JPH0629308B2 - Manufacturing method of paper filler - Google Patents

Manufacturing method of paper filler

Info

Publication number
JPH0629308B2
JPH0629308B2 JP10482387A JP10482387A JPH0629308B2 JP H0629308 B2 JPH0629308 B2 JP H0629308B2 JP 10482387 A JP10482387 A JP 10482387A JP 10482387 A JP10482387 A JP 10482387A JP H0629308 B2 JPH0629308 B2 JP H0629308B2
Authority
JP
Japan
Prior art keywords
urea
formaldehyde
filler
paper
initial condensate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10482387A
Other languages
Japanese (ja)
Other versions
JPS63270721A (en
Inventor
勉 高木
武嗣 鈴木
規芳 片方
史芳 唐沢
治夫 草刈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kasei Chemical Co Ltd
Original Assignee
Nippon Kasei Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kasei Chemical Co Ltd filed Critical Nippon Kasei Chemical Co Ltd
Priority to JP10482387A priority Critical patent/JPH0629308B2/en
Publication of JPS63270721A publication Critical patent/JPS63270721A/en
Publication of JPH0629308B2 publication Critical patent/JPH0629308B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • D21H17/46Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H17/47Condensation polymers of aldehydes or ketones
    • D21H17/49Condensation polymers of aldehydes or ketones with compounds containing hydrogen bound to nitrogen
    • D21H17/50Acyclic compounds
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/21Macromolecular organic compounds of natural origin; Derivatives thereof
    • D21H17/24Polysaccharides
    • D21H17/25Cellulose
    • D21H17/27Esters thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Disintegrating Or Milling (AREA)
  • Phenolic Resins Or Amino Resins (AREA)
  • Paper (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は紙用填料の製造法に関するものである。詳しく
は、原料パルプに配合して抄紙した場合に、紙の白色
度、不透明性、印刷後不透明性等の光学的特性を改善す
ることができ、しかも抄紙時の歩留り率の高い尿素ホル
ムアルデヒド架橋樹脂からなる紙用填料の製造法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for producing a filler for paper. Specifically, when blended with raw pulp to make paper, a urea-formaldehyde cross-linked resin that can improve optical properties such as whiteness, opacity, and opacity after printing, and has a high yield rate during paper making The present invention relates to a method for producing a paper filler comprising

(従来の技術及び問題点) 従来、製紙工業においては、紙の白色度、不透明度等の
光学的特性の改善のために、カオリン、タルク、ホワイ
トカーボン等の無機質の填料が広く使用されている。し
かしながら、これ等無機質の填料は紙の白色度、不透明
度等の改善効果が充分でなく、また紙に対する定着性が
少ないため紙粉を発生し易く、更に印刷機器に摩耗によ
る損傷を与え易い等の欠点がある。
(Prior Art and Problems) Conventionally, in the paper manufacturing industry, inorganic fillers such as kaolin, talc, and white carbon have been widely used to improve optical properties such as whiteness and opacity of paper. . However, these inorganic fillers do not sufficiently improve the whiteness and opacity of the paper, and because they have a low fixing property to the paper, they easily generate paper dust, and easily damage the printing equipment due to abrasion. There is a drawback of.

一方、無機質の填料に代るものとして、尿素ホルムアル
デヒド架橋樹脂を用いることも知られている。例えば、
特公昭51-23601号公報には、尿素ホルムアルデヒドのモ
ル比が1:1〜1:2でBET比表面積が5〜100m2/gの不
溶性、不融性かつ非多孔性の微細な尿素ホルムアルデヒ
ドポリマーを紙の填料として用いることが記載されてい
る。しかし、従来知られている尿素ホルムアルデヒド架
橋樹脂からなる填料は、紙の白色度、不透明度等の改善
効果は大きいものの、印刷後不透明度の改善効果が充分
でないという問題がある。
On the other hand, it is also known to use a urea-formaldehyde cross-linking resin as an alternative to the inorganic filler. For example,
JP-B-51-23601 discloses an insoluble, infusible and non-porous fine urea formaldehyde polymer having a urea formaldehyde molar ratio of 1: 1 to 1: 2 and a BET specific surface area of 5 to 100 m 2 / g. Is used as a filler for paper. However, the conventionally known filler composed of a urea-formaldehyde cross-linking resin has a large effect of improving whiteness and opacity of paper, but has a problem that the effect of improving opacity after printing is not sufficient.

一般に填料は、その添加量を増加すれば上記光学的特性
の改善度も増大するが、反面紙の強度が低下するのみで
なく、従来の填料では、紙の白色度、不透明度及び印刷
後不透明度の三者をバランスよく改善することが困難で
あった。
Generally, when the amount of the filler added is increased, the degree of improvement in the above optical properties is also increased, but on the other hand, not only the strength of the paper is decreased, but also with the conventional filler, the whiteness, opacity and post-printing non-printing property of the paper are reduced. It was difficult to improve the transparency in a balanced manner.

更に、紙用填料としての尿素ホルムアルデヒド架橋樹脂
は、紙中での分散が良好である点から、粒径が0.1〜1.0
μmの極めて微細な粒子(1次粒子)が凝集してなる平
均粒径1〜10μmの2次粒子からなるものが適当である
が、従来知られている通常の粉砕手段では、平均粒径が
この範囲でかつ粒径が1〜10μmの粒子の占める比率の
高い填料を、工業的規模において連続的かつ高収率で製
造することが困難であった。
Further, the urea-formaldehyde cross-linking resin as a filler for paper has a particle size of 0.1 to 1.0 from the viewpoint of good dispersion in paper.
It is suitable to use secondary particles having an average particle diameter of 1 to 10 μm formed by agglomeration of extremely fine particles (primary particles) having an average particle diameter of 1 to 10 μm. It has been difficult to manufacture a filler in this range and having a high ratio of particles having a particle size of 1 to 10 μm continuously and in high yield on an industrial scale.

これに加えて、従来の填料では抄紙時の歩留り率が低
く、特にツインワイヤー抄造機のような高速で高い剪断
力のかかる抄造装置では、均一に高度の充填を行なうこ
とが困難であった。
In addition, the conventional filler has a low yield rate at the time of papermaking, and particularly in a papermaking machine such as a twin-wire papermaking machine that applies a high shear force at a high speed, it is difficult to uniformly and highly perform the filling.

(問題点を解決するための手段) 本発明者等は従来知られている、尿素ホルムアルデヒド
架橋樹脂からなる紙用填料を改良して、紙製品の光学的
特性、特に印刷後の不透明度を改善することのできる填
料を工業的有利に製造する方法について鋭意検討の結
果、特定の手段を組合わせることにより、他の成分を配
合することなく、尿素とホルムアルデヒドのみから、紙
製品の光学的特性の改善効果が優れ、かつ抄紙時の歩留
り率が高い填料が得られることを知り、本発明を達成し
たものである。
(Means for Solving Problems) The inventors of the present invention have improved a conventionally known paper filler composed of a urea-formaldehyde cross-linking resin to improve optical properties of a paper product, particularly opacity after printing. As a result of diligent studies on a method for industrially producing a filler that can be used, by combining specific means, without mixing other components, urea and formaldehyde alone, the optical properties of paper products The inventors achieved the present invention by knowing that a filler having an excellent improvement effect and a high yield rate during papermaking can be obtained.

即ち、本発明の要旨は、尿素とホルムアルデヒドとを、
尿素に対するホルムアルデヒドのモル比を1:1.9〜
1:2.4として、中性ないし弱アルカリ性水性媒体中に
おいて反応させて得た初期縮合物、カルボキシメチルセ
ルロース又はその塩、該初期縮合物に対して5〜15重量
倍の水及び酸性触媒から主として成る混合物を、全体が
均一になるように攪拌したのち少なくとも5分間攪拌を
停止する過程を経て35〜65℃で反応させて固体の尿素ホ
ルムアルデヒド架橋樹脂を製造し、次いで得られた固体
の尿素ホルムアルデヒド架橋樹脂を含む水性スラリーを
超音波分散型粉砕機を用いて粉砕処理することを特徴と
する紙用填料の製造法に存する。
That is, the gist of the present invention is that urea and formaldehyde are
The molar ratio of formaldehyde to urea is 1: 1.9-
1: 2.4, a mixture mainly composed of an initial condensate obtained by reacting in a neutral to weakly alkaline aqueous medium, carboxymethylcellulose or a salt thereof, 5 to 15 times by weight of water and an acidic catalyst based on the initial condensate. Was stirred so that the whole became uniform, and then the stirring was stopped for at least 5 minutes to react at 35 to 65 ° C. to produce a solid urea-formaldehyde cross-linking resin, and then to obtain the obtained solid urea-formaldehyde cross-linking resin. A method for producing a filler for paper, which comprises pulverizing an aqueous slurry containing s by using an ultrasonic dispersion pulverizer.

次に、本発明を詳細に説明するが、以下の説明における
「%」は、特記しない限り「重量%」を示す。
Next, the present invention will be described in detail. In the following description, "%" means "% by weight" unless otherwise specified.

以下に詳細に述べる本発明の方法により製造された紙用
填料は、微細に粉砕された尿素ホルムアルデヒド架橋樹
脂粒からなり、かつそのアマニ油吸油量が700%以上の
ものである。本発明者等の検討によれば、従来知られて
いる尿素ホルムアルデヒド架橋樹脂粒からなる填料は、
いずれもアマニ油吸油量が小さい。アマニ油吸油量は印
刷インクの吸収性の一つの目安であり、これが大きいほ
ど印刷インクの吸収性が大きいと考えられる。従って、
同種の填料ならば、マニア油吸油量の大きいものを用い
て抄造した紙の方が、印刷インクが紙中に分散している
填料によく吸収されるので、印刷後不透明度等の光学的
特性が向上するものと考えられる。とくに好ましいのは
アマニ油吸油量が800%以上の尿素ホルムアルデヒド架
橋樹脂である。
The paper filler produced by the method of the present invention described in detail below is composed of finely pulverized urea formaldehyde crosslinked resin particles, and has a linseed oil absorption of 700% or more. According to the study by the present inventors, a filler comprising conventionally known urea-formaldehyde crosslinked resin particles is
Both have a small amount of linseed oil absorption. The amount of linseed oil absorption is one measure of the absorbability of the printing ink, and it is considered that the larger the linseed oil absorption, the greater the absorbability of the printing ink. Therefore,
If the same kind of filler is used, paper made from paper with a large mania oil absorption will be better absorbed by the filler in which the printing ink is dispersed in the paper, so optical properties such as opacity after printing Is expected to improve. Particularly preferred is a urea-formaldehyde crosslinked resin having a linseed oil absorption of 800% or more.

本発明の方法により製造された紙用填料はまた、尿素ホ
ルムアルデヒド架橋樹脂が微細に粉砕されたものであ
る。通常は平均粒子径が10μm以下になるように粉砕さ
れる。好ましくは平均粒径で2〜9μm、特に好ましく
は3〜6μmに粉砕されている。
The paper filler produced by the method of the present invention is also a finely pulverized urea formaldehyde crosslinked resin. Usually, it is pulverized so that the average particle diameter is 10 μm or less. It is preferably pulverized to have an average particle size of 2 to 9 μm, particularly preferably 3 to 6 μm.

一般的に微細に粉砕する方が填料としての性能は向上す
るが、一方において粉砕費用が嵩む。本発明の方法によ
って得られた尿素ホルムアルデヒド架橋樹脂からなる填
料は、粒径が1μm以下の一次粒子から実質的になる集
合体、つまり二次粒子である。即ち本発明方法で得られ
る填料は、填料粒子を相互に重ならないように分散させ
て走査型電子顕微鏡で観察したときに、1μmより大き
い一次粒子の占める面積が、最大でも二次粒子の投影面
積の5%、通常は2%以下であるのが好ましい。特に好まし
いのは1μmより大きい一次粒子を含まない二次粒子か
らなる填料である。
Generally, finer pulverization improves the performance as a filler, but on the other hand, pulverization cost increases. The filler composed of the urea-formaldehyde cross-linked resin obtained by the method of the present invention is an aggregate substantially composed of primary particles having a particle size of 1 μm or less, that is, secondary particles. That is, the filler obtained by the method of the present invention is such that when the filler particles are dispersed so as not to overlap each other and observed by a scanning electron microscope, the area occupied by primary particles larger than 1 μm is the maximum projected area of the secondary particles. It is preferably 5%, usually 2% or less. Particularly preferred is a filler consisting of secondary particles which do not contain primary particles larger than 1 μm.

これに加えて、本発明の填料は、後述するように濾過特
性が優れ、これがため抄紙時の歩留り率が高い性質を有
している。
In addition to this, the filler of the present invention has excellent filtration characteristics as described later, and therefore has a high yield rate during papermaking.

これ等の性質を有する紙用填料は、本発明の方法に従っ
て、以下に述べる方法によって製造される。
The paper filler having these properties is produced by the method described below according to the method of the present invention.

まず特定の方法で得られた尿素とホルムアルデヒドとの
初期縮合物を使用する。
First, an initial condensate of urea and formaldehyde obtained by a specific method is used.

即ち、モル比で1:1.9〜1:2.4の範囲にある尿素とホ
ルムアルデヒドとの混合物を、カルボキシメチルセルロ
ース(CMCと略記する)またはその塩例えばナトリウ
ム塩のようなアルカリ金属塩を含む水性媒質中で、中性
〜弱アルカリ性において、50〜90℃程度の温度で約0.5
〜2時間反応させることによって初期縮合物を製造す
る。
That is, a mixture of urea and formaldehyde in a molar ratio of 1: 1.9 to 1: 2.4 is added in an aqueous medium containing carboxymethyl cellulose (abbreviated as CMC) or a salt thereof, for example, an alkali metal salt such as sodium salt. , Neutral to weakly alkaline, about 0.5 at a temperature of about 50 to 90 ℃
The precondensate is produced by reacting for ~ 2 hours.

この際使用される尿素及びホルムアルデヒドは、通常の
工業用のものでよい。ホルムアルデヒドとしては通常30
〜55%濃度の水溶液を使用するが、パラホルムアルデヒ
ドのようなホルムアルデヒドの重合体の水溶液を用いる
こともできる。
The urea and formaldehyde used in this case may be those for ordinary industry. Usually 30 as formaldehyde
An aqueous solution of ˜55% strength is used, but it is also possible to use an aqueous solution of a polymer of formaldehyde such as paraformaldehyde.

尿素対ホルムアルデヒドのモル比は、1:1.9〜1:2.4
の範囲であることが必要であり、特に1:2.0〜1:2.2
の範囲が好ましい。尿素に対するホルムアルデヒドのモ
ル比が1.9よりも小さいときは、引続いての本発明の処
理によって得られる填料のアマニ油吸油量が700%に達
せず、また2.4よりも大きいときは、引続いての本発明
の処理によって得られる填料の収率が低下し、かつアマ
ニ油吸油量も700%に達しない。その結果、これ等を填
料に使用して抄紙した場合、所期の印刷後不透明度の改
善効果を得ることができない。
The molar ratio of urea to formaldehyde is 1: 1.9 to 1: 2.4.
It is necessary to be in the range of, especially 1: 2.0 to 1: 2.2
Is preferred. When the molar ratio of formaldehyde to urea is less than 1.9, the linseed oil absorption of the filler obtained by the subsequent treatment of the invention does not reach 700%, and when it is greater than 2.4, the The filler yield obtained by the treatment of the present invention is reduced, and the linseed oil absorption does not reach 700%. As a result, when these are used as a filler for papermaking, the desired effect of improving opacity after printing cannot be obtained.

CMC又はその塩は、通常尿素及びホルムアルデヒドの
合計量に対し約0.1〜10%程度の量が使用される。CM
C又はその塩は、この初期縮合物を酸性触媒の存在下で
重縮合させて架橋反応を生起させるに際し、生成する架
橋樹脂の一次粒子の粒径を規制して、大きな一次粒子が
生成しないようにする作用を奏する。従ってCMC又は
その塩は、上記のように初期縮合物の製造の際に添加す
る代りに、上記反応により生成した初期縮合物に後から
添加してもよい。
CMC or a salt thereof is usually used in an amount of about 0.1 to 10% with respect to the total amount of urea and formaldehyde. CM
C or its salt regulates the particle size of the primary particles of the crosslinked resin to be generated when polycondensing this initial condensate in the presence of an acidic catalyst to cause a crosslinking reaction so that large primary particles are not generated. Play an action. Therefore, CMC or a salt thereof may be added later to the initial condensate produced by the above reaction, instead of being added during the production of the initial condensate as described above.

初期縮合物の製造時の液性は、例えば苛性アルカリ又は
炭酸アルカリの添加によって中性乃至弱アルカリ性例え
ばpH7〜8程度に保持される。
The liquidity at the time of production of the initial condensate is maintained at neutral to weakly alkaline, for example, about pH 7 to 8 by adding caustic alkali or alkali carbonate.

以上の方法により得られた初期縮合物を含む水溶液は、
次いで水の量を所定の範囲に調整し、要すればCMC又
はその塩を添加した後、酸性触媒を加えて所定の範囲の
温度で重縮合させることにより、尿素ホルムアルデヒド
架橋樹脂が固体として得られる。
The aqueous solution containing the initial condensate obtained by the above method,
Then, the amount of water is adjusted to a predetermined range, and if necessary, CMC or a salt thereof is added, and then an acidic catalyst is added and polycondensation is performed at a temperature within a predetermined range to obtain a urea-formaldehyde crosslinked resin as a solid. .

酸性触媒としては、例えば硫酸、塩酸等の鉱酸、ギ酸、
酢酸、パラトルエンスルホン酸、スルファミン酸等の有
機酸が挙げられる。
Examples of the acidic catalyst include mineral acids such as sulfuric acid and hydrochloric acid, formic acid,
Organic acids such as acetic acid, paratoluenesulfonic acid, and sulfamic acid can be mentioned.

初期縮合物の重縮合反応に使用される水の量は、初期縮
合物に対し、5〜15倍量であることが必要である。な
お、初期縮合物の量は、系外に逸出したものを除き、反
応に用いた尿素とホルムアルデヒドとの合計量に等しい
ものとする。水の量が5倍量よりも少いときは、重縮合
により生成する固化物が硬くなり、引続いての本発明の
処理によって得られる填料のアマニ油吸油量が700%に
達しない。また、水の量が15倍量よりも多いときは、重
縮合により生成する固化物が軟らか過ぎて、引続いての
本発明の処理によって得られる填料のアマニ油吸油量が
同様に700%に達しない。
The amount of water used for the polycondensation reaction of the initial condensate needs to be 5 to 15 times the amount of the initial condensate. The amount of the initial condensate is equal to the total amount of urea and formaldehyde used in the reaction, excluding those that have escaped to the outside of the system. When the amount of water is less than 5 times, the solidified product produced by polycondensation becomes hard and the linseed oil absorption of the filler obtained by the subsequent treatment of the present invention does not reach 700%. Further, when the amount of water is more than 15 times, the solidified product generated by polycondensation is too soft, and the linseed oil absorption of the filler obtained by the subsequent treatment of the present invention is similarly 700%. Not reach

その結果、何れの場合も、これ等を填料として抄紙した
場合に、所期の印刷後不透明度の改善効果を得ることが
できない。
As a result, in any case, when the paper is made using these as a filler, the desired effect of improving the opacity after printing cannot be obtained.

また、初期縮合物の重縮合反応の温度は35〜65℃、好ま
しくは40〜60℃であることが必要であり、35℃よりも低
い温度では、引続いての本発明の処理によって得られる
填料のアマニ油吸油量が700%に達しない。また、65℃
よりも高い温度では、引続いての処理によって得られる
填料の収率が低下し、かつアマニ油吸油量も700%に達
しない。
The temperature of the polycondensation reaction of the initial condensate must be 35 to 65 ° C., preferably 40 to 60 ° C., and the temperature lower than 35 ° C. can be obtained by the subsequent treatment of the present invention. The linseed oil absorption of the filler does not reach 700%. Also, 65 ℃
At higher temperatures, the yield of filler obtained by subsequent treatment is reduced and the linseed oil absorption does not reach 700%.

重縮合反応は、初期縮合物、CMC又はその塩及び初期
縮合物に対して5〜15倍量の水からなる水溶液に酸性触
媒を加え、全体が均一になるように攪拌し、35〜65℃に
保持することにより行なう。この際、攪拌はできるだけ
短時間で行ない、かつ攪拌を停止したのち少なくとも5
分間は攪拌を行なわないことが必要である。即ち酸性触
媒を加えて攪拌すると初期縮合物はゲル状に固化する
が、攪拌はゲル状に固化する前に停止して、重縮合反応
をゲル状固体の各部分において少なくとも5分間相互に
独立に進行させる。
In the polycondensation reaction, an acidic catalyst is added to an aqueous solution containing 5 to 15 times the amount of water relative to the initial condensate, CMC or a salt thereof and the initial condensate, and the mixture is stirred so that the whole becomes uniform, and the temperature is 35 to 65 ° C. Hold it at. At this time, stirring should be carried out in the shortest possible time, and after stopping stirring, at least 5
It is necessary not to stir for a minute. That is, when an acidic catalyst is added and stirred, the initial condensate solidifies into a gel, but the stirring is stopped before solidifying into a gel, and the polycondensation reaction is independently performed in each part of the gel solid for at least 5 minutes. Make progress.

これにより各部分における重縮合反応が、その部分に存
在する反応剤だけで進行し、1μmよりも小さい一次粒
子が結合した架橋樹脂が生成する。5分間経過後は攪拌
を行なってもよいが、通常は攪拌せずにそのまま反応を
完結させる。架橋樹脂がこのような一次粒子の集合体か
らなる構造を有する理由は不明であるが、初期縮合物の
水溶液から重縮合反応の進行と共に生成した重縮合物が
沈澱して一次粒子を形成し、これが更に生長する過程で
集合して二次粒子を生成するものと考えられる。そし
て、このような一次粒子−二次粒子の骨格構造は比較的
速やかにできあがるので、5分間経過後は攪拌を再開し
ても生成した架橋樹脂の構造に影響しないものと考えら
れる。
As a result, the polycondensation reaction in each part proceeds only with the reaction agent present in that part, and a crosslinked resin in which primary particles smaller than 1 μm are bonded is produced. After the lapse of 5 minutes, stirring may be carried out, but usually the reaction is completed as it is without stirring. The reason why the crosslinked resin has a structure consisting of such an aggregate of primary particles is unknown, but the polycondensate formed with the progress of the polycondensation reaction from the aqueous solution of the initial condensation product precipitates to form primary particles, It is considered that these are aggregated in the process of further growth to generate secondary particles. Since the skeletal structure of such primary particles-secondary particles is formed relatively quickly, it is considered that the structure of the crosslinked resin produced does not be affected even if stirring is restarted after 5 minutes.

本発明においては、以上のようにして得られた尿素ホル
ムアルデヒド架橋樹脂の固化物は、予め粗砕し、水を加
えてスラリー濃度が3〜10%好ましくは4〜8%程度(平
均粒子径50〜100μm程度)とした後、超音波分散型粉
砕機を用いて粉砕処理することが必要である。
In the present invention, the solidified product of the urea-formaldehyde cross-linked resin obtained as described above is roughly crushed in advance and water is added to the slurry to have a slurry concentration of 3 to 10%, preferably about 4 to 8% (average particle size 50 ˜100 μm), and then pulverization treatment using an ultrasonic dispersion pulverizer is required.

超音波分散型粉砕機は、分類上サイレン式の変換器に属
し、機械的エネルギーを超音波に変換するものであり、
分散機構として、例えば第1図に示すように、クシ歯型
同心リングとローター、ステーターからなるゼネレータ
ーを2段以上有する分散型粉砕機である。
The ultrasonic dispersion type crusher belongs to a siren type converter in classification and converts mechanical energy into ultrasonic waves.
As a dispersing mechanism, for example, as shown in FIG. 1, a dispersing type crusher having two or more stages of comb-shaped concentric rings, a generator including a rotor and a stator.

そして上記の機構により、この超音波分散型粉砕機を上
記のスラリーの粉砕処理に適用すると、ローターとステ
ーターとの運動による機械的作用により、剪断力と超音
波が生じ、かつ超音波はキャビテーションを発生させ
る。この剪断力とキャビテーションの相乗効果により粉
砕がなされ、平均粒径が10μm以下、とくに紙用填料と
して好適な平均粒径2〜9μm程度の尿素ホルムアルデ
ヒド架橋樹脂粒子を得ることができる。
When the ultrasonic dispersion type pulverizer is applied to the pulverization process of the slurry by the mechanism described above, shearing force and ultrasonic waves are generated by the mechanical action of the motion of the rotor and the stator, and the ultrasonic waves cause cavitation. generate. Pulverization is performed by the synergistic effect of the shearing force and cavitation, and urea formaldehyde crosslinked resin particles having an average particle diameter of 10 μm or less, particularly about 2 to 9 μm, which is suitable as a filler for paper, can be obtained.

しかも超音波分散型粉砕機は、ポンプ作用をも有するの
で連続操業が可能であり、工業的に有利に紙用填料とし
ての微粒子状尿素ホルムアルデヒド架橋樹脂を製造する
ことができる。
Moreover, since the ultrasonic dispersion type pulverizer also has a pumping action, it can be continuously operated, and it is industrially advantageous to produce the particulate urea-formaldehyde crosslinked resin as a filler for paper.

超音波分散型粉砕機で粉砕して得られる本発明方法によ
る微粒子状尿素ホルムアルデヒド架橋樹脂の特徴の一つ
は、優れた濾過特性を有することである。
One of the features of the particulate urea-formaldehyde crosslinked resin obtained by pulverizing with an ultrasonic dispersion pulverizer according to the method of the present invention is that it has excellent filtration characteristics.

濾過特性としては、濾過速度及び超微粒子の目もれ率が
重要であるが、本発明方法によって得られた尿素ホルム
アルデヒド架橋樹脂粒子は、大きい濾過速度を有し、か
つ超微粒子の目もれ率が小さく、これがため抄紙時の歩
留り率が高く、これに伴って、比較的少量の使用で紙製
品の光学的特性を改善することができるのである。
As the filtration characteristics, the filtration rate and the coverage of ultrafine particles are important, but the urea-formaldehyde crosslinked resin particles obtained by the method of the present invention have a high filtration rate and the coverage of ultrafine particles. Is small, which results in a high yield rate at the time of paper making, and accordingly, the optical characteristics of the paper product can be improved by using a relatively small amount.

(実施例) 以下、本発明を実施例について更に詳細に説明するが、
本発明はその要旨を超えない限り以下の実施例に限定さ
れるものではない。なお、実施例及び参考例の記載中
「%」及び「部」とあるは紙の評価を除き「重量%」及
び「重量部」を示す。
(Examples) Hereinafter, the present invention will be described in more detail with reference to Examples.
The present invention is not limited to the following examples unless it exceeds the gist. In the description of Examples and Reference Examples, "%" and "parts" means "% by weight" and "parts by weight" excluding evaluation of paper.

また本発明において、アマニ油吸油量、架橋樹脂の粒
径、架橋樹脂の収率、填料歩留り、濾過速度及び超微粒
子の目もれ率は、下記の方法により測定した。
Further, in the present invention, the amount of linseed oil absorption, the particle size of the crosslinked resin, the yield of the crosslinked resin, the filler yield, the filtration rate, and the eye retention of the ultrafine particles were measured by the following methods.

アマニ油吸油量: JISのK5101(1978)の方法に準じて測定する。即ち、
乾燥試料約1gをガラス板上に載せ、煮アマニ油をビュ
レットから少量づつ試料の中央に滴加し、ガラス板上で
ヘラを用いて練り合わせる。試料が煮アマニ油の1滴で
流動する状態となったときまでの煮アマニ油の滴加量を
読みとり、次式により吸油量(%)を算出する。全操作
は常温(約25℃)で行なう。
Linseed oil absorption: Measured according to the method of JIS K5101 (1978). That is,
Approximately 1 g of the dried sample is placed on a glass plate, boiled linseed oil is added drop by drop to the center of the sample from a buret, and the mixture is kneaded with a spatula on the glass plate. The amount of boiled linseed oil added until the sample becomes fluid with one drop of boiled linseed oil is read, and the oil absorption (%) is calculated by the following formula. Perform all operations at room temperature (about 25 ° C).

G=H/S×100 [G:吸油量(%)、H:アマニ油の滴加量(ml)、 S:試料の質量(g)] なお、試料の調製は、試料を湿潤状態とし、これを10倍
容量のメタノール中に投入して常温で30分間攪拌する。
次いで、吸引濾過を行ない、濾滓を40℃、750mmHgで8
時間乾燥することにより行なう。
G = H / S × 100 [G: oil absorption amount (%), H: linseed oil addition amount (ml), S: sample mass (g)] In addition, the sample is prepared by making it wet. This is poured into 10 times volume of methanol and stirred at room temperature for 30 minutes.
Then, suction filtration is performed, and the filter cake is dried at 40 ° C and 750 mmHg for 8 hours.
This is done by drying for an hour.

架橋樹脂の粒径: ストークスの法則を利用した光透過法により測定する。
即ち、架橋樹脂粒を蒸留水に分散させ、粒子の沈降によ
る濁度の変化を光の透過率の変化として測定し、この測
定値より重量累積分布曲線(片対数)を求め、その50%
径をもって平均粒子径とする。重量累積分布曲線の算出
に際しては、試料の真比重:1.45、蒸留水(20℃)の比
重:0.998、粘度:1.005の各数値を用いる。
Particle diameter of crosslinked resin: Measured by a light transmission method using Stokes' law.
That is, the crosslinked resin particles are dispersed in distilled water, and the change in the turbidity due to the sedimentation of the particles is measured as the change in the light transmittance, and the weight cumulative distribution curve (one logarithm) is calculated from this measured value, and 50% of that is obtained.
The diameter is defined as the average particle diameter. In calculating the weight cumulative distribution curve, the respective values of the true specific gravity of the sample: 1.45, the specific gravity of distilled water (20 ° C): 0.998, and the viscosity: 1.005 are used.

以下の実施例では測定装置として、(株)セイシン企業
のミクロン・フォート・サイザー(SKC-2000S)を用い
て、最大粒径を50μmとして測定を行なった。ビーカー
に蒸留水50ml及び試料100mgを入れ、超音波分散器(出
力20W、周波数40KHz)にかけて5分間分散処理を行な
う。これを測定セルに入れたときに、吸光度[-log(I0/
I)]が1.3〜1.4になるように蒸留水で希釈して測定試料
とした。
In the following examples, as a measuring device, Micron Fort Sizer (SKC-2000S) manufactured by Seishin Co., Ltd. was used, and the maximum particle size was 50 μm. 50 ml of distilled water and 100 mg of sample are put into a beaker and subjected to an ultrasonic disperser (output 20 W, frequency 40 KHz) for 5 minutes for dispersion treatment. When this was placed in the measuring cell, the absorbance [-log (I 0 /
I)] was diluted to 1.3 to 1.4 with distilled water to prepare a measurement sample.

架橋樹脂の収率: 粉砕−中和−濾過−水洗の各工程を経た湿潤ケーキの重
量をK、この湿潤ケーキを120℃で2時間乾燥したとき
の収率をA%、架橋樹脂の製造に用いたホルムアルデヒ
ドと尿素の合計量をBとして次式により算出する。
Yield of crosslinked resin: The weight of the wet cake that has undergone the steps of pulverization-neutralization-filtration-washing with water is K, and the yield when the wet cake is dried at 120 ° C for 2 hours is A%. The total amount of formaldehyde and urea used is B, and is calculated by the following formula.

架橋樹脂の収率(%)=K×A/B 填料歩留り: 紙及び抄紙用スラリー中の窒素の含有量(重量)をケル
ダール法により測定し、次式により算出する。
Yield (%) of crosslinked resin = K × A / B Filler yield: The nitrogen content (weight) in the paper and papermaking slurry is measured by the Kjeldahl method and calculated by the following formula.

填料歩留り=紙中の窒素/スラリー中の窒素×100 濾過速度: 粉砕処理後のスラリーを固形分濃度が5%になるように調
整する。濾過装置(濾過面積:9.62cm2、濾布:400メッ
シュのステンレス平織金網)に上記スラリー200gを入
れ、アスピレーターで水柱差圧80mmを維持しつつ定圧濾
過を行ない、濾液量が100mlに達するに要する時間をも
って濾過速度とする。
Filler yield = nitrogen in paper / nitrogen in slurry × 100 Filtration speed: The slurry after pulverization is adjusted so that the solid content concentration is 5%. 200 g of the above slurry is put into a filter device (filtering area: 9.62 cm 2 , filter cloth: 400 mesh stainless plain woven wire mesh), constant pressure filtration is performed with an aspirator while maintaining a water column differential pressure of 80 mm, and it is necessary for the amount of filtrate to reach 100 ml. Let the filtration rate be time.

目もれ率: 上記の濾過速度の測定で濾液量が100mlに達した時点で
濾液から試料を採取し、光透過法によりその光透過率を
測定する。一方、平均粒径4.7μmの尿素ホルムアルデ
ヒド架橋樹脂を用いて濃度と光透過率との関係曲線を作
成し、この関係曲線に上記で得られた光透過率をあては
めて試料の固体濃度を算出する。
Eye leak rate: A sample is taken from the filtrate when the amount of the filtrate reaches 100 ml in the above measurement of the filtration rate, and the light transmittance is measured by the light transmission method. On the other hand, a relationship curve between the concentration and the light transmittance is prepared using a urea-formaldehyde cross-linked resin having an average particle size of 4.7 μm, and the light transmittance obtained above is applied to this relationship curve to calculate the solid concentration of the sample. .

目もれ率(%)=濾液100ml中の固体量(g)/10×100 透過率測定装置としては、(株)日立製作所の製品であ
るSPECTROPHOTOMETER 101型を用い、波長450μmで測定
した。
Eye leak rate (%) = solid amount (g) / 10 × 100 in 100 ml of filtrate As a transmittance measuring device, SPECTROPHOTOMETER 101 type, a product of Hitachi, Ltd., was used and the wavelength was measured at 450 μm.

実施例1 37%濃度のホルムアルデヒド水溶液41.0部(0.5モル)
と水43.1部とを混合し、攪拌しつつこれに0.7部のCM
Cナトリウム塩[CMCダイセル1193]を分散させ、更
に苛性ソーダを加えてpH7.4(BTB試験紙)に調整し、次い
で尿素15.2部(0.25モル)を添加して昇温し、70℃で1.
5時間反応させて初期縮合物の水溶液を得た。得られた
初期縮合物水溶液のBTB試験紙によるpHは7.2であった。
Example 1 41.0 parts (0.5 mol) of 37% strength formaldehyde aqueous solution
And 43.1 parts of water are mixed, and 0.7 part of CM is added to this while stirring.
C sodium salt [CMC Daicel 1193] was dispersed, and caustic soda was further added to adjust the pH to 7.4 (BTB test paper). Then, 15.2 parts (0.25 mol) of urea was added to raise the temperature, and the temperature was increased to 70 ° C at 1.
The reaction was carried out for 5 hours to obtain an aqueous solution of the initial condensate. The pH of the obtained aqueous solution of the initial condensate as measured by BTB test paper was 7.2.

上記で得た初期縮合物の水溶液100部を40℃に昇温し、
同温度の3.6%硫酸104部を速やかに添加混合すると30秒
後に白濁し45秒後に固化した。固化反応の際共存した水
の量は、初期縮合物の5.6倍量であった。
100 parts of the aqueous solution of the initial condensate obtained above was heated to 40 ° C.,
When 104 parts of 3.6% sulfuric acid at the same temperature was rapidly added and mixed, it became cloudy after 30 seconds and solidified after 45 seconds. The amount of water coexisted during the solidification reaction was 5.6 times the amount of the initial condensate.

硫酸混合後、40℃で30分間静置したのち、固化物を採取
して粗砕し、404部の水を加えて攪拌してスラリー化し
た後、苛性ソーダ水溶液で中和してスラリー濃度約5.0
%のスラリーを得た。
After mixing with sulfuric acid, the mixture was allowed to stand at 40 ° C for 30 minutes, then the solidified product was collected and crushed, and 404 parts of water was added to stir to make a slurry, which was then neutralized with a caustic soda aqueous solution to obtain a slurry concentration of about 5.0.
% Slurry was obtained.

上記のスラリーを、サイレン式ゼネレーターを3段内臓
する超音波分散型粉砕機[(株)荏原製作所製「エバラ
マイルダー」]を通過させることにより微粉砕処理し
た。
The above slurry was finely pulverized by passing it through an ultrasonic dispersion type pulverizer (“Ebara Milder” manufactured by Ebara Corporation) having a three-stage siren generator.

このスラリーをガラスフィルターで吸引濾過し、得られ
たケーキを再度250部の水に投入して攪拌し、次いで濾
過して採取したケーキを120℃のオーブン中で2時間乾
燥したものの平均粒径は6.0μmであった。また、この
ものの一次粒子の粒径は、走査型電子顕微鏡で観察した
ところ0.1〜0.3μmであった。
The slurry was suction-filtered with a glass filter, the obtained cake was again put into 250 parts of water and stirred, and then the cake collected by filtration was dried in an oven at 120 ° C. for 2 hours. It was 6.0 μm. The particle size of the primary particles of this product was 0.1 to 0.3 μm when observed with a scanning electron microscope.

また、上記で得た乾燥前のケーキをメタノールと混合
し、30分間攪拌した後、ガラスフィルターで吸引濾過
し、残渣を40℃で8時間減圧下乾燥して得られたものの
アマニ油吸油量は1100%であった。
The cake obtained before drying was mixed with methanol, stirred for 30 minutes, suction-filtered with a glass filter, and the residue was dried under reduced pressure at 40 ° C for 8 hours. It was 1100%.

更に、前記の微粉砕処理したスラリーの濃度を5%に調整
して、濾過速度及び目もれ率を測定した。その結果を夫
々表1に示した。
Further, the concentration of the finely pulverized slurry was adjusted to 5%, and the filtration rate and the clogging rate were measured. The results are shown in Table 1, respectively.

実施例2 37%濃度のホルムアルデヒド水溶液40.3部(0.5モル)
と水43.3部とを混合し、攪拌下これに0.7部のCMCナ
トリウム塩[ダイセル(株)製 CMCダイセル1193]
を分散させ、更に苛性ソーダを加えてpH7.4(BTB試験紙)
に調整し、次いで尿素15.7部(0.26モル)を添加して加
熱し、70℃で1.5時間反応させて初期縮合物の水溶液を
得た。得られた初期縮合物水溶液のBTB試験紙によるpH
は7.0であった。
Example 2 40.3 parts (0.5 mol) of 37% aqueous formaldehyde solution
And 43.3 parts of water are mixed, and 0.7 part of CMC sodium salt [manufactured by Daicel Corp. CMC Daicel 1193] is added to the mixture while stirring.
Disperse and add caustic soda to pH 7.4 (BTB test paper)
Then, 15.7 parts (0.26 mol) of urea was added and heated, and the mixture was reacted at 70 ° C. for 1.5 hours to obtain an aqueous solution of an initial condensate. PH of the obtained aqueous solution of initial condensate measured by BTB test paper
Was 7.0.

上記で得た初期縮合物の水溶液100部を35℃に昇温し、
同温度の3.0%硫酸136部を速やかに添加混合すると30秒
後に白濁し65秒後に固化した。固化反応の際共存した水
の量は、初期縮合物の6.6倍量であった。
100 parts of the aqueous solution of the initial condensate obtained above was heated to 35 ° C.,
When 136 parts of 3.0% sulfuric acid at the same temperature was rapidly added and mixed, it became cloudy after 30 seconds and solidified after 65 seconds. The amount of water coexisted during the solidification reaction was 6.6 times the amount of the initial condensate.

硫酸混合後、35℃で30分間静置したのち、固化物を採取
して粗砕し、124部の水を加えて攪拌してスラリー化
(スラリー濃度約8.5%)した後、苛性ソーダ水溶液で
中和した。
After mixing with sulfuric acid, the mixture was allowed to stand at 35 ° C for 30 minutes, then the solidified product was collected and crushed, 124 parts of water was added and stirred to make a slurry (slurry concentration: about 8.5%), and then a caustic soda aqueous solution was added. I made it

上記のスラリーを、超音波分散型粉砕機[(株)荏原製
作所社製「エバラマイルダー」]を通過させることによ
り微粉砕処理した。
The above slurry was finely pulverized by passing through an ultrasonic dispersion type pulverizer [“Ebara Milder” manufactured by Ebara Corporation).

このスラリー中の粒子の平均粒径は、8.0μmであり、
一次粒子の粒径は0.1〜0.3μmであり、アマニ油吸油量
は900%であった。
The average particle size of the particles in this slurry is 8.0 μm,
The particle size of the primary particles was 0.1 to 0.3 μm, and the linseed oil absorption was 900%.

更に、前記の微粉砕処理したスラリーの濃度を5%に調整
して、濾過速度及び目もれ率を測定した結果を表1に示
した。
Further, the concentration of the finely pulverized slurry was adjusted to 5%, and the results of measuring the filtration rate and the clogging rate are shown in Table 1.

実施例3〜4及び比較例1〜4 実施例1における初期縮合物製造時の尿素とホルムアル
デヒドとのモル比(F/U)、重縮合反応の際の初期縮合物
と水との比(以下浴比という)、温度及び時間を表1に
示す通りに変えた外は、実施例1と同様な処理を行なっ
て、夫々表1に示す平均粒径、一次粒子径、アマニ油吸
油量、濾過速度及び目もれ率の填料を得た。
Examples 3 to 4 and Comparative Examples 1 to 4 The molar ratio (F / U) of urea and formaldehyde in the production of the initial condensate in Example 1, the ratio of the initial condensate to water in the polycondensation reaction (hereinafter (Bath ratio), temperature and time were changed as shown in Table 1, and the same treatment as in Example 1 was carried out to obtain the average particle diameter, primary particle diameter, linseed oil absorption amount, and filtration shown in Table 1, respectively. A filler of speed and occlusion rate was obtained.

なお、実施例1における初期縮合物製造の際にCMCナ
トリウム塩を使用せず、他は実施例1と同様な処理を行
なった場合(比較例1);実施例2における初期縮合物
の重縮合反応の際の温度を75℃とした外は、実施例2に
準じて処理を行なった場合(比較例2);実施例1にお
ける初期縮合物製造時の尿素とホルムアルデヒドとのモ
ル比(F/U)を1.5とし、かつ、重縮合反応の際の浴比を4.
0とした外は、実施例1に準じて処理を行なった場合
(比較例3);また実施例2における初期縮合物の重縮
合反応の際に攪拌を停止していた時間(=静置時間)を
3分間とした外は、実施例1に準じて処理を行なった場
合(比較例4)に得られた尿素ホルムアルデヒド架橋樹
脂粒子の、平均粒径、一次粒子径、アマニ油吸油量及び
目もれ率を表1に示した。
In addition, when the CMC sodium salt was not used in the production of the initial condensate in Example 1, and the same treatment as in Example 1 was performed otherwise (Comparative Example 1); polycondensation of the initial condensate in Example 2 When the treatment was performed according to Example 2 except that the temperature during the reaction was 75 ° C. (Comparative Example 2); the molar ratio of urea and formaldehyde (F / U) is 1.5 and the bath ratio in the polycondensation reaction is 4.
When the treatment was carried out according to Example 1 (Comparative Example 3) except 0, the time during which stirring was stopped during the polycondensation reaction of the initial condensate in Example 2 (= static time) ) Was set to 3 minutes, the average particle size, primary particle size, linseed oil absorption and eyes of the urea formaldehyde crosslinked resin particles obtained when the treatment was carried out according to Example 1 (Comparative Example 4) The leakage rate is shown in Table 1.

比較例5〜8 実施例2において使用した粉砕機「アバラマイルダー」
の代りに、媒体攪拌型粉砕機[「アトライタ」三井三池
製作所製 型式 MA−01B]を使用し、セラミック
メディアを用いて250rpmで15分間粉砕処理した外は実施
例2と全く同様に処理した場合(比較例5);実施例2
において使用した粉砕機「エバラマイルダー」の代り
に、[「パイプラインホモミキサー」特殊機化工業
(株)社製 2S型]を用いて微粉砕処理を行なった外
は、実施例2と全く同様に処理した場合(比較例6);
実施例1において使用した粉砕機「エバラマイルダー」
の代りに、コロイドミル[特殊機化工業(株)社製「マ
イコロイダー」]を用いた以外は、実施例2と全く同様
に処理した場合(比較例7);実施例2において使用し
た粉砕機「エバラマイルダー」の代りに、[西独 ステ
ファン社製「万能高速カッター」]を用いて3000rpmで1
5分間微粉砕処理を行なった外は実施例2と全く同様に
処理した場合(比較例8)に得られた尿素ホルムアルデ
ヒド架橋樹脂粒子からなる填料の、一次粒子径、平均粒
子径、アマニ油吸油量、粒径1〜10μmの割合、目もれ
率及び濾過時間を表2に示した。
Comparative Examples 5 to 8 Crusher "Abara Milder" used in Example 2
In place of the above, a medium stirring type pulverizer [“Attritor” Mitsui Miike Seisakusho Model MA-01B] was used, and the same treatment as in Example 2 was performed except that the pulverization treatment was performed at 250 rpm for 15 minutes using a ceramic medium. (Comparative Example 5); Example 2
In place of the crusher "Ebara Milder" used in the above, a "Pipeline Homomixer" special machine Kako Kogyo Co., Ltd. 2S type] was used for fine pulverization, and no crushing was performed. When treated in the same manner (Comparative Example 6);
Crusher "Ebara Milder" used in Example 1
In the same manner as in Example 2 except that a colloid mill [“Mycoloyder” manufactured by Tokushu Kika Kogyo Co., Ltd.] was used (Comparative Example 7); the pulverization used in Example 2 Instead of the machine "Ebara Milder", use [West Germany Stefan's "universal high speed cutter"] at 3000 rpm 1
The primary particle size, average particle size, and linseed oil absorption of the filler composed of urea-formaldehyde crosslinked resin particles obtained when treated in exactly the same manner as in Example 2 (Comparative Example 8) except that fine pulverization treatment was carried out for 5 minutes. Table 2 shows the amount, the ratio of the particle size of 1 to 10 μm, the leakage rate, and the filtration time.

参考例 紙質評価用紙の調製: NBKP15部、TMP25部、RGP30部及びDIP30部
が配合された叩解度300ml(csf)のパルプの1%スラリー10
00部に、予め5.0%濃度に調整しておいた実施例1〜4
及び比較例1〜8で得られた填料の分散水性液10部(乾
燥パルプにたいして5%の填料に相当)を添加して2分間
攪拌し、引続き10%硫酸アルミニウム水溶液3部を加え
て更に2分間攪拌して填料配合抄紙用スラリーを調製し
た。
Reference Example Preparation of paper quality evaluation paper: 1% slurry of pulp with a beating degree of 300 ml (csf) containing 15 parts of NBKP, 25 parts of TMP, 30 parts of RGP and 30 parts of DIP 10
Examples 1 to 4 in which the concentration of 5.0% was adjusted to 00 parts in advance.
And 10 parts of an aqueous dispersion of the filler obtained in Comparative Examples 1 to 8 (corresponding to 5% of filler for dry pulp) was added and stirred for 2 minutes, and subsequently 3 parts of 10% aluminum sulfate aqueous solution was added to further add 2 parts. The mixture was stirred for a minute to prepare a filler-containing papermaking slurry.

次いで、これをTAPPI角型シートマシン(25cm×25c
m)を用いて抄紙し、3.5kg/cm2でプレス脱水を行なった
後、表面温度105〜110℃のロータリードライヤーで3分
間乾燥し、線圧40kg/cmでカレンダー掛けを行なった
後、相対湿度65%、20℃の恒温、恒湿室で24時間のシー
ズニングを行なって紙質評価用の紙を調製した。
Next, this is a TAPPI square sheet machine (25 cm x 25 c
m) papermaking, press dehydration at 3.5 kg / cm 2 and drying for 3 minutes with a rotary dryer with a surface temperature of 105-110 ° C, calendering at a linear pressure of 40 kg / cm, and then relative Paper for paper quality evaluation was prepared by performing seasoning for 24 hours in a humidity and humidity chamber at a constant temperature of 65% and a temperature of 20 ° C.

紙質の評価: 上記で調製した紙の種々の光学的特性について調べた。
即ち、白色度はJIS P−8123により、不透明度はJ
IS P−8138により、また印刷後不透明度はJ.TA
PPI.No.45-84に準じて測定した。なお、填料の歩留
りはケルダール法窒素分析により測定した。
Evaluation of paper quality: Various optical properties of the paper prepared above were examined.
That is, the whiteness is JIS P-8123 and the opacity is J
According to ISP-8138, and the opacity after printing is J. TA
It was measured according to PPI. No. 45-84. The yield of filler was measured by Kjeldahl nitrogen analysis.

実施例1〜4及び比較例1〜8で得られた填料を配合し
て抄紙した紙製品の白色度、不透明度及び印刷後不透明
度と填料歩留り率を表3に示した。
Table 3 shows the whiteness, opacity, opacity after printing, and the filler retention rate of the paper products prepared by blending the fillers obtained in Examples 1 to 4 and Comparative Examples 1 to 8.

なお、填料を添加しなかった場合(ブランク)を比較例
9として併記した。
The case where no filler was added (blank) was also described as Comparative Example 9.

(発明の効果) 本発明の方法によって製造された紙用填料は、参考例に
示されるように、これを抄紙に使用した場合、得られた
紙は白色度、不透明度が優れ、更に紙中に分散された填
料が印刷インクを充分に吸収し、その結果、紙の印刷後
不透明度が著しく改善される。また、優れた濾過特性を
有するため歩留り率が高く効率的である。
(Effects of the Invention) As shown in Reference Examples, when the paper filler produced by the method of the present invention is used for papermaking, the obtained paper has excellent whiteness and opacity, and The filler dispersed in the ink sufficiently absorbs the printing ink, resulting in a marked improvement in the opacity of the paper after printing. Further, since it has excellent filtration characteristics, it has a high yield rate and is efficient.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明方法で用いる超音波分散型粉砕機の構造
を説明する為の模式図であり、図中、1はステーター、
2はローターである。
FIG. 1 is a schematic diagram for explaining the structure of an ultrasonic dispersion type pulverizer used in the method of the present invention, in which 1 is a stator,
2 is a rotor.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 唐沢 史芳 福島県いわき市小名浜高山34番地 日本化 成株式会社内 (72)発明者 草刈 治夫 福島県いわき市小名浜高山34番地 日本化 成株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Fumiyoshi Karasawa 34, Onahama Takayama, Iwaki, Fukushima Prefecture, Nippon Kasei Co., Ltd. (72) Haruo Kusari, 34, Onahama Takayama, Iwaki, Fukushima Prefecture

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】尿素とホルムアルデヒドとを、尿素に対す
るホルムアルデヒドのモル比を1:1.9〜1:2.4として、中
性ないし弱アルカリ性水性媒体中において反応させて得
た初期縮合物、カルボキシメチルセルロース又はその
塩、該初期縮合物に対して5〜15重量倍の水及び酸性触
媒から主として成る混合物を、全体が均一になるように
攪拌したのち少なくとも5分間攪拌を停止する過程を経
て35〜65℃で反応させて固体の尿素ホルムアルデヒド架
橋樹脂を製造し、次いで得られた固体の尿素ホルムアル
デヒド架橋樹脂を含む水性スラリーを超音波分散型粉砕
機を用いて粉砕処理することを特徴とする紙用填料の製
造法。
1. An initial condensate obtained by reacting urea and formaldehyde in a neutral to weakly alkaline aqueous medium at a molar ratio of formaldehyde to urea of 1: 1.9 to 1: 2.4, carboxymethyl cellulose or a salt thereof. , A mixture mainly consisting of 5 to 15 times by weight of the initial condensate and water and an acidic catalyst is stirred so that the whole becomes homogeneous, and then the stirring is stopped for at least 5 minutes, and then the reaction is carried out at 35 to 65 ° C. To produce a solid urea-formaldehyde cross-linking resin, and then pulverize the obtained aqueous slurry containing the urea-formaldehyde cross-linking resin using an ultrasonic dispersion pulverizer to produce a paper filler. .
JP10482387A 1987-04-30 1987-04-30 Manufacturing method of paper filler Expired - Lifetime JPH0629308B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10482387A JPH0629308B2 (en) 1987-04-30 1987-04-30 Manufacturing method of paper filler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10482387A JPH0629308B2 (en) 1987-04-30 1987-04-30 Manufacturing method of paper filler

Publications (2)

Publication Number Publication Date
JPS63270721A JPS63270721A (en) 1988-11-08
JPH0629308B2 true JPH0629308B2 (en) 1994-04-20

Family

ID=14391118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10482387A Expired - Lifetime JPH0629308B2 (en) 1987-04-30 1987-04-30 Manufacturing method of paper filler

Country Status (1)

Country Link
JP (1) JPH0629308B2 (en)

Also Published As

Publication number Publication date
JPS63270721A (en) 1988-11-08

Similar Documents

Publication Publication Date Title
JP6048504B2 (en) FINE FIBER CELLULOSE AGGREGATE, METHOD FOR PRODUCING FINE FIBER CELLULOSE AGGREGATE AND METHOD FOR REPRODUCING FINE FIBER CELLULOSE DISPERSION
JP2908253B2 (en) Hydrated silica and its production method
JP6276740B2 (en) Method for producing dried cellulose nanofiber
KR20210046834A (en) Product containing microfibrous cellulose
JP6276888B1 (en) Method for producing dried cellulose nanofiber
JP3982027B2 (en) Method for producing composite particles
JP4568921B2 (en) Silica particles, method for producing the same, and silica particle-containing paper
JPH05311599A (en) Filler for paper and paper using the same
JPH0629308B2 (en) Manufacturing method of paper filler
US3909348A (en) Urea-formaldehyde pigmentary fillers used in paper
JPH0571719B2 (en)
JPH0629307B2 (en) Method for producing particulate urea-formaldehyde crosslinked resin
WO2009144372A1 (en) Process for forming a pigment product from a cellulose derivative
JP2960001B2 (en) Manufacturing method of filler-filled paper
JP2960002B2 (en) Manufacturing method of filler-filled paper
JP2516765B2 (en) Paper and its manufacturing method
JP3423334B2 (en) Micronized cellulose-based water-containing composition
JP2943826B2 (en) Method for producing calcium carbonate dispersion and milk composition containing the calcium carbonate dispersion
JPS61115921A (en) Production of urea resin filler
JPS63297413A (en) Production of filler
JP2563909B2 (en) Pulp and pulp manufacturing method
JPH04226539A (en) Aqueous dispersion of urea/formaldehyde polymer and its use
JP2000297101A (en) Manufacture of crosslinked carboxyalkyl cellulose and absorber therefrom
JPH0629309B2 (en) Manufacturing method of paper filler
JPH0466248B2 (en)