JPH06292384A - Vector control method for induction motor having no speed sensor - Google Patents

Vector control method for induction motor having no speed sensor

Info

Publication number
JPH06292384A
JPH06292384A JP5108685A JP10868593A JPH06292384A JP H06292384 A JPH06292384 A JP H06292384A JP 5108685 A JP5108685 A JP 5108685A JP 10868593 A JP10868593 A JP 10868593A JP H06292384 A JPH06292384 A JP H06292384A
Authority
JP
Japan
Prior art keywords
torque
instruction
magnetic flux
speed
flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5108685A
Other languages
Japanese (ja)
Inventor
Tounei Chiyou
東寧 張
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIKKI DENSO SYST KENKYUSHO KK
Original Assignee
NIKKI DENSO SYST KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIKKI DENSO SYST KENKYUSHO KK filed Critical NIKKI DENSO SYST KENKYUSHO KK
Priority to JP5108685A priority Critical patent/JPH06292384A/en
Publication of JPH06292384A publication Critical patent/JPH06292384A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Ac Motors In General (AREA)

Abstract

PURPOSE:To reduce the influence of the error of an identification speed upon a generated torque and facilitate stable vector control of an induction motor having no speed sensor by a method wherein a flux level can be varied in accordance with the magnitude of a torque instruction. CONSTITUTION:A flux instruction phi2d* is made variable in accordance with the magnitude of a torque instruction tau* by a flux instruction generator 12. A torque current instruction is calculated from the values of the torque instruction tau* and the flux instruction phi2d* by a torque current instruction device 16. Taking the magnetic saturation characteristics of an induction motor 1, for instance, into account, when the torque instruction exceeds a rated torque, a certain value is given to the flux instruction. When the torque instruction is zero, a value smaller than the rated flux is given to the flux instruction. With this constitution, in the case of the torque control, the control error can be suppressed to a small value for the small torque instruction value and, in the case of the speed control of a low inertia system or a low load system, a disturbance torque which can be produced when the torque instruction is small can be suppressed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,誘導電動機のベクトル
制御法に関し,特に速度センサを付けないときのベクト
ル制御法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vector control method for an induction motor, and more particularly to a vector control method without a speed sensor.

【0002】[0002]

【従来の技術】一般に,誘導電動機をベクトル制御法に
より制御する場合には,誘導電動機の速度に関する情報
が必要不可欠である。従って,速度センサを用いずにベ
クトル制御を行うためには,何等かの方法により速度を
同定する必要がある。そのため, 電気学会技術報告(II部)第416号:センサレス化
技術;pp37−49,1992 杉本,ほか :モデル規範適応システムを適用した誘導
電動機の速度センサレスベクトル制御;電学論D108
3,pp306,1988 奥山,ほか: 誘導電動機の速度・電圧センサレス・ベ
クトル制御法;電学論D107,pp191,1987 奥山,ほか: 速度・電圧センサレスベクトル制御にお
ける制御定数設定誤差の影響とその保証;電学論D11
0,pp477,1990 Miyasita,etc: speed senso
rless highspeed torque an
d speed control basedon i
nstaneous spatial vector
theory;proc.IPEC−Tokyo,11
40,1990 久保田ほか: 誘導電動機の速度適応機構を有するフル
オーダ二次磁束オブザーバ;電学産業応用部門全大,1
26−519,1991 などが考案されてきた。第8図は,従来の速度センサを
用いない誘導電動機のすべり角周波数制御型ベクトル制
御法の一例である。第8図において,1は誘導電動機,
2は3相/2相変換器,3は2相/3相変換器,4は回
転/固定軸変換器,5は固定/回転軸変換器,6はトル
ク電流制御器,7は励磁電流制御器,8は磁束制御器,
9は速度同定器,10は電源角周波数計算器,11は積
分器,12はすべり角周波数計算器,13は磁束オブザ
ーバ,14は磁束指令,15はトルク電流指令器,16
はトルク指令τである。次に,この例の動作について
説明する。速度同定器9は,受け取った2相電圧ν
1a’ν1b’2相電流i1a’1bの情報から回転
速度ω2eを算出する。すべり角周波数計算器12は電
源角周波数ω1eで回転する回転座標系のd−q軸電流
1d’1qからすべり角周波数ωを計算しこれを
電源角周波数計算器10に通知する。電源角周波数計算
器10は速度同定器9とすべり角周波数計算器15から
の情報を足して電源角周波数指令ω1eを算出しこれを
積分器11に通知する。磁束オブザーバ13は,励磁電
流i1dからd−軸磁束φ2dを計算しこれを磁束制御
器8に通知する。磁束制御器8は,磁束指令14のφ
2d と磁束オブザーバ13から得たd−軸磁束値φ
2dとを比較し,磁束φ2dを指令値φ2d に一致す
るよう制御する。トルク電流指令器15はトルク指令1
6を定数倍してトルク電流指令を計算し,これをトルク
電流制御器6に通知する。トルク電流制御器6は,受け
とったトルク電流指令i1q と実際のトルク電流i
1qとを比較し,i1qがi1qに一致するよう制御す
る。速度同定器9により計算された速度ω2eと,誘導
電動機の実際の速度とが一致すれば,電源角周波数計算
器10で正確な電源角周波数ω1eを与えられる。この
とき,q−軸磁束φ2qがゼロとなることが知られてい
る。しかし,速度同定に用いられる誘導電動機の数学モ
デルは簡略化したものであり,誘導電動機の特性の非線
形性や温度依存性などにより,正確な誘導電動機のパラ
メータを得るのは困難である。このため,従来のいずれ
の方法による場合にも実速度と同定した速度の間には誤
差が存在する。この誤差の大きさは同定の方法または環
境の変化に左右され,場合によっては相当大きな値にな
ることもある。このように,速度同定値ω2eに誤差が
ある場合,これは電源角周波数ω1eの誤差になり,結
局これはすべりの指令値ωと実際のすべりの誤差とし
て現われてくる。すべりの指令値ωが正しい場合はq
−軸磁束φ2qの実際値がゼロとなるが,ωに誤差が
ある場合はq−軸磁束φ2qの実際値がゼロでなくな
る。第9図は,従来の速度センサを用いない誘導電動機
の磁束オリエンテーション型ベクトル制御法の一例であ
る。第9図において,1は誘導電動機,2は3相/2相
変換器,3は2相/3相変換器,4は回転/固定軸変換
器,5は固定/回転軸変換器,6はトルク電流制御器,
7は励磁電流制御器,8は磁束制御器,9は速度同定
器,10は磁束オブザーバ,11は磁束指令,12はト
ルク電流指令器,13はトルク指令である。次に,この
例の動作について説明する。速度同定器9は,受け取っ
た2相電圧ν1a’ν1b’2相電流i1a’1b’
の情報から回転速度ω2eを算出し,これを磁束オブザ
ーバ10に通知する。磁束オブザーバ10は受け取った
2相電圧ν1a’ν1b’2相電流i1a’1b’
して同定速度の情報ω2eから,磁束を計算し,磁束制
御器8に通知する。また,これに基づき,回転角度θを
計算し,これを回転/固定軸変換器4と固定/回転軸変
換器5に通知する。磁束制御器8は,磁束指令11のφ
2d と磁束オブザーバ10から得たd−軸磁束値φ
2dとを比較し,磁束φ2dを指令値φ2d に一致す
るよう制御する。トルク電流指令器12は受け取ったト
ルク指令13を定数倍し,トルク電流指令を算出する。
トルク電流制御器6は,トルク電流指令i1q と実際
のトルク電流i1qとを比較し,i1qがi1q に一
致するよう制御する。速度同定器9により計算された速
度ω2eと,誘導電動機の実際の速度とが一致すれば,
磁束オブザーバ10で正確な磁束が得られる。しかし,
図8の従来例と同じ原因で速度同定値ω2eに誤差があ
る場合,正確な磁束情報が得られなくなり,すなわち,
q−軸磁束φ2qの実際値がゼロでなくなる。以上の二
つの例において速度同定が正しくない場合は,q−軸磁
束φ2qの実際値がゼロでなくなることがわかった。上
記の2例において,誘導電動機の発生するトルクτは回
転座標系d−q軸での1次側電流i1d,1qと,2
次側磁束φ2d’φ2qとを用いて τ=φ2d 1q−φ2q 1d (1) と表わせることが知られている。ベクトル制御法が成り
立つ場合は,q軸磁束φ2qがゼロになる。従来のベク
トル制御法では,d軸磁束φ2dを一定に制御すれば,
発生トルクτとi1q間に線形的な関係が保たれ,i
1qを制御することでトルクが制御できる。通常,φ
2dを磁束,i1dを励磁電流,i1qトルク電流と呼
ぶ。しかし,上述のように,速度同定などの誤差によっ
て実際の磁束φ2qがゼロでなくなる場合,(1)式の
第2項がトルク発生の誤差項になる。従来のベクトル制
御法では,励磁電流i1dの値が通常大きいため,第2
項の誤差項はたとえφ2qが小さくても無視できない。
特に指令トルクが小さいとき,これに伴いトルク電流i
1qが小さく制御されるので,誤差項の値が第1項より
大きくなることもある。以上では,トルク制御系だけに
ついて述べたが,速度センサを用いない速度制御系を構
成する場合は,通常図4のように,トルク制御系を含め
て構成するため,速度制御系の内部に含まれるトルク制
御系のトルク発生誤差が速度同定の誤差より依然存在す
ることは明らかである。なお,同例に示したように,速
度制御の場合には,一般に速度制御器の出力がトルク指
令になる。
2. Description of the Related Art Generally, when controlling an induction motor by a vector control method, information on the speed of the induction motor is indispensable. Therefore, in order to perform vector control without using a speed sensor, it is necessary to identify the speed by some method. Therefore, IEEJ Technical Report (Part II) No. 416: Sensorless technology; pp37-49, 1992 Sugimoto, et al .: Speed sensorless vector control of induction motors applying model reference adaptation system;
3, pp306, 1988 Okuyama, et al .: Speed / voltage sensorless vector control method for induction motors; Denki D107, pp 191, 1987 Okuyama, et al .: Influence of control constant setting error in speed / voltage sensorless vector control and its guarantee; Denki D11
0, pp 477, 1990 Miyasita, etc: speed senso.
rless highspeed torque an
d speed control based i
nstaneous spatial vector
theory; proc. IPEC-Tokyo, 11
40, 1990 Kubota et al .: Full-order secondary magnetic flux observer with speed adaptation mechanism for induction motors;
26-519, 1991 and the like have been devised. FIG. 8 shows an example of a conventional slip angle frequency control type vector control method for an induction motor that does not use a speed sensor. In FIG. 8, 1 is an induction motor,
2 is a 3 phase / 2 phase converter, 3 is a 2 phase / 3 phase converter, 4 is a rotary / fixed axis converter, 5 is a fixed / rotary axis converter, 6 is a torque current controller, 7 is an exciting current control , 8 is a magnetic flux controller,
9 is a speed identifier, 10 is a power source angular frequency calculator, 11 is an integrator, 12 is a slip angular frequency calculator, 13 is a magnetic flux observer, 14 is a magnetic flux command, 15 is a torque current command device, 16
Is the torque command τ * . Next, the operation of this example will be described. The speed identifier 9 receives the received two-phase voltage ν
The rotation speed ω 2e is calculated from the information of the 1a ′ ν 1b ′ two-phase current i 1a ′ i 1b . The slip angular frequency calculator 12 calculates the slip angular frequency ω s from the dq axis current i 1d ′ i 1q of the rotating coordinate system that rotates at the power supply angular frequency ω 1e , and notifies the power supply angular frequency calculator 10 of this. The power source angular frequency calculator 10 adds the information from the velocity identifier 9 and the slip angular frequency calculator 15 to calculate the power source angular frequency command ω 1e , and notifies the integrator 11 of this. The magnetic flux observer 13 calculates the d-axis magnetic flux φ 2d from the exciting current i 1d and notifies the magnetic flux controller 8 of this. The magnetic flux controller 8 uses φ of the magnetic flux command 14.
2d * and d-axis magnetic flux value φ obtained from the magnetic flux observer 13.
2d, and the magnetic flux φ 2d is controlled so as to match the command value φ 2d * . The torque current command device 15 is the torque command 1
6 is multiplied by a constant to calculate a torque current command, and this is notified to the torque current controller 6. The torque current controller 6 receives the received torque current command i 1q * and the actual torque current i
Comparing the 1q, controls so that i 1q matches the i 1q. If the speed ω 2e calculated by the speed identifier 9 matches the actual speed of the induction motor, the power supply angular frequency calculator 10 can give an accurate power supply angular frequency ω 1e . At this time, it is known that the q-axis magnetic flux φ 2q becomes zero. However, the mathematical model of the induction motor used for speed identification is a simplified model, and it is difficult to obtain accurate induction motor parameters due to the nonlinearity of the characteristics of the induction motor and temperature dependence. Therefore, there is an error between the actual speed and the identified speed in any of the conventional methods. The magnitude of this error depends on the identification method or changes in the environment, and in some cases, it can be quite large. As described above, when the speed identification value ω 2e has an error, it becomes an error of the power source angular frequency ω 1e , and this eventually appears as an error between the slip command value ω s and the actual slip. If the slip command value ω s is correct, q
- the actual value of the axial magnetic flux phi 2q is becomes zero, the actual value of ω may have errors in the s q- axis magnetic flux phi 2q is no longer zero. FIG. 9 is an example of a magnetic flux orientation type vector control method for an induction motor that does not use a conventional speed sensor. In FIG. 9, 1 is an induction motor, 2 is a 3 phase / 2 phase converter, 3 is a 2 phase / 3 phase converter, 4 is a rotary / fixed shaft converter, 5 is a fixed / rotary shaft converter, and 6 is Torque current controller,
Reference numeral 7 is an exciting current controller, 8 is a magnetic flux controller, 9 is a speed identifier, 10 is a magnetic flux observer, 11 is a magnetic flux command, 12 is a torque current command device, and 13 is a torque command. Next, the operation of this example will be described. The velocity identifier 9 receives the received two-phase voltage ν 1a ′ ν 1b ′ two-phase current i 1a ′ i 1b ′.
The rotation speed ω 2e is calculated from the information of 1) and is notified to the magnetic flux observer 10. The magnetic flux observer 10 calculates the magnetic flux from the received two-phase voltage ν 1a ′ ν 1b ′ two-phase current i 1a ′ i 1b ′ and the identification speed information ω 2e , and notifies the magnetic flux controller 8. Also, based on this, the rotation angle θ is calculated, and this is notified to the rotation / fixed axis converter 4 and the fixed / rotation axis converter 5. The magnetic flux controller 8 uses the magnetic flux command 11 φ
2d * and d-axis magnetic flux value φ obtained from the magnetic flux observer 10.
2d, and the magnetic flux φ 2d is controlled so as to match the command value φ 2d * . The torque current command unit 12 multiplies the received torque command 13 by a constant to calculate a torque current command.
Torque current controller 6 compares the actual torque current i 1q and the torque current command i 1q *, controls so that i 1q matches the i 1q *. If the speed ω 2e calculated by the speed identifier 9 and the actual speed of the induction motor match,
An accurate magnetic flux can be obtained by the magnetic flux observer 10. However,
When there is an error in the velocity identification value ω 2e due to the same cause as in the conventional example of FIG. 8, accurate magnetic flux information cannot be obtained, that is,
The actual value of the q-axis magnetic flux φ 2q is not zero. In the above two examples, it was found that the actual value of the q-axis magnetic flux φ 2q was not zero when the velocity identification was incorrect. In the above two examples, the torque τ generated by the induction motor is obtained by comparing the primary currents i 1d, i 1q on the dq axes of the rotating coordinate system with 2
It is known that τ = φ 2d * i 1q −φ 2q * i 1d (1) can be expressed by using the secondary magnetic flux φ 2d ′ φ 2q . When the vector control method holds, the q-axis magnetic flux φ 2q becomes zero. In the conventional vector control method, if the d-axis magnetic flux φ 2d is controlled to be constant,
A linear relationship is maintained between the generated torque τ and i 1q , i
The torque can be controlled by controlling 1q . Usually φ
2d is called magnetic flux, i 1d is called exciting current, and i 1q torque current is called. However, as described above, when the actual magnetic flux φ 2q is not zero due to an error such as speed identification, the second term of the equation (1) becomes an error term for torque generation. In the conventional vector control method, since the value of the exciting current i 1d is usually large,
The error term of the term cannot be ignored even if φ 2q is small.
Especially when the command torque is small, the torque current i
Since 1q is controlled to be small, the value of the error term may become larger than the first term. Although only the torque control system has been described above, when configuring a speed control system that does not use a speed sensor, the torque control system is usually included as shown in FIG. It is clear that the torque generation error of the torque control system still exists than the error of speed identification. As shown in the same example, in the case of speed control, the output of the speed controller is generally the torque command.

【0003】[0003]

【発明が解決しようとする課題】上述した従来の速度セ
ンサを用いないベクトル制御法では,同定速度の誤差が
トルクの発生誤差となってしまうという欠点があった。
したがって,速度センサを用いずにトルク制御を行う場
合には,この誤差は指令トルクと実際の発生トルクの間
の誤差となる。また,速度センサを用いずに速度制御を
する場合には,この速度同定誤差は速度制御精度に影響
するだけでなく,制御系の不安定化や振動を招くことに
なる。その影響は低負荷のときや低慣性のときは特に著
しいので,このような系の発振する原因になり,速度セ
ンサレスベクトル制御の性能と信頼性を大きく影響する
問題となっている。本発明の目的は,かかる同定速度の
誤差の発生トルクへの影響を低減し,安定なベクトル制
御を実現することにある。
The above-described conventional vector control method that does not use a speed sensor has a drawback in that the error in the identified speed becomes a torque generation error.
Therefore, when torque control is performed without using the speed sensor, this error is an error between the command torque and the actual generated torque. Further, when speed control is performed without using a speed sensor, this speed identification error not only affects speed control accuracy, but also causes instability and vibration of the control system. The effect is particularly significant when the load is low or the inertia is low, which causes oscillation of such a system, and is a problem that greatly affects the performance and reliability of speed sensorless vector control. An object of the present invention is to reduce the influence of the error of the identification speed on the generated torque and realize stable vector control.

【0004】[0004]

【課題を解決するための手段と作用】本発明は,速度セ
ンサを持たない誘導電動機のベクトル制御法において,
磁束レベルをトルク指令の大きさによって可変とするこ
とを特徴とする。
The present invention provides a vector control method for an induction motor having no speed sensor,
The magnetic flux level is variable according to the magnitude of the torque command.

【0005】[0005]

【実施例】次に本発明の実施方法について例にあげて説
明する。
EXAMPLES Next, a method for carrying out the present invention will be described with reference to examples.

【0006】第1例 (第1図,第2図,第3図,第4
図) この例は本発明の磁束レベル可変型制御法をすべり型ベ
クトル法に適用した例である。従来例第8図と比較すれ
ばわかるように,従来のベクトル制御法と違うところは
磁束指令をトルク指令の大きさに応じて可変にした点,
また,トルク指令と磁束指令の値からトルク電流指令を
算出する点である。第2図はトルク指令の大きさによっ
て磁束指令を変化させる一つのパタンを示している。誘
導電動機の磁束飽和特性を考慮して,定格トルク以上の
トルク指令に対し,磁束指令を一定値に与える。トルク
指令がゼロの時は定格磁束より小さく与える。このよう
なパタンはいろいろな種類を考えられる。たとえば,第
3図はもう一つのパタンを示している。第1図ではトル
ク制御のみを示しているが,速度センサを持たない系の
速度制御を行うときには,第4図のように速度制御系を
構成し,トルク制御の部分を速度制御系の内部に含め
ば,速度制御系も簡単に構成できることが知られてい
る。したがって,本発明の方法は速度センサを持たない
速度制御系にも適用できる。
First Example (FIGS. 1, 2, 3, and 4)
(FIG.) This example is an example in which the variable magnetic flux level control method of the present invention is applied to the slip vector method. As can be seen from comparison with FIG. 8 of the conventional example, the difference from the conventional vector control method is that the magnetic flux command is made variable according to the magnitude of the torque command,
In addition, the torque current command is calculated from the values of the torque command and the magnetic flux command. FIG. 2 shows one pattern for changing the magnetic flux command according to the magnitude of the torque command. Considering the magnetic flux saturation characteristics of the induction motor, the magnetic flux command is given to a constant value for torque commands above the rated torque. When the torque command is zero, it is given smaller than the rated magnetic flux. Various types of patterns can be considered. For example, FIG. 3 shows another pattern. Although only torque control is shown in FIG. 1, when performing speed control of a system that does not have a speed sensor, a speed control system is configured as shown in FIG. 4, and the torque control part is placed inside the speed control system. If it is included, it is known that the speed control system can be easily constructed. Therefore, the method of the present invention can be applied to a speed control system having no speed sensor.

【0007】第2例 (第5図) 第5図は本発明の方法を磁束オリエンテーション型ベク
トル制御法に適用した実施例である。これは従来例の第
9図と比較すればわかるように,従来の磁束指令を一定
とする制御法との違うところは,トルク指令の大きさに
よって磁束指令値を変化させ,また,トルク指令値と磁
束指令値からトルク電流指令を算出する点である。な
お,トルク指令の大きさに対する磁束指令の発生パタン
や速度制御系の構成方法は第1例と同様である。
Second Example (FIG. 5) FIG. 5 shows an example in which the method of the present invention is applied to a magnetic flux orientation type vector control method. As can be seen from comparison with FIG. 9 of the conventional example, the difference from the conventional control method in which the magnetic flux command is constant is that the magnetic flux command value is changed according to the magnitude of the torque command and the torque command value is changed. The point is to calculate the torque current command from the magnetic flux command value. The generation pattern of the magnetic flux command with respect to the magnitude of the torque command and the method of configuring the speed control system are the same as in the first example.

【0008】第3例 (第6図) この例は基本的に第1例(第1図)と同じであるが,第
1例との違うところはトルク電流指令器16には磁束指
令でなはく,磁束オブザーバから観測した実磁束の情報
が入っている点である。
Third Example (FIG. 6) This example is basically the same as the first example (FIG. 1), except that the torque current command device 16 is not a magnetic flux command. Foil, it is the point that contains the information of the actual magnetic flux observed from the magnetic flux observer.

【0009】第4例 (第7図) この例は基本的に第2例(第5図)と同じであるが,第
2例との違うところはトルク電流指令器13には磁束指
令でなはく,磁束オブザーバから観測した実磁束の情報
が入っている点である。
Fourth Example (FIG. 7) This example is basically the same as the second example (FIG. 5), but the difference from the second example is that the torque current command device 13 is not a magnetic flux command. Foil, it is the point that contains the information of the actual magnetic flux observed from the magnetic flux observer.

【0010】[0010]

【発明の効果】以上の実施例に示すように,速度センサ
レスベクトル制御において,トルクの指令値の大きさに
よって磁束の指令を与え磁束を制御すると同時に磁束に
基づきトルク電流指令を算出し指令のトルクを与えるこ
とより,トルク制御では,小さいトルク指令値に対し,
その発生する誤差が小さく抑えることができ,また,慣
性の低い系や低負荷系の速度制御では,トルク指令が小
さいときに起こりうる外乱トルクを少なくする効果を与
えることができ,その結果,制御系の安定性と制御性能
を高めることができる。さらには,磁束指令が小さいと
きの励磁電流も小さくなるので,誘導機の銅損が少なく
なり,発熱の減少,抵抗変化の抑圧,省エネルギーなど
の諸々の効果を上げることができる。
As shown in the above embodiments, in the speed sensorless vector control, a magnetic flux command is given according to the magnitude of the torque command value to control the magnetic flux, and at the same time, a torque current command is calculated based on the magnetic flux to calculate the command torque. Therefore, in the torque control, for small torque command value,
The generated error can be suppressed to a small level, and speed control of a system with low inertia or a low load system can reduce the disturbance torque that can occur when the torque command is small. The stability and control performance of the system can be improved. Furthermore, since the exciting current when the magnetic flux command is small is also small, copper loss of the induction machine is reduced, and various effects such as reduction of heat generation, suppression of resistance change, and energy saving can be achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明が提案する,磁束レベル可変型速度セン
サレスすべり角周波数制御型ベクトル制御法の実施例1
である。
FIG. 1 is a first embodiment of a magnetic flux level variable speed sensorless slip angular frequency control type vector control method proposed by the present invention.
Is.

【図2】トルク指令の大きさによって磁束指令を与える
一つのパタン例である。
FIG. 2 is an example of a pattern that gives a magnetic flux command according to the magnitude of a torque command.

【図3】トルク指令の大きさによって磁束指令を与える
もう一つのパタン例である。
FIG. 3 is another pattern example for giving a magnetic flux command according to the magnitude of the torque command.

【図4】速度センサを持たない速度制御系の構成の一例
である。
FIG. 4 is an example of a configuration of a speed control system having no speed sensor.

【図5】本発明が提案する,磁束レベル可変型速度セン
サレス磁束オリエンテーション型ベクトル制御法の実施
例2である。
FIG. 5 is a second embodiment of the magnetic flux level variable type velocity sensorless magnetic flux orientation type vector control method proposed by the present invention.

【図6】本発明が提案する,磁束レベル可変型速度セン
サレスすべり角周波数制御型ベクトル制御法の実施例3
である。
FIG. 6 is a third embodiment of a magnetic flux level variable speed sensorless slip angular frequency control type vector control method proposed by the present invention.
Is.

【図7】本発明が提案する,磁束レベル可変型速度セン
サレス磁束オリエンテーション型ベクトル制御法の実施
例2である。
FIG. 7 is a second embodiment of the magnetic flux level variable type velocity sensorless magnetic flux orientation type vector control method proposed by the present invention.

【図8】従来の速度センサレスすべり角周波数制御型ベ
クトル制御法の代表例である。
FIG. 8 is a representative example of a conventional velocity sensorless slip angular frequency control type vector control method.

【図9】従来の速度センサレスすべり磁束オリエンテー
ション型ベクトル制御法の代表例である。
FIG. 9 is a typical example of a conventional velocity sensorless slip magnetic flux orientation type vector control method.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】速度センサを持たない誘導電動機のベクト
ル制御法において,磁束レベルをトルク指令の大きさに
よって可変とすることを特徴とするベクトル制御法。
1. A vector control method for an induction motor having no speed sensor, wherein the magnetic flux level is variable according to the magnitude of a torque command.
JP5108685A 1993-03-31 1993-03-31 Vector control method for induction motor having no speed sensor Pending JPH06292384A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5108685A JPH06292384A (en) 1993-03-31 1993-03-31 Vector control method for induction motor having no speed sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5108685A JPH06292384A (en) 1993-03-31 1993-03-31 Vector control method for induction motor having no speed sensor

Publications (1)

Publication Number Publication Date
JPH06292384A true JPH06292384A (en) 1994-10-18

Family

ID=14491070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5108685A Pending JPH06292384A (en) 1993-03-31 1993-03-31 Vector control method for induction motor having no speed sensor

Country Status (1)

Country Link
JP (1) JPH06292384A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2065172A1 (en) * 2008-07-24 2009-06-03 Siemens Aktiengesellschaft Screw press and method for its operation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2065172A1 (en) * 2008-07-24 2009-06-03 Siemens Aktiengesellschaft Screw press and method for its operation

Similar Documents

Publication Publication Date Title
Lorenz A simplified approach to continuous on-line tuning of field-oriented induction machine drives
JP3686596B2 (en) Control system for permanent magnet motor
JP3467961B2 (en) Control device for rotating electric machine
US5877606A (en) Starting of synchronous machine without rotor position or speed measurement
JP2001169599A (en) Vector-control device of induction motor
JP3429010B2 (en) Magnetic flux feedback device
KR20050088420A (en) Sensorless control system and method for a permanent magnet rotating machine
JP2001339998A (en) Method and device for controlling induction motor
JPS6331492A (en) Controller for induction motor
JP3951075B2 (en) Method and apparatus for controlling motor
US11689132B2 (en) MTPA based method for parameterless and position-sensorless control of a permanent magnet synchronous motor
Kerkman et al. Indirect field-oriented control of an induction motor in the field-weakening region
JP7032522B2 (en) Motor control device
Swami et al. Reducing dependency on rotor time constant in a rotor flux oriented vector controlled induction motor drive based on its static model
Pyrhönen Analysis and control of excitation, field weakening and stability in direct torque controlled electrically excited synchronous motor drives
JP2004187460A (en) Inverter control device, induction motor control device, and induction motor system
JPH06292384A (en) Vector control method for induction motor having no speed sensor
Anuchin et al. Adaptive observer for field oriented control systems of induction motors
JPH1118498A (en) Controller for servo motor
JP3290099B2 (en) Control device for reluctance type synchronous motor
JP3283729B2 (en) Induction motor control device
JP2001112285A (en) Resistance identification method for synchronous motor and controller thereof
WO2023073953A1 (en) Drive system and control method
JP3957368B2 (en) Induction motor controller
JP2002305899A (en) Control device for synchronous motor