺旋状孔を有する焼結用素材のね
じり押出し成形方法を実施するための装置の一例を示す
断面図である。
FIG. 1 is a cross-sectional view showing an example of an apparatus for carrying out a method for torsional extrusion molding of a sintering material having spiral holes according to the present invention.

【図2】実施例3とほぼ同様にして成形、焼結した製品
の斜視図である。
FIG. 2 is a perspective view of a product molded and sintered in substantially the same manner as in Example 3.

【符号の説明】 1 押出し機 1a シリンダ 1b スクリュ 2 ダイ 2a ダイの凹凸部の谷部 2b ダイの凹凸部の山部 3 マンドレル 4 スパイダホルダ 5 回転金型 5a 回転金型の突起先端 5b 回転金型の突起付け根 10 焼結品 10a 螺旋状小孔 10b 外周面 10c 溝 10d 溝[Explanation of Codes] 1 Extruder 1a Cylinder 1b Screw 2 Die 2a Valley of uneven part of die 2b Mountain of uneven part of die 3 Mandrel 4 Spider holder 5 Rotating mold 5a Rotating mold protrusion 5b Rotating mold Root of protrusion 10 Sintered product 10a Spiral small hole 10b Outer peripheral surface 10c Groove 10d Groove

───────────────────────────────────────────────────── フロントページの続き (72)発明者 柏木 巌 島根県安来市安来町2107番地の2 日立金 属株式会社安来工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Iwao Kashiwagi 2107-2 Yasugi-cho, Yasugi-shi, Shimane Prefecture 2 Hitachi Metals Ltd. Yasugi factory

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 軸心の回りに螺旋状に連なる小孔を有す
る棒状の粉末焼結材であって、該棒状材の両端部を除く
少なくとも300mmの長さ内における前記小孔が定リード
の螺旋に沿うと仮定した時の該螺旋と該小孔の前記軸心
の回りの角度誤差が±3.6°以内であることを特徴とす
る螺旋状小孔を有する焼結材。
1. A rod-shaped powder-sintered material having small holes spirally connected to each other around an axis, wherein the small holes within a length of at least 300 mm excluding both ends of the rod-shaped material are constant leads. A sintered material having spiral small holes, wherein an angle error between the spiral and the small holes around the axial center is ± 3.6 ° when it is assumed to follow the spiral.
【請求項2】 角度誤差が±2.5°以内である請求項1
の螺旋状小孔を有する焼結材。
2. The angle error is within ± 2.5 °.
A sintered material having spiral small holes.
【請求項3】 可塑性混練体を、軸心の回りに螺旋状に
連なる小孔を有する棒状に押出し成形する方法におい
て、前記可塑性混練体を、開口内に前記小孔に対応する
ピンを有するダイを通して押出す第1の段階および前記
により押出された被成形材をその外周で拘束して該被成
形材の自転を規制する第2の段階を包含することを特徴
とする自転規制押出し成形方法。
3. A method of extruding a plastic kneading body into a rod shape having small holes spirally connected to each other around an axis, wherein the plastic kneading body has a die having a pin corresponding to the small hole in the opening. 2. A rotation-regulated extrusion molding method comprising: a first step of extruding through a first step; and a second step of constraining the molded material extruded by the above at the outer periphery thereof to restrict the rotation of the molded material.
【請求項4】 被成形材の外周での拘束は、該外周面に
先端を食い込ませて、前記軸心の回りで回転する複数の
突起によるものである請求項3の自転規制押出し成形方
法。
4. The rotation-regulated extrusion molding method according to claim 3, wherein the constraint on the outer periphery of the material to be molded is made by a plurality of projections that bite the outer peripheral surface of the tip and rotate around the axis.
【請求項5】 ダイは内周面に螺旋状に連なる凹凸を有
し、かつ突起は被成形材の進行に対し前記螺旋状のねじ
れと同方向、かつ同等もしくはほぼ同等のリ−ドとなる
ような回転速度を与えることを特徴とする請求項3また
は4の自転規制押出し成形方法。
5. The die has a concavo-convex pattern formed in a spiral shape on the inner peripheral surface thereof, and the projection has a lead in the same direction as the spiral twist with respect to the progress of the material to be molded, and in the same or almost the same lead. The rotation-regulated extrusion molding method according to claim 3 or 4, wherein such a rotation speed is applied.
【請求項6】 軸心の回りに螺旋状に連なる小孔を有す
る焼結用素材の押出し成形方法において、前記押出し
は、原料である可塑性混練体を、内周面に螺旋状に連な
る凹凸を有しかつ開口内に前記小孔に対応するピンを有
するダイを通して押出す第1の段階ならびに前記により
押出された被成形材をその外周で拘束して前記被成形材
の自転を規制する自転規制手段による第2の段階からな
り、前記第2の段階以降の前記被成形材の押出し長さを
測定する押出長さ測定装置、該第2の段階以降の被成形
材の回転角度を測定する回転角度測定装置および前記両
測定装置それぞれの測定値を入力され、これ等を予め設
定された値と比較して前記自転規制手段の回転角度を制
御する制御装置により、前記小孔の前記軸心に対する位
置誤差を縮少する方向に制御することを特徴とする螺旋
状小孔を有する焼結用素材の自転規制押出し成形方法。
6. The extrusion molding method of a sintering material having small holes spirally connected around an axis, wherein the extrusion is performed by forming a spiral kneaded concavo-convex pattern on the inner peripheral surface of a plastic kneading material as a raw material. A first step of extruding through a die having a pin corresponding to the small hole in the opening and a rotation regulation for restraining the rotation of the molding material by restraining the molding material extruded by the outer periphery thereof. An extrusion length measuring device for measuring an extrusion length of the material to be molded after the second step, and a rotation for measuring a rotation angle of the material to be molded after the second step. The measurement values of the angle measuring device and the both measuring devices are input, and the control device that controls the rotation angle of the rotation restricting means by comparing these values with a preset value, with respect to the axial center of the small hole. Direction to reduce position error A method for controlling the rotation of a raw material for sintering having spiral small holes, which is characterized in that:
JP8185793A 1993-04-08 1993-04-08 Sintering material having spiral small hole and its rotation-controlled extrusionmolding method Pending JPH06293902A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8185793A JPH06293902A (en) 1993-04-08 1993-04-08 Sintering material having spiral small hole and its rotation-controlled extrusionmolding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8185793A JPH06293902A (en) 1993-04-08 1993-04-08 Sintering material having spiral small hole and its rotation-controlled extrusionmolding method

Publications (1)

Publication Number Publication Date
JPH06293902A true JPH06293902A (en) 1994-10-21

Family

ID=13758163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8185793A Pending JPH06293902A (en) 1993-04-08 1993-04-08 Sintering material having spiral small hole and its rotation-controlled extrusionmolding method

Country Status (1)

Country Link
JP (1) JPH06293902A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998018587A3 (en) * 1996-10-25 2002-11-21 Konrad Friedrichs Continuous extrusion process and device for rods made of a plastic raw material and provided with a spiral inner channel
JP2005046995A (en) * 2003-07-28 2005-02-24 Sandvik Ab Manufacturing method for rotating tool for chip removal machining
JP2006082111A (en) * 2004-09-16 2006-03-30 Mitsubishi Materials Corp Method for extruding and press-forming shaft-shaped body with spiral hole, shaft-shaped base stock with spiral hole and small-diameter drill with spiral hole

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998018587A3 (en) * 1996-10-25 2002-11-21 Konrad Friedrichs Continuous extrusion process and device for rods made of a plastic raw material and provided with a spiral inner channel
JP2005046995A (en) * 2003-07-28 2005-02-24 Sandvik Ab Manufacturing method for rotating tool for chip removal machining
KR101235383B1 (en) * 2003-07-28 2013-02-20 산드빅 인터렉츄얼 프로퍼티 에이비 Method of making a rotary tool for chip removing machining
JP2006082111A (en) * 2004-09-16 2006-03-30 Mitsubishi Materials Corp Method for extruding and press-forming shaft-shaped body with spiral hole, shaft-shaped base stock with spiral hole and small-diameter drill with spiral hole
JP4715142B2 (en) * 2004-09-16 2011-07-06 三菱マテリアル株式会社 Extrusion press forming method of shaft body with spiral hole, shaft material with spiral hole, and small diameter drill with spiral hole

Similar Documents

Publication Publication Date Title
US8091459B2 (en) Method and apparatus for making a rotary tool for chip removing machining
US5438858A (en) Extrusion tool for producing a hard metal rod or a ceramic rod with twisted internal boreholes
US4813823A (en) Drilling tool formed of a core-and-casing assembly
US6248277B1 (en) Continuous extrusion process and device for rods made of a plastic raw material and provided with a spiral inner channel
KR100709029B1 (en) Method and device for producing a sintered metal blank with interior helical recesses
JPH06293902A (en) Sintering material having spiral small hole and its rotation-controlled extrusionmolding method
US9044797B2 (en) Device for producing a circularly cylindrical body
KR20210051210A (en) Hub bolt and manufacturing therof
JP2828108B2 (en) Method and apparatus for extruding sintering material having spiral holes
JP7280249B2 (en) Method and apparatus for manufacturing cylindrical objects constructed from plastic material
JP2002283195A (en) Method for manufacturing ball screw shaft
JPH06264105A (en) Torsional extrusion molding device and molding method for blank material to be sintered
JPH08225809A (en) Extrusion of plastic mixture
JPH11236603A (en) Extrusion molding method and its apparatus
JPH04280905A (en) Extruding apparatus for sintering member having spiral inside diameter and extruding method
JPH0663003B2 (en) Extrusion molding machine
JP3601066B2 (en) Gear honing method with internal gear type honing wheel on gear honing machine
JPH10175109A (en) Long bar having spiral holes and its extruder and its manufacturing method
SU960001A1 (en) Method of producing abrasive tool
JPH08206772A (en) Helical gear, its manufacture and manufacturing equipment
JPH11226810A (en) Twist drill, material for twist drill having oil hole, extrusion molding device for the material and method therefor
JPH09104905A (en) Extrusion molding device for blank for sintering and molding method
JPH0673764B2 (en) Manufacturing method of hard metal or ceramic drill intermediate product and extrusion press tool
JPWO2019057351A5 (en)
JPH11343507A (en) Production of composite body having spiral inside shape and extrusion molding device