JPH06293290A - Tanker and method for transporting liquid hydrogen - Google Patents

Tanker and method for transporting liquid hydrogen

Info

Publication number
JPH06293290A
JPH06293290A JP5106118A JP10611893A JPH06293290A JP H06293290 A JPH06293290 A JP H06293290A JP 5106118 A JP5106118 A JP 5106118A JP 10611893 A JP10611893 A JP 10611893A JP H06293290 A JPH06293290 A JP H06293290A
Authority
JP
Japan
Prior art keywords
liquid hydrogen
hydrogen
tank
tanker
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5106118A
Other languages
Japanese (ja)
Inventor
Takako Honjo
孝子 本庄
Hiroo Kodama
皓雄 児玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP5106118A priority Critical patent/JPH06293290A/en
Publication of JPH06293290A publication Critical patent/JPH06293290A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/45Hydrogen technologies in production processes

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

PURPOSE:To provide a tanker and method for transporting liquid hydrogen wherein a large amount of liquid hydrogen can be safely transported in a long distance. CONSTITUTION:In a tanker provided with a liquid hydrogen tank, a liquid hydrogen transport tanker, connecting the liquid hydrogen tank to a gaseous hydrogen tank of receiving a hydrogen storage alloy, is provided. A liquid hydrogen transport method, connecting the liquid hydrogen tank to the gaseous hydrogen tank of receiving the hydrogen storage alloy to transport liquid hydrogen by the liquid hydrogen transport tanker of loading the liquid hydrogen, is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、液体水素輸送用タンカ
ー及び液体水素の輸送方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid hydrogen transport tanker and a liquid hydrogen transport method.

【0002】[0002]

【従来技術とその課題】液体水素の長距離・大規模輸送
方法は、新エネルギー導入の直接的手段の一つとして期
待されている。
2. Description of the Related Art A long-distance and large-scale transportation method of liquid hydrogen is expected as one of the direct means for introducing new energy.

【0003】液体水素のタンカーによる輸送は、液体水
素のもつ特性、即ち極低温(−252.8℃)・低エネ
ルギー密度(2Mcal/リットル)・低比重(0.0
708)に起因して以下のような問題がある。 (1)まず、液体水素のボイルオフの問題がある。液体
水素は低沸点であるため、その蒸発速度はLNGタンカ
ーのボイルオフ水準(0.025%/日、改良型では
0.15%)の約10倍であり、輸送中に極めて多量の
水素ガスが発生する。これに関し、LNGタンカーにお
いては、ボイルオフガスを航行用燃料として使用してい
る。この方法によると1万km級の航海に積載LNGの
約2%のLNGを燃料として利用することができる。従
って、液体水素の保有エネルギーは容積当たりLNGの
約1/3であるから、理論的には積載量の約6%の液体
水素を消費できることになる。
Transporting liquid hydrogen by a tanker has the characteristics of liquid hydrogen: very low temperature (-252.8 ° C.), low energy density (2 Mcal / liter), low specific gravity (0.0
708) has the following problems. (1) First, there is a problem of boil-off of liquid hydrogen. Since liquid hydrogen has a low boiling point, its evaporation rate is about 10 times the boil-off level of LNG tankers (0.025% / day, 0.15% in the improved type), and an extremely large amount of hydrogen gas is transported during transportation. Occur. In this regard, boil-off gas is used as fuel for navigation in LNG tankers. According to this method, about 2% of the loaded LNG can be used as fuel for voyages of 10,000 km class. Therefore, since the stored energy of liquid hydrogen is about 1/3 of LNG per volume, theoretically about 6% of the loaded amount of liquid hydrogen can be consumed.

【0004】しかしながら、液体水素の場合、1万km
級の長距離航海におけるボイルオフガスの量は約15〜
20%にも達し、運行用燃料として消費するにしても極
めて過大な量であるため、残りはすべて放出・廃棄せざ
るを得ず、結果として液体水素を有効に利用することが
できない。しかも、水素ガスの放出・廃棄による大きな
危険性も伴う。
However, in the case of liquid hydrogen, 10,000 km
The amount of boil-off gas for long-distance voyages is about 15-
It reaches 20%, and even if it is consumed as fuel for operation, it is an extremely large amount, so the rest must be discharged and discarded, and as a result, liquid hydrogen cannot be effectively used. In addition, there is a great danger that hydrogen gas will be released and discarded.

【0005】他方、ボイルオフの抑制方法として真空多
層断熱法等がLNGタンカーに採用されているものの、
タンカーの容積が7〜8%も増加するという問題があ
り、液体水素には到底採用し難い。さらに、大量ボイル
オフガスの処理に風船又は蓄圧タンクを付設する提案も
されているが、液体水素の気化による容積増加率は約8
00倍になり、その10%のボイルオフガスの容積は液
体水素タンクの80倍(常圧風船の場合)、或いは8倍
(10気圧蓄圧タンクの場合)にも達し、タンカーへの
取り付けは実際不可能である。 (2)第二に、低エネルギー密度による問題がある。即
ち、液体水素は石油と同カロリーにおける容量が4倍以
上にも達し、しかも断熱壁の設置等も考慮すると通常の
石油タンカーの5〜6倍容のタンカーが必要となるた
め、大量輸送は極めて困難である。 (3)第三に、液体水素は低比重であるので、船体が浮
き上がる結果、船体の不安定化、操舵性悪化、低回転省
エネルギー型スクリューの使用不能等を招く。このた
め、大量のバラスト水(球型タンクの下部のみで積荷の
約5倍重量の水)の積載が必要となり、航行エネルギー
の浪費が強いられることになる。
On the other hand, although the vacuum multi-layer insulation method is adopted in the LNG tanker as a boil-off suppressing method,
There is a problem that the volume of the tanker increases by 7 to 8%, and it is extremely difficult to adopt it for liquid hydrogen. Furthermore, it has been proposed that a balloon or accumulator tank be attached to the treatment of a large amount of boil-off gas, but the volume increase rate due to vaporization of liquid hydrogen is about
The volume of boil-off gas was 10 times that of a liquid hydrogen tank, which was 80 times that of a liquid hydrogen tank (in the case of a normal-pressure balloon) or 8 times that of a liquid hydrogen tank (in the case of a 10-atmospheric pressure accumulator tank). It is possible. (2) Secondly, there is a problem due to low energy density. In other words, liquid hydrogen has a capacity of four times or more in the same calorie as oil, and considering the installation of heat insulation walls, etc., a tanker with a capacity of 5 to 6 times that of a normal oil tanker is required, so mass transportation is extremely difficult. Have difficulty. (3) Third, since liquid hydrogen has a low specific gravity, the hull floats, resulting in instability of the hull, deterioration of steering performance, and inability to use a low-rotation energy-saving screw. Therefore, it is necessary to load a large amount of ballast water (about five times the weight of the cargo in the lower part of the spherical tank), which results in waste of navigation energy.

【0006】以上のような問題のため、LNGタンカー
等のような他のエネルギー輸送手段を液体水素の大量輸
送に適用することは極めて困難であり、現時点では小型
内航用のパージ船が液体水素タンカーとして運航してい
るのみである。また、例えば、数万トン級の外洋液体水
素タンカーとして企画されているユーロケベック計画に
おいても、球型タンクを船体上に設ける一方で大量のバ
ラスト水を積載する方式を予定しており、タンカーの大
型化及び航行エネルギーの浪費を余儀なくされているの
が現状である。
Due to the above problems, it is extremely difficult to apply other energy transportation means such as an LNG tanker to mass transportation of liquid hydrogen, and at present, a small-sized inland purge ship uses liquid hydrogen. It only operates as a tanker. Also, for example, in the Euro-Quebec Project, which is planned as an open ocean liquid hydrogen tanker of tens of thousands of tons, we plan to install a large tank of ballast water while installing a spherical tank on the hull. At present, it is inevitable to increase the size and waste navigation energy.

【0007】[0007]

【発明が解決しようとする課題】本発明は、液体水素を
安全に大量輸送・遠距離輸送することができる液体水素
輸送用タンカーと液体水素の輸送方法を提供することを
主な目的とする。
SUMMARY OF THE INVENTION The main object of the present invention is to provide a tanker for transporting liquid hydrogen and a method for transporting liquid hydrogen capable of safely transporting a large amount of liquid hydrogen over a long distance.

【0008】[0008]

【課題を解決するための手段】本発明者は、上記問題点
に鑑みて、鋭意研究した結果、輸送用タンカーにおいて
水素吸蔵合金を活用した特定のシステムを採用する場合
には、ボイルオフ等の問題を実質的に解消でき、液体水
素を安全に大量輸送・遠距離輸送できることを見出し、
ついに本発明を完成するに至った。
The inventors of the present invention have made earnest studies in view of the above problems, and as a result, when adopting a specific system utilizing a hydrogen storage alloy in a transportation tanker, there is a problem such as boil-off. It was found that the liquid hydrogen can be virtually eliminated, and liquid hydrogen can be safely transported in large quantities and over long distances.
Finally, the present invention has been completed.

【0009】即ち、本発明は、下記の液体水素輸送用タ
ンカーと液体水素の輸送方法を提供するものである。 1.液体水素タンクを備えたタンカーにおいて、液体水
素タンクと水素吸蔵合金を収容する気体水素タンクとが
連絡されていることを特徴とする液体水素輸送用タンカ
ー。 2.液体水素タンクと水素吸蔵合金を収容する気体水素
タンクが連絡されていて、当該液体水素タンクに液体水
素が積載されている液体水素輸送用タンカーによって液
体水素を輸送することを特徴とする液体水素の輸送方
法。
That is, the present invention provides the following tanker for transporting liquid hydrogen and a method for transporting liquid hydrogen. 1. A tanker provided with a liquid hydrogen tank, wherein a liquid hydrogen tank and a gaseous hydrogen tank containing a hydrogen storage alloy are connected to each other. 2. A liquid hydrogen tank is connected to a gas hydrogen tank containing a hydrogen storage alloy, and liquid hydrogen is transported by a liquid hydrogen transport tanker in which liquid hydrogen is loaded in the liquid hydrogen tank. Transportation method.

【0010】以下、本発明について詳細に説明する。The present invention will be described in detail below.

【0011】本発明のタンカーとなるべき船体本体は、
通常のタンカーと同様のものを用いることができ、その
大きさ、型式等は液体水素の積載量等によって適宜定め
れば良い。
The hull body to be the tanker of the present invention is
A tanker similar to a normal tanker can be used, and its size, model, etc. may be appropriately determined according to the loading amount of liquid hydrogen and the like.

【0012】液体水素タンクは、上記船体上に例えば図
1に示されるように設置される。上記タンクの形式は、
従来のLNG用球型タンクに準じるものであってボイル
オフガスの送り出しまでの微圧(1〜3気圧程度)に耐
えるようなものであれば特に制限されない。タンクの形
状も船体の形状等に応じたものであれば良く、球型或い
はそれに近い形状のもの等、適宜設定することができ
る。液体水素タンク上部には、ボイルオフガスの出口と
なるべきガス抜き管が備えられている。液体水素タンク
は、上記ガス抜き管に接続されている連結管を通じて気
体水素タンクとが連絡されている。上記のガス抜き管及
び連結管は公知のものを用いることができる。
The liquid hydrogen tank is installed on the hull as shown in FIG. 1, for example. The type of the above tank is
There is no particular limitation as long as it complies with the conventional spherical tank for LNG and can withstand a slight pressure (about 1 to 3 atm) until the boil-off gas is sent out. The shape of the tank is not limited as long as it corresponds to the shape of the hull, and can be appropriately set to a spherical shape or a shape close to it. The upper part of the liquid hydrogen tank is provided with a degassing pipe serving as an outlet for boil-off gas. The liquid hydrogen tank is connected to the gaseous hydrogen tank through a connecting pipe connected to the gas vent pipe. Known degassing pipes and connecting pipes can be used.

【0013】気体水素タンクは、船体のバランスが保た
れる限りその設置場所は特に限定されず、例えば図1に
示すように液体水素タンクの外側空隙部に設置すること
ができる。上記気体水素タンクは、高圧ガス規制の対象
とならない10気圧未満の圧力に耐えるような構造であ
れば良く、その材質はステンレススチール等が好まし
い。また、気体水素タンクは1個又は2個以上設けても
良い。
The location of the gaseous hydrogen tank is not particularly limited as long as the balance of the hull is maintained. For example, the gaseous hydrogen tank can be placed in the outer space of the liquid hydrogen tank as shown in FIG. The gaseous hydrogen tank may have a structure capable of withstanding a pressure of less than 10 atm, which is not subject to high-pressure gas regulation, and its material is preferably stainless steel or the like. Further, one or two or more gas hydrogen tanks may be provided.

【0014】気体水素タンクに収容すべき水素吸蔵合金
としては、例えばLaNi5 6 系、TiFeH2 系、
Mg2 NiH4 系、MgH2 系等の従来より知られてい
るものを使用することができるが、常温で且つ特別な圧
力容器を必要としない程度の圧力(通常10気圧以下)
下で、水素の吸収・放出ができる合金が好ましい。この
ような条件を満たす合金としては、例えばLaNi5
6 系及びその同族水素吸蔵合金として知られているMm
Ni5 6 系、MmNi4.5 Mn0.5 2 等の合金が挙
げられる(Mm:ミッシュメタル(ランタンより安価な
混合希土類金属を示す))。殊に、LaNi5 6 系水
素吸蔵合金の水素吸収・放出は、水素吸蔵合金の中でも
定量的に迅速に進むので、図3のように温度及び圧力の
調整によって水素の荷役が容易に行なうことができる。
当該合金は、粉末・棚置き方式、銅マイクロカプセル方
式等の公知の水素吸蔵合金の収納方法のいずも採用でき
る。気体水素タンクの内部の雰囲気は、用いる水素吸蔵
合金の金属〜金属水素化物の平衡の条件に合せる必要が
あり、例えばLaNi5 6 系等の場合は通常30℃以
下、真空〜10気圧程度とすれば良い。なお、内部の温
度は、液体水素タンクの影響によって気温よりも大幅に
下がることがあるが、単に気体水素タンクの圧力がその
分減圧されるだけであり、液体水素の輸送上特に支障は
ない。
Examples of hydrogen storage alloys to be stored in the gaseous hydrogen tank include LaNi 5 H 6 series, TiFeH 2 series,
Conventionally known materials such as Mg 2 NiH 4 system and MgH 2 system can be used, but at a normal temperature and at a pressure that does not require a special pressure vessel (usually 10 atm or less)
Below, alloys capable of absorbing and releasing hydrogen are preferred. As an alloy satisfying such a condition, for example, LaNi 5 H
Mm known as 6 series and its homologous hydrogen storage alloys
Examples include alloys such as Ni 5 H 6 series and MmNi 4.5 Mn 0.5 H 2 (Mm: misch metal (shows a mixed rare earth metal cheaper than lanthanum)). In particular, the hydrogen absorption / desorption of the LaNi 5 H 6 type hydrogen storage alloy progresses quantitatively and rapidly among the hydrogen storage alloys. Therefore, as shown in FIG. 3, hydrogen can be easily handled by adjusting the temperature and pressure. You can
As the alloy, any of known storage methods for a hydrogen storage alloy such as a powder / shelf system and a copper microcapsule system can be adopted. The atmosphere inside the gaseous hydrogen tank needs to be adjusted to the equilibrium condition of the metal of the hydrogen storage alloy used to the metal hydride. For example, in the case of the LaNi 5 H 6 system, the temperature is usually 30 ° C. or less, and the vacuum is about 10 atm. Just do it. The internal temperature may drop significantly below the ambient temperature due to the influence of the liquid hydrogen tank, but the pressure in the gaseous hydrogen tank is simply reduced by that amount, and there is no particular hindrance in the transportation of liquid hydrogen.

【0015】水素吸蔵合金の積載量は、一般的にはボイ
ルオフガスの量、積載する水素吸蔵合金の種類等を勘案
して最適な量を定めるのが好ましい。例えば、積載する
水素吸蔵合金がランタン−ニッケル(LaNi5 )系で
ある場合は次のようにして積載量を求めることができ
る。即ち、標準的な1万km航海におけるボイルオフガ
スの量は平均で出発時の液体水素の約17%として、航
海用燃料として消費した残りが約10%であるとする
と、LaNi5 6 が水素容積密度で液体水素の約3割
増しであること及び迅速な水素吸収は理論値の80%程
度しか進まないことを考慮すれば上記10%の量のガス
を吸収するのに必要なLaNi5 は、出発時の液体水素
の約1/10容のLaNi5 を積載すれば十分であるこ
とになる。
The loading amount of the hydrogen storage alloy is generally preferably determined in consideration of the amount of boil-off gas and the type of the hydrogen storage alloy to be loaded. For example, when the hydrogen storage alloy to be loaded is a lanthanum-nickel (LaNi 5 ) system, the loading amount can be obtained as follows. That is, if the average amount of boil-off gas in a standard 10,000 km voyage is about 17% of the liquid hydrogen at the time of departure, and the remaining amount consumed as nautical fuel is about 10%, LaNi 5 H 6 is hydrogen. Considering that the volume density is about 30% more than that of liquid hydrogen and that rapid hydrogen absorption advances only about 80% of the theoretical value, LaNi 5 necessary to absorb the above amount of gas of 10% is It is sufficient to load about 1/10 volume of the starting liquid hydrogen with LaNi 5 .

【0016】一方、積載量が多ければボイルオフガスを
完全に吸収させることは可能であるが、積載量の増加に
伴い船体総重量も増加するので、船体総重量との関係に
おいても上記積載量を考慮する必要がある。つまり、図
2に示すように、液体水素と水素吸蔵合金とを合わせた
積載量(以下、「混載量」という)における比重が1と
なるようにすることが好ましい。この場合、タンカー自
体の比重は1より大きいので、船体総合比重は図2の破
線のようになる。即ち、混載量は理論比重値よりも僅か
に少ないほうが好ましい。また、図2から明らかなよう
に比重の大きい水素吸蔵合金ほど、少量で混載量の比重
を1にすることができる。なお、例えば液体水素タンク
が球型タンクである場合、気体水素タンクが設置される
球型タンク下部外側空隙は球型タンクの容積の等容量未
満しかないので、水素吸蔵合金の積載量の上限は混載量
の約50%未満になり、その構造によって積載量の上限
があることにも留意する必要がある。
On the other hand, if the load capacity is large, it is possible to completely absorb the boil-off gas, but since the total weight of the hull increases with an increase in the load capacity, the above-mentioned load amount is also related to the total weight of the hull. Need to consider. That is, as shown in FIG. 2, it is preferable that the specific gravity of the total loading amount of liquid hydrogen and the hydrogen storage alloy (hereinafter referred to as “mixed loading amount”) be 1. In this case, since the specific gravity of the tanker itself is larger than 1, the total specific gravity of the hull is as shown by the broken line in FIG. That is, the mixed loading amount is preferably slightly smaller than the theoretical specific gravity value. Further, as is clear from FIG. 2, a hydrogen storage alloy having a higher specific gravity can make the specific gravity of the mixed loading amount 1 even with a small amount. Note that, for example, when the liquid hydrogen tank is a spherical tank, the outer space below the spherical tank where the gaseous hydrogen tank is installed is less than the equal volume of the spherical tank, so the upper limit of the hydrogen storage alloy loading capacity is It should also be noted that it will be less than about 50% of the combined load, and there is an upper limit on the load depending on its structure.

【0017】以上のように、積載されている液体水素か
ら出たボイルオフガスは、液体水素を出て、ガス抜き管
及び連結管を経て気体水素タンクに入り、当該タンクの
中に収容されている水素吸蔵合金に直ちに吸収される。
As described above, the boil-off gas discharged from the loaded liquid hydrogen leaves the liquid hydrogen, enters the gas hydrogen tank through the degassing pipe and the connecting pipe, and is stored in the tank. Immediately absorbed by the hydrogen storage alloy.

【0018】本発明の輸送方法は、上述のような構造を
有するタンカーにおいて、液体水素タンクに液体水素を
積載し、気体水素タンクに水素吸蔵合金を収容した状態
で輸送すれば良い。
In the transport method of the present invention, in the tanker having the above-mentioned structure, liquid hydrogen may be loaded in the liquid hydrogen tank, and the hydrogen storage alloy may be transported in the gaseous hydrogen tank.

【0019】[0019]

【発明の効果】本発明によれば、以下のような顕著な効
果が得られ、これにより液体水素を安全に大量輸送・遠
距離輸送することが可能となる。 (1)航行中に発生する大量のボイルオフガスを実質的
にすべて水素吸蔵合金に吸収させることができるので、
放出・廃棄しなくても済み、優れた安全性を発揮するこ
とができると同時に、水素吸蔵合金に吸収された水素ガ
スを別途有効に利用することができる。 (2)さらに、ボイルオフガスは水素吸蔵合金により容
易に吸収されることにより、その蒸発による体積膨張を
回避することができる。従って、船体の大型化、新たな
装置の設置などが不要となる。 (3)また、水素吸蔵合金は比重が大であるため、それ
自体バラストの役割を果たし、安定性、操舵性、船体復
元性等の向上に寄与することができる。
EFFECTS OF THE INVENTION According to the present invention, the following remarkable effects can be obtained, whereby liquid hydrogen can be safely transported in large quantities and over long distances. (1) Since a large amount of boil-off gas generated during navigation can be absorbed substantially by the hydrogen storage alloy,
It does not have to be released and discarded, and it can exhibit excellent safety, and at the same time, the hydrogen gas absorbed in the hydrogen storage alloy can be effectively used separately. (2) Furthermore, since the boil-off gas is easily absorbed by the hydrogen storage alloy, volume expansion due to its evaporation can be avoided. Therefore, it is not necessary to increase the size of the hull and install a new device. (3) Further, since the hydrogen storage alloy has a large specific gravity, the hydrogen storage alloy itself plays a role of ballast and can contribute to the improvement of stability, steerability, hull restoration and the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の液体水素輸送用タンカーの断面を示す
一例である。
FIG. 1 is an example showing a cross section of a tanker for transporting liquid hydrogen of the present invention.

【図2】液体水素−水素吸蔵合金の混載組成と比重の関
係を示すグラフである。
FIG. 2 is a graph showing the relationship between mixed loading composition of liquid hydrogen-hydrogen storage alloy and specific gravity.

【図3】LaNi5 〜LaNi5 6 系の水素圧を示す
グラフである。
3 is a graph showing a hydrogen pressure of LaNi 5 ~LaNi 5 H 6 system.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】液体水素タンクを備えたタンカーにおい
て、液体水素タンクと水素吸蔵合金を収容する気体水素
タンクとが連絡されていることを特徴とする液体水素輸
送用タンカー。
1. A tanker provided with a liquid hydrogen tank, wherein the liquid hydrogen tank and a gas hydrogen tank containing a hydrogen storage alloy are connected to each other.
【請求項2】液体水素タンクと水素吸蔵合金を収容する
気体水素タンクが連絡されていて、当該液体水素タンク
に液体水素が積載されている液体水素輸送用タンカーに
よって液体水素を輸送することを特徴とする液体水素の
輸送方法。
2. A liquid hydrogen tank and a gaseous hydrogen tank containing a hydrogen storage alloy are connected to each other, and liquid hydrogen is transported by a liquid hydrogen transport tanker in which liquid hydrogen is loaded. Liquid hydrogen transportation method.
JP5106118A 1993-04-07 1993-04-07 Tanker and method for transporting liquid hydrogen Pending JPH06293290A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5106118A JPH06293290A (en) 1993-04-07 1993-04-07 Tanker and method for transporting liquid hydrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5106118A JPH06293290A (en) 1993-04-07 1993-04-07 Tanker and method for transporting liquid hydrogen

Publications (1)

Publication Number Publication Date
JPH06293290A true JPH06293290A (en) 1994-10-21

Family

ID=14425541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5106118A Pending JPH06293290A (en) 1993-04-07 1993-04-07 Tanker and method for transporting liquid hydrogen

Country Status (1)

Country Link
JP (1) JPH06293290A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5728483A (en) * 1996-03-26 1998-03-17 Sanyo Electric Co., Ltd. System for storing and utilizing hydrogen
JP2005220946A (en) * 2004-02-03 2005-08-18 Mitsubishi Heavy Ind Ltd Hydrogen transportation system
US12111013B2 (en) 2020-09-04 2024-10-08 Lattice International AS Tank feasible for cryogenic service

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6486503A (en) * 1987-08-21 1989-03-31 Mitsui Mining & Smelting Co Resin bond type magnet and manufacture thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6486503A (en) * 1987-08-21 1989-03-31 Mitsui Mining & Smelting Co Resin bond type magnet and manufacture thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5728483A (en) * 1996-03-26 1998-03-17 Sanyo Electric Co., Ltd. System for storing and utilizing hydrogen
JP2005220946A (en) * 2004-02-03 2005-08-18 Mitsubishi Heavy Ind Ltd Hydrogen transportation system
US12111013B2 (en) 2020-09-04 2024-10-08 Lattice International AS Tank feasible for cryogenic service

Similar Documents

Publication Publication Date Title
KR102077911B1 (en) Gas treatment system and gas carrier having the same
US7363965B2 (en) Onboard hydrogen storage unit with heat transfer system for use in a hydrogen powered vehicle
US7431756B2 (en) Modular metal hydride hydrogen storage system
JP4078522B2 (en) Hybrid hydrogen storage container and method for storing hydrogen in the container
MY116803A (en) Method for loading pressurized liquefied natural gas into containers
WO2003002451A1 (en) Method for storing hydrogen in a hybrid form
AU7280596A (en) Ship based system for compressed natural gas transport
JPS59216785A (en) Transportation system for lng
HRP20010389A2 (en) Process for unloading pressurized liquefied natural gas from containers
US3011321A (en) Apparatus for the maintenance of liquefied petroleum products
JPH06293290A (en) Tanker and method for transporting liquid hydrogen
US2966040A (en) Tank for the storage and transportation of a low boiling liquid
US3848559A (en) Centralized cargo handling system for cryogenic vessels
JPH05180397A (en) Hydrogen transport ship
US20050013770A1 (en) Method for storing hydrogen in an hybrid form
KR102406282B1 (en) Liquefied hydrogen storage tank venting system for liquefied hydrogen vessels
Brighton et al. The use of fuel cells to enhance the underwater performance of conventional diesel electric submarines
JP3246539B2 (en) Liquid hydrogen tanker
US20050005831A1 (en) Shipboard system for transportation of natural gas in zeolites
KR20090117336A (en) Liquified gas carrier having pressure container for storaging boil-off gas
JPH06234501A (en) Hydrogen feeding method
CN115402473A (en) Combined cargo hold and method for transporting liquid hydrogen and LNG by liquid cargo ship
KR20240017579A (en) Liquefied Hydrogen Storage Tank and Temperature Controlling Method Thereof
Bua et al. ZeroTug–The zero-emission tugboat
KR20240040146A (en) Exhaust gas treatment system and vessel including the same