JP3982027B2 - Method for producing composite particles - Google Patents

Method for producing composite particles Download PDF

Info

Publication number
JP3982027B2
JP3982027B2 JP27290797A JP27290797A JP3982027B2 JP 3982027 B2 JP3982027 B2 JP 3982027B2 JP 27290797 A JP27290797 A JP 27290797A JP 27290797 A JP27290797 A JP 27290797A JP 3982027 B2 JP3982027 B2 JP 3982027B2
Authority
JP
Japan
Prior art keywords
composite
fine particles
temperature
particles
addition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27290797A
Other languages
Japanese (ja)
Other versions
JPH11107189A (en
Inventor
比斗志 岡田
仁 松田
基秀 和田
英実 宮脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Oji Paper Co Ltd
Oji Holdings Corp
Original Assignee
Oji Holdings Corp
Oji Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oji Holdings Corp, Oji Paper Co Ltd filed Critical Oji Holdings Corp
Priority to JP27290797A priority Critical patent/JP3982027B2/en
Publication of JPH11107189A publication Critical patent/JPH11107189A/en
Application granted granted Critical
Publication of JP3982027B2 publication Critical patent/JP3982027B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、複合化率が高く、機械安定性に優れ、製紙における填料として用いた時の歩留りが高く且つ紙に優れた白色度、白紙不透明度及び印刷後不透明度を付与する微小粒子と水和ケイ酸の複合粒子の製造方法に関する。
【0002】
【従来の技術】
近年、資源問題の観点から、また物流費、人件費の上昇から紙は軽量化される傾向にある。特に印刷用紙を軽量化した場合、紙に印刷した時の不透明度が低下し、印刷された文字や写真等が紙の反対側から透き通って見えるという問題を生じる。この対策として紙に種々の填料を内添し、用紙の不透明度を高めるということが一般に行われている。
不透明度を向上させる目的のために無機系、有機系の各種填料の研究が行われており、安価で且つ優れた印刷後不透明度向上効果を持つ填料の開発に対する要求が年々高まってきた。また、最近ではより軽量化される傾向が強いので、印刷した際、インク中の油成分の浸透を抑制することによる印刷後の不透明度を向上させる能力に加え、白紙の不透明度を向上させる能力を兼ね備えた填料の出現が強く望まれている。
【0003】
各種填料として、カオリン、タルク、二酸化チタン、水和ケイ酸(ホワイトカーボン)、尿素−ホルマリンポリマー微粒子などが用いられている。カオリン、タルクは不透明度向上に効果があり且つ安価ではあるが、吸油能が小さいため印刷後の不透明度の向上は大きくない。二酸化チタンは光散乱能が高いので不透明度の向上には有効であるが、高価であるばかりでなく吸油能が小さいという欠点を有しており、また、粒子径が小さくパルプに添加して抄紙機で抄紙する際の歩留りが非常に悪い。尿素−ホルマリンポリマー微粒子は光散乱能、吸油能が高く、印刷後不透明度の向上に優れているが、高価であり経済性の点で満足できるものではない。水和ケイ酸は印刷後不透明度を付与する効果はあるが、白紙不透明度に対する効果を含めて十分満足すべき水準に到達していないのが現状である。
【0004】
前記填料の有する欠点を克服すべく様々な填料の複合化、特に吸油能が優れ、コスト的に有利な水和ケイ酸をベースとした複合化が試みられている。たとえば、特公平6−45451号公報には硫酸チタン溶液とケイ酸溶液を混合、中和して共析出させることにより、チタンと水和ケイ酸を複合化する方法が開示されている。しかしながら、この複合体は酸化チタンの存在下又不存在下に、ケイ酸アルカリ水溶液に、その水溶液のpHが1〜7になるようにチタンの酸性溶液を少なくとも30分以上の時間を費やして添加し、80℃〜該水溶液の沸点の温度に加熱することにより製造されており、得られる複合体に含まれているチタンは焼成をしない限り、そのままでは非晶質の水酸化チタンとして存在し、光散乱能の観点から見てチタンが最適な結晶質構造を有していない。
【0005】
また本発明者らは、特開平9−156919号公報において、水和ケイ酸二次粒子を核としてその表面にチタンを担持、複合化させる方法を提案した。
しかしながらこの方法では水和ケイ酸二次粒子を核としてその表面へチタンを担持させるため、チタンの水和ケイ酸表面への担持力が弱く、厳密に管理された条件を用いないと、複合化されるチタンの割合(複合化率)は低率におさえられる。また、この複合体は機械的シェアーに対する安定性が低く、たとえば抄紙系内を循環する際にファンポンプやクリーナー等によって受けるシェアーにより、チタン分が水和ケイ酸から脱落しやすいという欠点を有していた。
【0006】
【発明が解決しようとする課題】
本発明の目的は、水和ケイ酸と微小粒子の複合粒子の製造方法において、微小粒子の水和ケイ酸への複合化率が高く、また機械安定性に優れ、そのため製紙における填料として用いた時の歩留りが高く且つ紙に優れた白色度、白紙不透明度及び印刷後不透明度を付与する水和ケイ酸と微小粒子の複合粒子の製造方法を提供することにある。
【0007】
【課題を解決するための手段】
上記課題を解決するため、本発明は以下の(1)〜(5)の5つの構成を採用する。
(1)ケイ酸アルカリ水溶液に耐アルカリ性の微小粒子を添加して分散し、次いで液温を70〜95℃まで昇温し、液温を該温度範囲に保持しながら鉱酸を添加することにより液pHを3〜6.5の範囲に調整することを特徴とする複合粒子の製造方法。
(2)前記(1)の方法において、微小粒子を添加する前または後であって液温を70〜95℃に昇温する前または昇温中に鉱酸の一部を添加することを特徴とする複合粒子の製造方法。
(3)前記(2)の方法において、鉱酸の一部は、全添加量の0〜50%であることを特徴とする複合粒子の製造方法。
(4)前記(1)〜(3)において、微小粒子が粒子径0.1〜0.4μmの二酸化チタンである複合粒子の製造方法。
(5)前記(1)〜(5)において、微小粒子をケイ酸アルカリ水溶液に分散する時から鉱酸の全部を添加し終わるまで、ケイ酸アルカリ水溶液に高剪断力を与えることを特徴とする複合粒子の製造方法。
【0008】
【発明の実施の形態】
本発明で用いられるケイ酸アルカリ水溶液は、特に限定されないが、ケイ酸ソーダ水溶液またはケイ酸カリウム水溶液が好適である。ケイ酸アルカリ水溶液のモル濃度はモル比(SiO2/Na2O)が2.0〜3.4の範囲から選ぶのが好適である。また、ケイ酸アルカリ水溶液の濃度は、水溶液中のケイ酸(SiO2)分で3〜15重量%の範囲から選ばれる。この範囲よりも濃度が高いと反応中の溶液の粘度が高くなってしまい、また、低いと反応液量が多くなって非効率的である。更に、反応中においても反応液中のケイ酸濃度を3〜15重量%の範囲に保持することが望ましい。
【0009】
本発明で使用される鉱酸としては、特に限定されず公知のものが使用される。具体的には、塩酸、硫酸、硝酸等の無機酸が挙げられるが、硫酸は入手が容易で且つ安価であるため好適に用いられる。鉱酸の添加時の濃度は、特に限定されないが、一般的には10〜30重量%の範囲から選ばれる。
【0010】
また、本発明で使用される耐アルカリ性微小粒子は、硫酸による中和前にpH10〜12のケイ酸アルカリ水溶液中に分散され、温度も70〜95℃と高温になるため、それぞれの条件に耐えられるだけの耐アルカリ性が必要である。
また、水和ケイ酸とともに良好な二次粒子を形成するために、粒子径は5μm以下であることが望ましく、特に好ましくは0.05〜1μmである。
このような粒子として二酸化チタン、炭酸カルシウム、炭酸マグネシウム、硫酸バリウムなどの無機粒子及び尿素ホルマリン、ポリスチレンなどの有機粒子が挙げられる。
【0011】
これらの微小粒子の中で、結晶性二酸化チタンは、耐アルカリ性、粒子径が本合成条件に好適であり、また複合体として紙の充填に用いられた時の不透明度向上効果も高いため、最も好ましく用いられる。
結晶性二酸化チタンは平均一次粒子径が0.1〜0.4μmの範囲にあり、結晶型がルチル型及び/またはアナターゼ型のものが選択され、単独あるいは混合して使用される。
【0012】
結晶性二酸化チタンには分散性を高めるために、アルミナを表面処理剤として処理されたものがあるが、本合成条件においてアルミナが溶解することがあり、その場合複合化率の低下につながることもあるため、アルミナ含有率として蛍光X線による分析値が10%未満のものが好ましい。また、カチオン性分散剤のコーティングや酸化亜鉛のドーピング等により水和ケイ酸と二酸化チタンのマッチングをよくすると好ましい結果が得られる。
【0013】
該結晶性二酸化チタンは、予め水に分散した後使用されるが、分散に際し粒子の再凝集を防止するため分散剤を添加しても良い。分散剤としては、ヘキサメタリン酸ソーダ、ピロリン酸ソーダ、ポリアクリル酸ソーダ等が挙げられる。分散後の結晶性二酸化チタンスラリー濃度は1〜10重量%に調整される。
また、水和ケイ酸の成長を促進させたりあるいは反応途中の粘度をコントロールする目的で、硫酸ナトリウムなどの電解質を適宜加えることも可能である。
【0014】
本発明では反応の前半の工程、すなわち、温度を70〜95℃に上昇させるまでの工程において、微小粒子を核として水和ケイ酸一次粒子を形成させる。この温度が70℃未満では、液はゲル状となり、その後の複合粒子が形成できない。また、95℃を越えると蒸気圧が上がり、高温高圧釜等特殊な装置が必要となり適当でない。
昇温は、微小粒子添加後、攪拌しながら10〜30分をかけて行う。これより短い時間で昇温を行うことは、工業的には極めて能力の高い加熱装置を必要とするので現実的に難しい。
【0015】
上記の工程において、微小粒子を添加・分散する前に鉱酸の一部を添加しておくことが可能である。この方法により、水和ケイ酸一次粒子がかさ高になり吸油度を高めることができる。
また、微小粒子を添加した後、温度を上昇する前または上昇中に鉱酸の一部を添加することも可能である。この方法により、水和ケイ酸の構造を好ましいものにコントロールすることができる。ただし、この場合、鉱酸の添加は液温度が20〜55℃の間に開始することが好ましいが、粘度が上昇する等の製造上の問題がなければこの範囲外の温度で添加してもかまわない。
また、鉱酸の添加の前と後の両方で微小粒子を添加・分散することも可能である。
いずれにしろ、上記した前半の工程で液に鉱酸を添加する場合、その添加量は、全添加量(前半と後半の合計添加量)の50%以下であり、添加の際に水溶液が部分的にでもpH7を下まわることのないように、連続的に十分攪拌しながら添加する。これらの範囲を守らないと、反応液がゲル状となり製造上の問題が起きたり、また複合化率が著しく低下したりするなどの問題が生じるからである。
【0016】
液の温度が70〜95℃の目的の温度に達したら、必要に応じて70〜95℃の温度で熟成し、以後の後半の工程に進む。
後半の工程は、当該温度範囲(70〜95℃)を維持しながら鉱酸を添加し、液のpHを3〜6.5の間に調整する工程である。
鉱酸の添加は、十分に攪拌しながら、10分〜1時間程度の時間をかけて行い、その後必要に応じて、当該温度範囲で熟成することもある。
【0017】
本発明で、ケイ酸アルカリ水溶液に微小粒子を添加する時点から、後半の工程での鉱酸の添加を終了するまでは、十分に攪拌する必要があり、且つ、高い剪断力を与えることが好ましい。これにより、複合粒子の2次粒子径が紙の填料として最も好ましい範囲に調整されるのみならず、水和ケイ酸と微小粒子が均一に複合化する。
高い剪断力を与える方法としては、ホモミキサー、ホモジナイザー、インラインミキサー、ディスクリファイナー、サンドグラインダー等の公知のものが挙げられ、適宜選択して用いられる。
【0018】
また、本発明で得られる前記複合粒子は、紙の填料として用いる場合、予め湿式粉砕及び/または湿式分級して用いられる。湿式粉砕機としては、公知の連続式ホモミキサー、コロイドミル、ディスクリファイナー、サンドグラインダー、ボールミル、ロッドミル等が挙げられ、粉砕して更に分級する場合は、前記複合体は、公知の振動スクリーンのような分級機で湿式分級し、複合体の70〜75μmを越える粗大粒子を除去して用いられる。このような処理を施して得られる複合体は、レーザー回折式粒度分布計(島津、SALD−1100)による平均粒子径は3〜30μm、好ましくは10〜25μmの範囲にあり、1〜30μmの粒子径のものが70重量%以上含有される。
以上説明したように、本発明の製造方法により得られる水和ケイ酸と微小粒子の複合体は、水和ケイ酸粒子中に該微小粒子が均一に複合化されており、機械安定性が高く、たとえば製紙に際し填料として用いると、水和ケイ酸とともに微小粒子を効率良く紙中に留めることができる。
【0019】
本発明による水和ケイ酸と微小粒子の複合体を抄紙の際にパルプ原料に添加して抄紙することによって、微小粒子を高い歩留りで紙中に留めることができる。それは本発明による方法のように微小粒子を水和ケイ酸の2次粒子が析出する以前に添加して複合化することにより、微小粒子を核として水和ケイ酸粒子が生成し、その後更に添加する第二の鉱酸により水和ケイ酸二次粒子が成長し、結果として局所的ではなく、水和ケイ酸二次粒子全体にわたって均一に微小粒子が複合化されるために、抄紙の際に受ける各種のシェアーにり微小粒子が脱落することがなく、機械的安定性に優れた複合体が形成されるからである。
水和ケイ酸はインク吸収性に優れるため、印刷用紙の不透明度向上特に印刷後不透明度向上のために用いられることがあるが、本発明法によるもう一方の微小粒子、たとえば不透明度の著しく高い二酸化チタンなどと複合化させることにより、製紙用途に限らず様々な分野での要望に応える填料を与えることが可能となる。
【0020】
【実施例】
以下に実施例を挙げて本発明をより具体的に説明するが、本発明は勿論これらに限定されるものではない。尚、以下の実施例において、%は、全て重量%である。
【0021】
<実施例1>
市販の3号ケイ酸ソーダ水溶液(徳山曹達製、SiO2濃度30%)240gを純水にて1000gに希釈し、SiO2濃度を72g/kgとして2リットルのステンレスビーカーに入れ、温度50℃において無水硫酸ナトリウム17.9gを加え、プロペラ攪拌機(スリーワンモーター)で1200rpmにて攪拌しながら予め100gの水に分散しておいた二酸化チタン(JA−4、平均粒子径250nm、テイカ製)7.2gを添加した。その後、硫酸(濃度20%)72gを15分間かけて連続的に添加した。
硫酸の添加が終わった後、攪拌しながら15分間で温度を90℃まで昇温した。
この温度でそのまま攪拌を続け10分間熟成を行い、次いで、残りの硫酸108gを20分間かけて連続的に添加した後90℃にて20分間熟成した。熟成後、30分かけて反応液を50℃まで冷却した。この時のスラリーのpHは5.7であった。
【0022】
次いで、この反応生成物を含むスラリー液に直径2.0〜2.6mmのガラスビーズ1000gを加え、50℃に保温しながら、プロペラ攪拌機にて400rpmで、3分間攪拌して粉砕処理を行い、このスラリーを200メッシュの標準篩を通過させ残さを除去した。複合体は前記レーザー回折式粒度分布測定装置でその平均粒子径を測定したところ21μmであり、1〜30μmの範囲のものが75%含有されていた。
篩を通過した複合体スラリーをブフナーロートにて濾過しケーキ状複合体を得、これを水に分散させ、攪拌し、再度スラリーとし、スラリー濃度を5%に調整した。
【0023】
<複合化率の測定>
合成した複合填料の粒度分布を島津SALD−1100にて測定し、複合化率を求めた。すなわち複合化する微小粒子と水和ケイ酸の混合物の粒度分布測定より、それぞれの粒子のシグナル比を求め検量線を作成し、複合填料の粒度分布より得られるシグナル比と先の検量線より複合填料の微小粒子含有率を求める。尚、この方法では水和ケイ酸と微小粒子のシグナルが明確に分離していることが必要であり、先に挙げた二酸化チタン、炭酸カルシウム等がある。複合化率H(%)を下記の式(1)で定義する。
H=(1−複合体微小粒子含有率/微小粒子配合率)×100 ・・・(1)
【0024】
<機械的安定性の測定>
複合体の機械安定性は以下の手順により求めた。すなわち、複合体の5%スラリー液1リットルに直径2.0〜2.6mmのガラスビーズ1000gを加え、50℃に保温しながら、スリーワンモーターにて400rpmで攪拌し適宜サンプリングを行い粒度分布測定を行い、処理時間による粒径及び上記により得られる複合化率の変化を求める。
【0025】
<手抄き紙の作製>
次に、針葉樹晒クラフトパルプ(NBKP)15%、サーモメカニカルパルプ(TMP)34%、機械パルプ(GP)11%及び新聞脱墨古紙パルプ(DIP)40%からなる混合パルプのスラリー(濃度1.25%)に前記複合体スラリーを、パルプ絶乾重量当り3%となるように添加し、2分間攪拌後、硫酸バンド(Al2(SO43・18H2O)をパルプ絶乾重量当り1%添加した。更に2分間攪拌した後、全体を0.2%濃度になるよう調成した。調成したパルプスラリ−を用いて、実験用角型シートマシンで坪量40.0g/m2の紙を抄いて、乾燥した。
【0026】
<各種紙物性の測定>
この手抄きシートを20℃、65%相対湿度の部屋で調湿した後、線圧40kg/cmで実験用加熱カレンダーで2回通過させ平滑度を調整し、その後白色度、不透明度の紙質試験と印刷試験及び填料の歩留り試験を下記の試験法で行い、評価を行った。
用いた試験方法は次の通りである。
(1)白色度
JIS P 8148(ISO 2470)に準拠して測定した。
(2)白紙不透明度
J.TAPPI 53(ISO 2471)に準拠して測定した。
(3)印刷後の不透明度
新聞用オフセットインキを用いて、RI印刷試験機にて11×21cmの大きさのベタ印刷を行い、印刷後の不透明度Y(%)は下記の式(2)で定義した。
Y(%)={(印刷後の裏面の反射率)/(未印刷の裏面の反射率)}×100・・・(2)
【0027】
(4)填料歩留り
予め作成しておいた、填料を配合していない手抄きシート(ブランク)及び填料を配合した手抄きシートより10×10cmの紙片10枚を正確に切り取り、105℃×3時間乾燥させた後に絶乾重量を秤りとる。次にこの絶乾紙片をバーナーにて予備燃焼を行い、続けて電気炉(ヤマト、FJ31)にて900℃×2時間焼くことによりシート中に含まれる灰分を求める。填料歩留りR(%)は下記の式(3)で定義した。
R(%)={(填料入りシート灰分重量/同絶乾重量−ブランク灰分重量/同絶乾重量)}/填料配合率×100 ・・・(3)
【0028】
<実施例2>
第一の硫酸を添加せず、第二の硫酸を180gとし、二酸化チタン(JA−4、平均粒子径250nm、テイカ製)7.2gを用いた以外は、実施例1と同様に処理し、更に得られた複合体スラリーを実施例1と同様にして評価した。
得られた複合体の平均粒径は20μm、1〜30μmのものは77%含有されていた。
【0029】
<実施例3>
ホモミキサー(特殊機化工、MarkII 2.5型)により8000rpmで攪拌しながら一回目の硫酸45gを添加した後に二酸化チタン(JRNC、平均粒子径250nm、テイカ製)7.2g、を添加し、90℃に昇温後攪拌をホモミキサーからスリーワンモーター1200rpmにかえ、第二の硫酸を135g添加した。その後、実施例1と同様に熟成、降温、粉砕、分級、濾過し、再分散を行い複合体のスラリーを得た。得られた複合体の平均粒子径は19μm、1〜30μmのものは85%含有されていた。また、このスラリーを用いて実施例1と同様にして手抄きシートを作成し、評価を行った。
【0030】
<実施例4>
実施例1の二酸化チタンの代わりに尿素ホルムアルデヒド樹脂(三井東圧化学、ユーパールC−22)7.2gを用いたほかは同様の処理を行い複合粒子のスラリーを得た。得られた複合体の平均粒子径は22μm、1〜30μmのものは70%含有されていた。また、このスラリーを用いて実施例1と同様にして手抄きシートを作成し、評価を行った。
【0031】
<実施例5>
実施例1と同様にして第一の硫酸を添加した後、70℃まで昇温し第二の硫酸108gを連続的に添加した。その他は同様の処理を行い、複合粒子スラリーを得た。複合体の平均粒子径は22μm、1〜30μmのものは71%含有されていた。また、このスラリーを用いて実施例1と同様にして手抄きシートを作成し、評価を行った。
【0032】
<比較例1>
実施例1において二酸化チタン(JA−4、平均粒子径250nm、テイカ製)の添加位置を第二の硫酸の半量に相当する54g添加した後に変更した以外は、実施例1と同様にして複合体を生成させ、これを用いて手抄きシートを作成し評価を行った。複合体の平均粒子径は18μm、1〜30μmのものは75%であった。
【0033】
<比較例2>
実施例1において第一の硫酸を108g、第二の硫酸を72g添加した以外は、実施例1と同様にして複合体を生成させ、これを用いて手抄きシートを作成し評価を行った。複合粒子の平均粒子径は23μm、1〜30μmのものは70%であった。
【0034】
<比較例3>
実施例1において第一の硫酸添加後温度を60℃まで昇温させその後の反応、熟成も60℃で行った以外は、実施例1と同様にして反応を行ったところ、ゲル状で濾水性の劣悪な生成物が得られ、その後の使用に耐えられるものでなかった。
【0035】
<比較例4>
結晶性の二酸化チタンを添加しなかったこと以外は、実施例1と同様にして水和ケイ酸を生成させ、これを用いて実施例1と同様に粉砕、分級、濾過、再分散を行いスラリーを得、手抄きシートを作成し、評価を行った。得られた粒子の平均粒子径は20μm、1〜30μmのものは87%であった。
【0036】
<参考例1>
比較のために、填料を一切使用しないこと以外は実施例1と同様にして手抄きシートを作成し、評価を行った。
【0037】
<参考例2>
水和ケイ酸と二酸化チタン(JA−4、平均粒子径250nm、テイカ製)を存在比が実施例1と同じくなるように10:1で混合したスラリー−を用い、実施例1と同様にして手抄きシートを作成し評価を行った。
以上の実施例、比較例及び参考例で得られた結果を表1、2に示した。
【0038】
【表1】

Figure 0003982027
表1から明らかな如く、本発明法によって得られる微小粒子の複合化率は高く、また機械安定性にも優れていることがわかる(実施例1〜5)。
【0039】
【表2】
Figure 0003982027
【0040】
表2から明らかな如く、本発明法によって得られる複合粒子は、 紙中への歩留りが高く、これを内添した紙に高い白色度と不透明度、とりわけ顕著に優れた印刷後不透明度を付与することができる(実施例1〜5)。
これに対し、二酸化チタンの添加位置が第二の硫酸を半量添加した後あるいは第一の硫酸を全硫酸量の60%添加した場合(比較例1,2)は、微小粒子の複合化率が低かったり複合体の機械安定性が低く、その結果として紙中への歩留りも低くなる。これは水和ケイ酸粒子がほぼ完成した後に微小粒子が反応系に与えられたため、水和ケイ酸の表面に弱い力で付着しただけであることが原因として考えられる。
また、反応する時の液温が低すぎると(比較例3)複合化反応が適当に行われない。
【0041】
一方、分散処理やケイ酸ソーダ溶液の添加をしても微小粒子が全く用いられない場合(比較例4)や、填料を一切使用しない場合(参考例1)は、複合粒子であった微小粒子によりもたらされる効果、すなわち本実施例での白色度、印刷後不透明度及び白紙不透明度が劣る。
あるいは単純に混合した場合(参考例2)は、微小粒子の紙中への留りが悪く、結局実施例のような品質が得られない。
【0042】
【発明の効果】
以上説明したように、本発明は、高い複合化率で微小粒子と水和ケイ酸粒子を複合化させ、且つ優れた機械安定性を持たせることにより、紙にすき込んだ場合などに高い歩留りが得られ、白色度向上や不透明度向上といった微小粒子の持つ効果を効率良く与えることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention has a high compounding rate, excellent mechanical stability, a high yield when used as a filler in papermaking, and excellent whiteness, blank paper opacity, and post-printing opacity for paper. The present invention relates to a method for producing composite particles of Japanese silicate.
[0002]
[Prior art]
In recent years, paper has tended to be reduced in weight from the viewpoint of resource problems and from an increase in logistics costs and labor costs. In particular, when the printing paper is reduced in weight, the opacity when printed on paper is lowered, and there is a problem that printed characters and photographs are seen through from the opposite side of the paper. As a countermeasure, it is common practice to add various fillers to the paper to increase the opacity of the paper.
Various inorganic and organic fillers have been studied for the purpose of improving opacity, and the demand for development of fillers that are inexpensive and have an excellent post-printing opacity improving effect has been increasing year by year. In addition, since there is a strong tendency to reduce weight recently, in addition to the ability to improve opacity after printing by suppressing the penetration of oil components in the ink, the ability to improve opacity of blank paper when printing. The emergence of fillers that combine these is strongly desired.
[0003]
As various fillers, kaolin, talc, titanium dioxide, hydrated silicic acid (white carbon), urea-formalin polymer fine particles and the like are used. Kaolin and talc are effective in improving opacity and are inexpensive, but their opacity after printing is not great because of their low oil absorption. Titanium dioxide is effective in improving opacity because of its high light scattering ability, but it is not only expensive but also has the disadvantage of low oil absorption, and has a small particle size and is added to pulp to make paper. The yield when making paper on a machine is very bad. Urea-formalin polymer fine particles have high light scattering ability and oil absorption ability and are excellent in improving opacity after printing, but are expensive and not satisfactory in terms of economy. Although hydrated silicic acid has the effect of imparting opacity after printing, it does not reach a sufficiently satisfactory level including the effect on blank paper opacity.
[0004]
In order to overcome the disadvantages of the above fillers, various composites of fillers, particularly composites based on hydrated silicic acid, which is excellent in oil absorption capacity and advantageous in cost, have been tried. For example, Japanese Examined Patent Publication No. 6-45451 discloses a method of compounding titanium and hydrated silicic acid by mixing, neutralizing and co-precipitating a titanium sulfate solution and a silicic acid solution. However, this complex was added to an alkaline silicate aqueous solution in the presence or absence of titanium oxide at least 30 minutes or more so that the aqueous solution had a pH of 1-7. The titanium contained in the resulting composite is present as it is as amorphous titanium hydroxide unless it is fired, by heating to 80 ° C. to the boiling point of the aqueous solution. Titanium does not have an optimal crystalline structure from the viewpoint of light scattering ability.
[0005]
In addition, the present inventors have proposed in JP-A-9-156919 a method in which hydrated silicic acid secondary particles are used as nuclei and titanium is supported and combined on the surface.
However, with this method, titanium is supported on the surface of the hydrated silicate secondary particles as nuclei, so the supporting force of titanium on the surface of the hydrated silicate is weak, and it must be composited unless strictly controlled conditions are used. The ratio of titanium to be formed (composite rate) is kept low. In addition, this composite has a low stability against mechanical shear, and has a drawback that, for example, the titanium content easily falls off from hydrated silicic acid due to the shear received by a fan pump or a cleaner when circulating in the papermaking system. It was.
[0006]
[Problems to be solved by the invention]
The object of the present invention is to produce a composite particle of hydrated silicic acid and fine particles, in which the composite rate of the fine particles to the hydrated silicic acid is high, and the mechanical stability is excellent, so that it was used as a filler in papermaking. It is an object of the present invention to provide a method for producing composite particles of hydrated silicic acid and fine particles that give high whiteness, white paper opacity, and post-printing opacity with high time yield.
[0007]
[Means for Solving the Problems]
In order to solve the above problems, the present invention employs the following five configurations (1) to (5).
(1) By adding and dispersing alkali-resistant fine particles in an aqueous alkali silicate solution, then raising the liquid temperature to 70 to 95 ° C., and adding a mineral acid while keeping the liquid temperature in the temperature range A method for producing composite particles, wherein the liquid pH is adjusted to a range of 3 to 6.5.
(2) In the method of (1), a part of the mineral acid is added before or after adding the fine particles and before or during the temperature increase of the liquid temperature to 70 to 95 ° C. A method for producing composite particles.
(3) The method for producing composite particles according to the method (2), wherein a part of the mineral acid is 0 to 50% of the total addition amount.
(4) The method for producing composite particles according to (1) to (3), wherein the fine particles are titanium dioxide having a particle size of 0.1 to 0.4 μm.
(5) In the above (1) to (5), a high shear force is applied to the alkaline silicate aqueous solution from the time when the fine particles are dispersed in the alkaline silicate aqueous solution until the addition of all of the mineral acid. A method for producing composite particles.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The alkali silicate aqueous solution used in the present invention is not particularly limited, but a sodium silicate aqueous solution or a potassium silicate aqueous solution is preferable. The molar concentration of the aqueous alkali silicate solution is preferably selected from the range where the molar ratio (SiO 2 / Na 2 O) is 2.0 to 3.4. The concentration of the alkali silicate aqueous solution is selected from the range of 3 to 15% by weight in terms of the content of silicic acid (SiO 2 ) in the aqueous solution. When the concentration is higher than this range, the viscosity of the solution during the reaction is increased, and when it is lower, the amount of the reaction solution is increased, which is inefficient. Furthermore, it is desirable to keep the silicic acid concentration in the reaction solution in the range of 3 to 15% by weight even during the reaction.
[0009]
As a mineral acid used by this invention, it does not specifically limit but a well-known thing is used. Specific examples include inorganic acids such as hydrochloric acid, sulfuric acid, and nitric acid. Sulfuric acid is preferably used because it is easily available and inexpensive. The concentration at the time of addition of the mineral acid is not particularly limited, but is generally selected from the range of 10 to 30% by weight.
[0010]
In addition, the alkali-resistant microparticles used in the present invention are dispersed in an aqueous alkali silicate solution having a pH of 10 to 12 before neutralization with sulfuric acid, and the temperature is as high as 70 to 95 ° C. As much alkali resistance as possible is required.
Further, in order to form good secondary particles together with hydrated silicic acid, the particle size is desirably 5 μm or less, and particularly preferably 0.05 to 1 μm.
Examples of such particles include inorganic particles such as titanium dioxide, calcium carbonate, magnesium carbonate, and barium sulfate, and organic particles such as urea formalin and polystyrene.
[0011]
Among these fine particles, crystalline titanium dioxide is suitable for the present synthesis conditions in terms of alkali resistance and particle size, and is most effective in improving opacity when used as a composite for paper filling. Preferably used.
Crystalline titanium dioxide has an average primary particle size in the range of 0.1 to 0.4 μm, and a crystalline type of rutile type and / or anatase type is selected and used alone or in combination.
[0012]
Some crystalline titanium dioxide has been treated with alumina as a surface treatment agent to enhance dispersibility, but alumina may dissolve under the present synthesis conditions, which may lead to a decrease in the composite rate. Therefore, the alumina content is preferably less than 10% as analyzed by fluorescent X-ray. In addition, favorable results can be obtained if the matching of hydrated silicic acid and titanium dioxide is improved by coating with a cationic dispersant or doping with zinc oxide.
[0013]
The crystalline titanium dioxide is used after being previously dispersed in water, but a dispersant may be added in order to prevent reaggregation of particles during dispersion. Examples of the dispersant include sodium hexametaphosphate, sodium pyrophosphate, and sodium polyacrylate. The concentration of the crystalline titanium dioxide slurry after dispersion is adjusted to 1 to 10% by weight.
Further, for the purpose of promoting the growth of hydrated silicic acid or controlling the viscosity during the reaction, an electrolyte such as sodium sulfate can be appropriately added.
[0014]
In the present invention, in the first half of the reaction, that is, until the temperature is raised to 70 to 95 ° C., hydrated silicate primary particles are formed with fine particles as nuclei. If this temperature is less than 70 degreeC, a liquid will become a gel-like and subsequent composite particle cannot be formed. On the other hand, if the temperature exceeds 95 ° C., the vapor pressure increases, and a special device such as a high-temperature high-pressure kettle is required, which is not appropriate.
The temperature is raised over 10 to 30 minutes with stirring after the addition of fine particles. It is practically difficult to raise the temperature in a shorter time than this because an industrially highly capable heating device is required.
[0015]
In the above step, it is possible to add a part of the mineral acid before adding / dispersing the fine particles. By this method, the hydrated silicic acid primary particles become bulky and the oil absorption can be increased.
It is also possible to add a part of the mineral acid after adding the fine particles and before or during the temperature rise. By this method, the structure of the hydrated silicic acid can be controlled to be preferable. However, in this case, the addition of the mineral acid is preferably started while the liquid temperature is 20 to 55 ° C. However, if there is no problem in production such as an increase in viscosity, the addition of the mineral acid may be performed at a temperature outside this range. It doesn't matter.
It is also possible to add and disperse the fine particles both before and after the addition of the mineral acid.
In any case, when the mineral acid is added to the liquid in the first half step, the addition amount is 50% or less of the total addition amount (total addition amount in the first half and the second half), and the aqueous solution is partially added during the addition. Therefore, it is continuously added with sufficient stirring so that the pH does not drop below 7. If these ranges are not observed, the reaction solution becomes gelled, causing problems in production, and causing problems such as a significant decrease in the composite rate.
[0016]
When the temperature of the liquid reaches the target temperature of 70 to 95 ° C., the solution is aged at a temperature of 70 to 95 ° C. as necessary, and proceeds to the latter half of the process.
The latter half of the process is a process in which mineral acid is added while maintaining the temperature range (70 to 95 ° C.), and the pH of the liquid is adjusted to between 3 and 6.5.
The addition of the mineral acid is performed over a period of about 10 minutes to 1 hour with sufficient stirring, and then may be aged in the temperature range as necessary.
[0017]
In the present invention, it is necessary to sufficiently stir and add a high shearing force from the time when the fine particles are added to the alkali silicate aqueous solution until the addition of the mineral acid in the latter half of the process is completed. . Thereby, not only the secondary particle diameter of the composite particles is adjusted to the most preferable range as a paper filler, but also hydrated silicic acid and fine particles are uniformly combined.
Examples of a method for giving a high shearing force include known methods such as a homomixer, a homogenizer, an in-line mixer, a disc refiner, and a sand grinder, which are appropriately selected and used.
[0018]
The composite particles obtained in the present invention are used after wet pulverization and / or wet classification in advance when used as a paper filler. Examples of the wet pulverizer include known continuous homomixers, colloid mills, disc refiners, sand grinders, ball mills, rod mills, and the like. When pulverized and further classified, the composite is like a known vibrating screen. It is used after wet classification with an appropriate classifier to remove coarse particles exceeding 70 to 75 μm of the composite. The composite obtained by such a treatment has an average particle size of 3 to 30 μm, preferably 10 to 25 μm, and 1 to 30 μm particles by a laser diffraction particle size distribution analyzer (Shimadzu, SALD-1100). The thing of a diameter contains 70 weight% or more.
As described above, the composite of hydrated silicic acid and microparticles obtained by the production method of the present invention has high mechanical stability because the microparticles are uniformly combined in the hydrated silica particles. For example, when used as a filler in papermaking, fine particles can be efficiently retained in paper together with hydrated silicic acid.
[0019]
By adding the composite of hydrated silicic acid and fine particles according to the present invention to the pulp raw material during paper making, the fine particles can be retained in the paper with a high yield. As in the method according to the present invention, fine particles are added before the secondary particles of hydrated silicic acid are precipitated and combined to form hydrated silicate particles with the fine particles as nuclei, and then further added. When the paper is made, the secondary mineral acid grows hydrated silicate secondary particles, and as a result, the microparticles are not uniformly localized but are uniformly combined throughout the hydrated silicate secondary particles. This is because the various particles received receive fine particles that do not fall off and a composite with excellent mechanical stability is formed.
Hydrated silicic acid is excellent in ink absorbability, so it may be used to improve the opacity of printing paper, especially after printing, but the other fine particles according to the method of the present invention, such as extremely high opacity By compounding with titanium dioxide or the like, it is possible to provide fillers that meet demands in various fields as well as papermaking applications.
[0020]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples. In the following examples, all percentages are by weight.
[0021]
<Example 1>
240 g of commercially available No. 3 sodium silicate aqueous solution (manufactured by Soda Tokuyama, SiO 2 concentration: 30%) was diluted to 1000 g with pure water, put in a 2 liter stainless steel beaker with a SiO 2 concentration of 72 g / kg, and at a temperature of 50 ° C. 17.9 g of anhydrous sodium sulfate was added and 7.2 g of titanium dioxide (JA-4, average particle size 250 nm, manufactured by Teica) dispersed in 100 g of water while stirring at 1200 rpm with a propeller stirrer (Three-One Motor) Was added. Thereafter, 72 g of sulfuric acid (concentration 20%) was continuously added over 15 minutes.
After the addition of sulfuric acid was completed, the temperature was raised to 90 ° C. over 15 minutes with stirring.
Stirring was continued at this temperature for 10 minutes, followed by aging for 10 minutes. Then, the remaining 108 g of sulfuric acid was continuously added over 20 minutes, followed by aging at 90 ° C. for 20 minutes. After aging, the reaction solution was cooled to 50 ° C. over 30 minutes. The pH of the slurry at this time was 5.7.
[0022]
Next, 1000 g of glass beads having a diameter of 2.0 to 2.6 mm are added to the slurry containing the reaction product, and the mixture is stirred at 400 rpm with a propeller stirrer for 3 minutes while being kept at 50 ° C. The slurry was passed through a 200 mesh standard sieve to remove the residue. When the average particle diameter of the composite was measured with the laser diffraction particle size distribution analyzer, it was 21 μm, and 75% was contained in the range of 1 to 30 μm.
The composite slurry that passed through the sieve was filtered with a Buchner funnel to obtain a cake-like composite, which was dispersed in water, stirred, and re-slurried to adjust the slurry concentration to 5%.
[0023]
<Measurement of composite rate>
The particle size distribution of the synthesized composite filler was measured with Shimadzu SALD-1100 to determine the composite rate. That is, from the particle size distribution measurement of the mixture of fine particles to be combined and hydrated silicic acid, the signal ratio of each particle is obtained to create a calibration curve, and the composite is obtained from the signal ratio obtained from the particle size distribution of the composite filler and the previous calibration curve. Obtain the fine particle content of the filler. In this method, it is necessary that the signals of hydrated silicic acid and fine particles are clearly separated, such as titanium dioxide and calcium carbonate mentioned above. The composite rate H (%) is defined by the following formula (1).
H = (1-composite fine particle content ratio / microparticle content ratio) × 100 (1)
[0024]
<Measurement of mechanical stability>
The mechanical stability of the composite was determined by the following procedure. That is, 1000 g of glass beads having a diameter of 2.0 to 2.6 mm are added to 1 liter of 5% slurry solution of the composite, and the mixture is stirred at 400 rpm with a three-one motor while keeping the temperature at 50 ° C., and the particle size distribution is measured. And the change of the particle size according to the processing time and the composite rate obtained as described above is obtained.
[0025]
<Preparation of handmade paper>
Next, a slurry of mixed pulp composed of 15% softwood bleached kraft pulp (NBKP), 34% thermomechanical pulp (TMP), 11% mechanical pulp (GP) and 40% newspaper deinked waste paper pulp (DIP) (concentration 1. 25%), the composite slurry is added to 3% of the pulp dry weight, and after stirring for 2 minutes, the sulfuric acid band (Al 2 (SO 4 ) 3 · 18H 2 O) is added to the pulp dry weight. 1% was added. After further stirring for 2 minutes, the whole was prepared to a concentration of 0.2%. Using the prepared pulp slurry, paper with a basis weight of 40.0 g / m 2 was made with a square sheet machine for experiment and dried.
[0026]
<Measurement of various paper properties>
The handsheet was conditioned in a room at 20 ° C. and 65% relative humidity, then passed twice with a laboratory calender at a linear pressure of 40 kg / cm to adjust the smoothness, and then whiteness and opacity paper quality. Tests, printing tests, and filler yield tests were conducted by the following test methods for evaluation.
The test method used is as follows.
(1) Whiteness Measured according to JIS P 8148 (ISO 2470).
(2) Blank paper opacity Measured according to TAPPI 53 (ISO 2471).
(3) Opacity after printing Using a newspaper offset ink, solid printing with a size of 11 × 21 cm is performed with an RI printing tester, and the opacity Y (%) after printing is expressed by the following formula (2). Defined in
Y (%) = {(reflectance of the back surface after printing) / (reflectance of the unprinted back surface)} × 100 (2)
[0027]
(4) Filler Yield Accurately cut 10 × 10 cm pieces of paper from a hand-made sheet (blank) prepared without pre-filling and a hand-made sheet containing filler, and 105 ° C. × After drying for 3 hours, the dry weight is weighed. Next, this absolutely dry paper piece is pre-combusted with a burner, and subsequently baked in an electric furnace (Yamato, FJ31) at 900 ° C. for 2 hours to obtain the ash content contained in the sheet. The filler yield R (%) was defined by the following formula (3).
R (%) = {(weight of sheet ash with filler / absolute dry weight−weight of blank ash / absolute dry weight)} / filler blending ratio × 100 (3)
[0028]
<Example 2>
The same treatment as in Example 1 was performed except that the first sulfuric acid was not added, the second sulfuric acid was 180 g, and titanium dioxide (JA-4, average particle diameter 250 nm, manufactured by Teica) was used 7.2 g. Further, the obtained composite slurry was evaluated in the same manner as in Example 1.
The average particle diameter of the obtained composite was 20 μm, and 77% contained 1-30 μm.
[0029]
<Example 3>
While adding 45 g of sulfuric acid for the first time while stirring at 8000 rpm with a homomixer (special machine chemical, Mark II 2.5 type), 7.2 g of titanium dioxide (JRNC, average particle size 250 nm, manufactured by Teica) was added, 90 After raising the temperature to 0 ° C., the stirring was changed from a homomixer to three-one motor 1200 rpm, and 135 g of second sulfuric acid was added. Thereafter, in the same manner as in Example 1, aging, cooling, pulverization, classification, filtration and redispersion were performed to obtain a composite slurry. The average particle diameter of the obtained composite was 19 μm, and that of 1-30 μm contained 85%. In addition, a handsheet was prepared using this slurry in the same manner as in Example 1 and evaluated.
[0030]
<Example 4>
A composite particle slurry was obtained in the same manner as in Example 1 except that 7.2 g of urea formaldehyde resin (Mitsui Toatsu Chemicals, Eupearl C-22) was used instead of titanium dioxide. The obtained composite had an average particle diameter of 22 μm and 70% of 1-30 μm. In addition, a handsheet was prepared using this slurry in the same manner as in Example 1 and evaluated.
[0031]
<Example 5>
After adding the first sulfuric acid in the same manner as in Example 1, the temperature was raised to 70 ° C., and 108 g of the second sulfuric acid was continuously added. Otherwise, the same treatment was performed to obtain a composite particle slurry. The average particle diameter of the composite was 22 μm, and 71% of the composite was 1-30 μm. In addition, a handsheet was prepared using this slurry in the same manner as in Example 1 and evaluated.
[0032]
<Comparative Example 1>
A composite as in Example 1 except that the addition position of titanium dioxide (JA-4, average particle size 250 nm, manufactured by Teica) was changed after adding 54 g corresponding to half of the second sulfuric acid in Example 1. Was used to create hand-sheets and evaluated. The average particle size of the composite was 18 μm, and that of 1-30 μm was 75%.
[0033]
<Comparative example 2>
A composite was produced in the same manner as in Example 1 except that 108 g of the first sulfuric acid and 72 g of the second sulfuric acid were added in Example 1, and a handsheet was prepared and evaluated using this composite. . The average particle diameter of the composite particles was 23 μm, and that of 1-30 μm was 70%.
[0034]
<Comparative Example 3>
The reaction was carried out in the same manner as in Example 1 except that the temperature after the first sulfuric acid addition was increased to 60 ° C. and the subsequent reaction and aging were also performed at 60 ° C. Of inferior product and could not withstand subsequent use.
[0035]
<Comparative example 4>
A hydrated silicic acid was produced in the same manner as in Example 1 except that no crystalline titanium dioxide was added, and this was used to grind, classify, filter, and redisperse in the same manner as in Example 1. A handsheet was prepared and evaluated. The average particle diameter of the obtained particles was 20 μm, and that of 1-30 μm was 87%.
[0036]
<Reference Example 1>
For comparison, a handsheet was prepared and evaluated in the same manner as in Example 1 except that no filler was used.
[0037]
<Reference Example 2>
In the same manner as in Example 1, using a slurry in which hydrated silicic acid and titanium dioxide (JA-4, average particle size 250 nm, manufactured by Teica) were mixed at a ratio of 10: 1 so as to be the same as in Example 1. A handsheet was prepared and evaluated.
The results obtained in the above Examples, Comparative Examples and Reference Examples are shown in Tables 1 and 2.
[0038]
[Table 1]
Figure 0003982027
As is clear from Table 1, it can be seen that the composite ratio of the microparticles obtained by the method of the present invention is high and the mechanical stability is excellent (Examples 1 to 5).
[0039]
[Table 2]
Figure 0003982027
[0040]
As is apparent from Table 2, the composite particles obtained by the method of the present invention have a high yield in paper, and impart high whiteness and opacity, especially outstanding post-printing opacity, to the paper in which this is internally added. (Examples 1-5).
On the other hand, when the addition position of titanium dioxide is after adding half the amount of the second sulfuric acid or when adding 60% of the total amount of the first sulfuric acid (Comparative Examples 1 and 2), the composite rate of the fine particles is The mechanical stability of the composite is low, and as a result, the yield in paper is also low. This is considered to be because the fine particles were given to the reaction system after the hydrated silicate particles were almost completed, and thus only adhered to the surface of the hydrated silicate with a weak force.
Moreover, when the liquid temperature at the time of reaction is too low (Comparative Example 3), the complexing reaction is not appropriately performed.
[0041]
On the other hand, when no fine particles are used even after dispersion treatment or addition of sodium silicate solution (Comparative Example 4) or when no filler is used (Reference Example 1), the fine particles were composite particles. Thus, the whiteness, post-printing opacity and blank paper opacity in this example are poor.
Or when it mixes simply (reference example 2), the stay of the fine particle in paper is bad, and the quality like an Example is not obtained after all.
[0042]
【The invention's effect】
As described above, the present invention has a high yield when it is squeezed into paper by combining fine particles and hydrated silicate particles at a high composite rate and having excellent mechanical stability. Can be obtained, and the effects of the fine particles such as whiteness improvement and opacity improvement can be efficiently provided.

Claims (4)

ケイ酸アルカリ水溶液に耐アルカリ性の微小粒子を添加して分散し、次いで液温を70〜95℃まで昇温し、液温を該温度範囲に保持しながら鉱酸の全添加量を添加することにより、液pHを3〜6.5の範囲に調整することを特徴とする複合粒子の製造方法。Add and disperse alkali-resistant fine particles in an aqueous alkali silicate solution, then raise the liquid temperature to 70-95 ° C., and add the total amount of mineral acid while keeping the liquid temperature in the temperature range To adjust the liquid pH to a range of 3 to 6.5. ケイ酸アルカリ水溶液に耐アルカリ性の微小粒子を添加して分散し、次いで液温を70〜95℃まで昇温し、液温を保持しながら鉱酸を添加する複合粒子の製造方法において、微小粒子を添加する前または微小粒子を添加した後であって、かつ、ケイ酸アルカリ水溶液の液温を昇温する前または昇温中に鉱酸の全添加量の50%以下を添加し、次いで液温を70〜95℃まで昇温し、液温を該温度範囲に保持しながら残りの鉱酸を添加することにより、液pHを3〜6.5の範囲に調整することを特徴とする複合粒子の製造方法。In the method for producing composite particles, in which alkali-resistant fine particles are added and dispersed in an alkali silicate aqueous solution, the liquid temperature is then raised to 70 to 95 ° C., and the mineral acid is added while maintaining the liquid temperature. before the addition of, or even after the addition of fine particles, and the addition of 50 percent or less of the total amount of mineral acid before or during the temperature increase to raise the temperature of the liquid temperature of the aqueous alkali silicate solution, then The liquid pH is raised to 70 to 95 ° C., and the liquid pH is adjusted to the range of 3 to 6.5 by adding the remaining mineral acid while keeping the liquid temperature in the temperature range. A method for producing composite particles. 微小粒子が粒子径0.1〜0.4μmの二酸化チタンである請求項1または2に記載の複合粒子の製造方法。The method for producing composite particles according to claim 1 or 2 , wherein the fine particles are titanium dioxide having a particle diameter of 0.1 to 0.4 µm. 微小粒子をケイ酸アルカリ水溶液に分散する時から鉱酸の全部を添加し終わるまで、ケイ酸アルカリ水溶液に高剪断力を与えることを特徴とする請求項1〜3のいずれかに記載の複合粒子の製造方法。The composite particle according to any one of claims 1 to 3 , wherein a high shear force is applied to the alkali silicate aqueous solution from the time when the fine particles are dispersed in the alkali silicate aqueous solution until the addition of all of the mineral acid. Manufacturing method.
JP27290797A 1997-10-06 1997-10-06 Method for producing composite particles Expired - Fee Related JP3982027B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27290797A JP3982027B2 (en) 1997-10-06 1997-10-06 Method for producing composite particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27290797A JP3982027B2 (en) 1997-10-06 1997-10-06 Method for producing composite particles

Publications (2)

Publication Number Publication Date
JPH11107189A JPH11107189A (en) 1999-04-20
JP3982027B2 true JP3982027B2 (en) 2007-09-26

Family

ID=17520427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27290797A Expired - Fee Related JP3982027B2 (en) 1997-10-06 1997-10-06 Method for producing composite particles

Country Status (1)

Country Link
JP (1) JP3982027B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2852600B1 (en) 2003-03-18 2005-06-10 NEW MINERAL PIGMENT CONTAINING CALCIUM CARBONATE, AQUEOUS SUSPENSION CONTAINING SAME AND USES THEREOF
AU2004266919B2 (en) * 2003-08-26 2010-03-04 Nippon Paper Industries Co., Ltd. Process for producing inkjet recording medium
JP4802465B2 (en) * 2004-08-31 2011-10-26 日本製紙株式会社 Coated paper for printing
JP4918749B2 (en) * 2004-09-06 2012-04-18 日本製紙株式会社 Coated paper for printing
JP4561258B2 (en) * 2004-09-07 2010-10-13 日本製紙株式会社 Coated paper for printing
JP4802471B2 (en) * 2004-09-28 2011-10-26 日本製紙株式会社 Coated paper for printing
JP4802474B2 (en) * 2004-09-29 2011-10-26 日本製紙株式会社 Coated paper for printing
JP4752442B2 (en) * 2005-10-17 2011-08-17 王子製紙株式会社 Hydrated silicic acid for papermaking and method for producing the same
JP5003139B2 (en) * 2006-01-19 2012-08-15 王子製紙株式会社 Porous filler for paper, its production method and porous filler slurry for paper and paper
JP4903493B2 (en) * 2006-05-31 2012-03-28 日本製紙株式会社 Method for producing composite particles
JP5502556B2 (en) * 2010-03-30 2014-05-28 大王製紙株式会社 Method for producing silica composite particles
JP5486377B2 (en) * 2010-03-31 2014-05-07 大王製紙株式会社 Method for producing silica composite mixed inorganic particles and silica composite mixed inorganic particles
JP5702590B2 (en) * 2010-12-07 2015-04-15 大王製紙株式会社 Composite particles, composite particle internal paper and coated paper

Also Published As

Publication number Publication date
JPH11107189A (en) 1999-04-20

Similar Documents

Publication Publication Date Title
JP3898007B2 (en) Method for producing bulky paper with internal filler added with filler, which is an aggregate of inorganic particles and silica composite particles
JP3982027B2 (en) Method for producing composite particles
US20070246179A1 (en) Composites of Starch Containing Silicon, Method for the Production Thereof, and Use for Making Paper and Board
CA2845005C (en) Self-binding pigment hybrid
JP4263864B2 (en) Novel composite for papermaking and method for synthesis
JP4568921B2 (en) Silica particles, method for producing the same, and silica particle-containing paper
US6685907B2 (en) Process for producing silica particles suitable for use as filler for paper
JP4233478B2 (en) Neutral newspaper printing paper
JP4796282B2 (en) Low density printing paper
JP4903493B2 (en) Method for producing composite particles
JPH05311599A (en) Filler for paper and paper using the same
US20040079504A1 (en) Doped precipitate silica suspensions with low-particle-size distribution and their use a paper filler
JP2666638B2 (en) Method for producing hydrated silicic acid for papermaking
JP3872611B2 (en) Method for producing calcium carbonate
JP4225929B2 (en) Light calcium carbonate-silica composite
JP2007091581A (en) Porous filler, its production method and paper
JP2960001B2 (en) Manufacturing method of filler-filled paper
JP2960002B2 (en) Manufacturing method of filler-filled paper
JP3728215B2 (en) Aluminum silicate
JPH09156919A (en) Complex particle of titania and silica and its production
JPH09286609A (en) Production of blended particles of titania and silica
JPH05301707A (en) Water-containing silicic acid and its production
JP4742963B2 (en) Porous filler and production method thereof, porous filler slurry and paper
JP4339392B2 (en) Novel composite for papermaking and method for synthesis
JPS62223396A (en) Production of filler internal added paper

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070625

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130713

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees