JPH0629221A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH0629221A
JPH0629221A JP18205892A JP18205892A JPH0629221A JP H0629221 A JPH0629221 A JP H0629221A JP 18205892 A JP18205892 A JP 18205892A JP 18205892 A JP18205892 A JP 18205892A JP H0629221 A JPH0629221 A JP H0629221A
Authority
JP
Japan
Prior art keywords
gas
wafer
organic source
source gas
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP18205892A
Other languages
Japanese (ja)
Inventor
Hiroyuki Ota
裕之 大田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP18205892A priority Critical patent/JPH0629221A/en
Publication of JPH0629221A publication Critical patent/JPH0629221A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To provide a method of manufacturing a semiconductor device, wherein a BPSG film of stable quality can be obtained without lowering its growth speed. CONSTITUTION:This manufacture is constituted so as to include the following process: an organic source gas 5 and ozone gas 6 are jetted toward a wafer; an inert gas 7 is jetted toward the wafer so as to partition, at least partly, a region to which the organic source gas and the ozone gas are jetted and a region surrounding it; the organic source gas is reacted chemically with the ozone gas; and a thin film is formed on the surface of the wafer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体装置の製造方法
に係り、特に半導体基板表面を平坦化するためのBPS
G等の絶縁膜の成長方法に適用することができ、特に、
成長速度を低下させることなく安定した膜質のBPSG
膜を得ることができる半導体装置の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a semiconductor device, and more particularly to a BPS for flattening the surface of a semiconductor substrate.
It can be applied to a method of growing an insulating film such as G.
BPSG with stable film quality without reducing the growth rate
The present invention relates to a method for manufacturing a semiconductor device capable of obtaining a film.

【0002】近年、超LSIの高集積化、高密度化に伴
い、ウエーハプロセスにおいては、サブミクロンプロセ
スが提唱され、絶縁膜のカバレッジ、熱処理後のリフロ
ー性が重要な課題となっており、しかも熱処理温度も低
温化が求められている。以上のような状況から高濃度で
しかも安定した膜質の絶縁膜を成長させることができる
半導体装置の製造方法が望まれている。
In recent years, with the higher integration and higher density of VLSI, a submicron process has been proposed in the wafer process, and the coverage of the insulating film and the reflowability after heat treatment have become important issues. The heat treatment temperature is also required to be lowered. Under the circumstances described above, there is a demand for a method of manufacturing a semiconductor device capable of growing an insulating film having a high concentration and a stable film quality.

【0003】[0003]

【従来の技術】図4は従来の半導体製造装置の構成を示
す概略図である。図4において、31は反応室であり、32
は反応室31内に設置されたウエーハ33を載置するサセプ
タであり、このサセプタ32には図のA部の矢印に示す如
く方向に搬送する搬送機構が設けられている。次いで、
34は各ガスをウエーハ33に向かって噴射するためのイン
ジェクターであり、35はインジェクター34中央部の噴射
口からウエーハ33に向かって矢印に示す如く噴射される
TEOS(テトラエトキシシラン)とTMPO(トリメ
チルフォスフェート)とTMB(トリメチルボレート)
等からなる有機ソースガスであり、36はインジェクター
34周囲の噴射口からウエーハ33に向かって矢印に示す如
く噴射されるO3 ガスであり、37はインジェクター34中
央部の噴射口とインジェクター34周囲の噴射口間に設け
られた噴射口からウエーハ33に向かって矢印に示す如
く、噴射されるN2 ガスであり、このN2 ガス37は有機
ソースガス35とO3 ガス36がウエーハ33に到達するまで
できるだけ接触しないようにして、有機ソースガス35と
3 ガス36をできるだけウエーハ33表面で反応させるた
めに流している。そして、38は各ガスを排気するための
排気口である。
2. Description of the Related Art FIG. 4 is a schematic diagram showing the structure of a conventional semiconductor manufacturing apparatus. In FIG. 4, 31 is a reaction chamber, and 32
Is a susceptor on which the wafer 33 placed in the reaction chamber 31 is placed, and this susceptor 32 is provided with a transfer mechanism for transferring in the direction as indicated by the arrow in the portion A of FIG. Then
34 is an injector for injecting each gas toward the wafer 33, and 35 is TEOS (tetraethoxysilane) and TMPO (trimethyl) which are injected from the injection port at the center of the injector 34 toward the wafer 33 as shown by the arrow. Phosphate) and TMB (Trimethylborate)
Is an organic source gas consisting of etc., and 36 is an injector
34 is O 3 gas injected from the peripheral injection ports toward the wafer 33 as indicated by an arrow, and 37 is a wafer 33 from the injection port provided between the injection port in the central portion of the injector 34 and the injection port around the injector 34. As shown by the arrow, the N 2 gas is injected, and the N 2 gas 37 is kept in contact with the organic source gas 35 and the O 3 gas 36 as far as possible until they reach the wafer 33, so that the organic source gas 35 And O 3 gas 36 are made to flow as much as possible on the surface of the wafer 33. And 38 is an exhaust port for exhausting each gas.

【0004】従来、シラン系ガスと酸素ガスを化学反応
させてSiO2 膜を形成する場合は、シラン系ガスと酸
素ガスをウェハに到達するまでN2 ガスで仕切ること
で、シラン系ガスと酸素ガスがインジェクターとウェハ
間の気相中で反応するのを防いでウェハ表面で効率良く
化学反応させて安定した膜質のSiO2 を得ることがで
きることが知られている。このため、BPSG膜を形成
する場合においても、SiO2 膜を形成する場合と同
様、上記したように、従来では、有機ソースガス35とO
3 ガス36がウエーハ33に到達するまでできるだけ接触し
ないようにN2 ガス37で仕切る方法を採用し、有機ソー
スガス35とO3 ガス36をできるだけウエーハ33表面で化
学反応させてBPSG膜を得るようにしていた。
Conventionally, when a SiO 2 film is formed by chemically reacting a silane-based gas and an oxygen gas, the silane-based gas and the oxygen are separated by partitioning the silane-based gas and the oxygen gas with N 2 gas until they reach the wafer. It is known that gas can be prevented from reacting in the gas phase between the injector and the wafer, and a chemical reaction can be efficiently performed on the wafer surface to obtain SiO 2 having a stable film quality. Therefore, even when the BPSG film is formed, as in the case where the SiO 2 film is formed, as described above, the organic source gas 35 and O
A method of partitioning with N 2 gas 37 is adopted so that the 3 gas 36 does not come into contact with the wafer 33 as much as possible, and the organic source gas 35 and the O 3 gas 36 are chemically reacted with each other on the surface of the wafer 33 to obtain a BPSG film. I was doing.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記し
たように、インジェクター34とウエーハ33間で有機ソー
スガス35とO3 ガス36をN2 ガス37で仕切ってウエーハ
33表面で有機ソースガス35とO3 ガス36を反応させてB
PSG膜を実際に形成してみると、上記したSiO2
の場合とは異なり有機ソースガス35とO3 ガス36が十分
反応し難くなってしまい、ヘイズ(膜表面にP等が析出
された状態)が発生してしまう等、安定した膜質(結晶
性、表面状態等)のBPSG膜を得られ難いという問題
があった。これは特にB、Pを高濃度でドープする程顕
著になる傾向があった。
However, as described above, the organic source gas 35 and the O 3 gas 36 are partitioned by the N 2 gas 37 between the injector 34 and the wafer 33 to separate the wafer.
33 By reacting the organic source gas 35 and the O 3 gas 36 on the surface, B
When the PSG film is actually formed, unlike the case of the above-mentioned SiO 2 film, the organic source gas 35 and the O 3 gas 36 become difficult to react sufficiently, and haze (P or the like is deposited on the film surface is deposited. However, there is a problem that it is difficult to obtain a BPSG film having stable film quality (crystallinity, surface condition, etc.). This tends to become more remarkable as the concentration of B and P is increased.

【0006】このため、有機ソースガス35とO3 ガス36
を十分反応させて安定した膜質のBPSG膜を得るため
に、有機ソースガス35とO3 ガス36を仕切っているN2
ガス37を流すのを止めて、N2 ガス37をキャリアガスと
して流してみたところ、確かに上記有機ソースガス35と
3 ガス36をN2 ガス37で仕切っている場合よりも安定
した膜質のBPSG膜を得ることができた。
Therefore, the organic source gas 35 and the O 3 gas 36
N 2 which separates the organic source gas 35 and the O 3 gas 36 in order to sufficiently react the benzene and obtain a stable BPSG film.
When the flow of the gas 37 was stopped and the N 2 gas 37 was made to flow as a carrier gas, the film quality was more stable than when the organic source gas 35 and the O 3 gas 36 were partitioned by the N 2 gas 37. A BPSG film could be obtained.

【0007】しかしながら、この方法では、ウエーハ33
とインジェクター34間で有機ソースガス35とO3 ガス36
を反応させて有機ソースガス35とO3 ガス36のシロキサ
ン結合体である中間生成物を得ることができるが、この
中間生成物がウエーハ33表面に付着する前にキャリアガ
スのN2 ガス37等と共に排気口38から排気されてしまう
ため、成長速度が著しく低下してしまうという問題があ
った。
However, according to this method, the wafer 33
Source gas 35 and O 3 gas 36 between the injector and the injector 34
Can be reacted to obtain an intermediate product which is a siloxane bond of the organic source gas 35 and the O 3 gas 36. Before the intermediate product adheres to the surface of the wafer 33, the carrier gas such as N 2 gas 37, etc. At the same time, since the gas is exhausted from the exhaust port 38, there is a problem that the growth rate is significantly reduced.

【0008】そこで本発明は、成長速度を低下させるこ
となく安定した膜質のBPSG膜を得ることができる半
導体装置の製造方法を提供することを目的としている。
Therefore, an object of the present invention is to provide a method of manufacturing a semiconductor device which can obtain a BPSG film having a stable film quality without lowering the growth rate.

【0009】[0009]

【課題を解決するための手段】本発明による半導体装置
の製造方法は上記目的達成のため、有機ソースガスとオ
ゾンガスをウエーハに向かって噴射するとともに、該有
機ソースガス及び該オゾンガスが噴射される領域とそれ
を取り囲む領域とを少なくとも一部仕切るように該ウエ
ーハに向かって不活性ガスを噴射し、該有機ソースガス
と該オゾンガスを化学反応させて該ウエーハ表面に薄膜
を形成する工程を含むものである。
In order to achieve the above-mentioned object, a method of manufacturing a semiconductor device according to the present invention comprises injecting an organic source gas and an ozone gas toward a wafer and a region where the organic source gas and the ozone gas are injected. And a region surrounding it at least partially, and an inert gas is jetted toward the wafer to chemically react the organic source gas with the ozone gas to form a thin film on the surface of the wafer.

【0010】本発明に係る有機ソースガスには、TEO
SとTMPOとTMBの混合ガス、等が挙げられる。本
発明に係る不活性ガスには、Heガス、N2 ガス等が挙
げられる。本発明においては、BPSG膜、PSG膜、
BSG膜を形成する場合に好ましく適用させることがで
きる。
The organic source gas according to the present invention includes TEO.
A mixed gas of S, TMPO and TMB, etc. may be mentioned. Examples of the inert gas according to the present invention include He gas and N 2 gas. In the present invention, a BPSG film, a PSG film,
It can be preferably applied when forming a BSG film.

【0011】本発明においては、成長速度、得られる薄
膜の膜質の点で最も好ましい態様は、有機ソースガスと
オゾンガスが噴射される領域の周囲を一部ではなく完全
に仕切るように不活性ガスを流す場合である。
In the present invention, the most preferable embodiment in view of the growth rate and the film quality of the obtained thin film is that the inert gas is used so as to completely partition the periphery of the region where the organic source gas and the ozone gas are injected, not a part thereof. This is the case of pouring.

【0012】[0012]

【作用】本発明では、後述する実施例の図1に示す如
く、有機ソースガス5とO3 ガス6間を仕切らないで有
機ソースガス5とO3 ガス6を接触させた状態でウエー
ハ3に向かって噴射したため、ウエーハ3とインジェク
ター4間で有機ソースガス5とO3 ガス36を反応させて
有機ソースガス5とO3 ガス36のシロキサン結合体であ
る中間生成物を得ることができる。そして、有機ソース
ガス5よりも外側から噴射されるO3 ガス6の周囲を仕
切るようにウエーハ3に向かってN2 ガス7を噴射した
ため、ウエーハ3とインジェクター4間で形成された上
記中間生成物を排気口8から排気されないようにするこ
とができ、十分な量の中間生成物をウエーハ3表面に到
達させ付着させて反応させることができる。このよう
に、ウエーハ3とインジェクター4間で予め形成された
中間生成物をウエーハ3表面に付着させて反応させるこ
とができるため、従来の有機ソースガスとO3 ガスをN
2ガスで仕切る場合よりも安定した膜質のBPSG膜を
得ることができる。しかも、十分な量の中間生成物をウ
エーハ3表面に付着させて反応させることができるた
め、従来の仕切るガスを設けずにキャリアガスを流す場
合に生じていた成長速度の低下を抑制することができ
る。
According to the present invention, as shown in Figure 1 of the Examples described below, the wafer 3 in a state contacting the organic source gas 5 and the O 3 gas 6 without partitioned between organic source gas 5 and the O 3 gas 6 Since the liquid is injected toward the front, the organic source gas 5 and the O 3 gas 36 can be reacted between the wafer 3 and the injector 4 to obtain an intermediate product which is a siloxane bond of the organic source gas 5 and the O 3 gas 36. Then, since the N 2 gas 7 was injected toward the wafer 3 so as to partition the periphery of the O 3 gas 6 injected from the outside of the organic source gas 5, the intermediate product formed between the wafer 3 and the injector 4 was formed. Can be prevented from being exhausted from the exhaust port 8, and a sufficient amount of the intermediate product can reach and adhere to the surface of the wafer 3 to cause a reaction. In this way, since the intermediate product formed in advance between the wafer 3 and the injector 4 can be attached to the surface of the wafer 3 and reacted, the conventional organic source gas and O 3 gas are exchanged with N 2 gas.
It is possible to obtain a BPSG film having a more stable film quality than the case of partitioning with two gases. Moreover, since a sufficient amount of the intermediate product can be attached to the surface of the wafer 3 and reacted, it is possible to suppress the decrease in the growth rate that occurs when a carrier gas is flowed without providing a conventional partition gas. it can.

【0013】[0013]

【実施例】図1は本発明の一実施例に則した半導体製造
装置の構成を示す概略図であり、図1(a)はその平面
概略図、図1(b)はその断面概略図である。図2は本
発明の一実施例に即した流量コントロール部の構成を示
す概略図であり、図2(a)は有機ソースガスの流量コ
ントロール部、図2(b)はO3 ガスの流量コントロー
ル部、図2(c)はN2 ガスの流量コントロール部を示
している。図1、2において、1は反応室であり、2は
反応室1内に設置されたウエーハ3を載置するサセプタ
であり、このサセプタ2には図のA部の矢印に示す如く
方向に搬送する搬送機構が設けられている。次いで、4
は各ガスをウエーハ3に向かって噴射するためのインジ
ェクターであり、5はインジェクター4中央部の噴射口
からウエーハ3に向かって矢印に示す如く噴射されるT
EOS(テトラエトキシシラン)とTMPO(トリメチ
ルフォスフェート)とTMB(トリメチルボレート)等
からなる有機ソースガスであり、6は有機ソースガス5
の噴射口よりも外側のインジェクター4の噴射口からウ
エーハ3に向かって矢印に示す如く噴射されるO 3 ガス
であり、7はO3 ガス6の噴射口よりも外側のインジェ
クター4の噴射口からウエーハ3に向かって矢印に示す
如く噴射されるN2 ガスであり、このN2ガス7は有機
ソースガス5よりも外側から噴射されるO3 ガス6の周
囲を仕切るようにウエーハ3に向かって噴射される。そ
して、8は各ガスを排気するための排気口である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows semiconductor manufacturing according to an embodiment of the present invention.
FIG. 1 is a schematic diagram showing the configuration of the device, and FIG.
A schematic view and FIG. 1B are schematic cross-sectional views thereof. Figure 2 is a book
A configuration of a flow rate control unit according to an embodiment of the invention is shown.
2A is a schematic diagram showing the flow rate of the organic source gas.
Control part, O in Figure 2 (b)3Gas flow controller
Part, N in Fig. 2 (c)2Shows the gas flow controller
is doing. 1 and 2, 1 is a reaction chamber and 2 is
Susceptor for mounting the wafer 3 installed in the reaction chamber 1
And the susceptor 2 has
A transport mechanism that transports in the direction is provided. Then 4
Is an injector for injecting each gas toward the wafer 3.
And 5 is an injection port at the center of the injector 4.
Is ejected from the wafer toward the wafer 3 as shown by the arrow.
EOS (Tetraethoxysilane) and TMPO (Trimethyi)
Ruphosphate) and TMB (trimethylborate) etc.
Is an organic source gas consisting of 6 and 5 is an organic source gas
From the injection port of the injector 4 outside the injection port of
O injected toward the AHA 3 as indicated by the arrow 3gas
And 7 is O3Injector outside the injection port of gas 6
Indicated by the arrow from the jet port of the Kector 4 toward the wafer 3.
Is injected like2Gas, this N2Gas 7 is organic
O injected from outside the source gas 53Gas 6 lap
It is jetted toward the wafer 3 so as to partition the enclosure. So
Then, 8 is an exhaust port for exhausting each gas.

【0014】そして、本実施例ではシリコン基板上に30
00Å程度の膜厚のBPSG膜を成膜した。成長条件は、
次のようにして行った。 基板温度 400℃ TEOS N2 流量 1.5 l/分 TMP N2 流量 0.9 l/分 TMB N2 流量 0.7 l/分 N2 流量 18 l/分 O2 /O3 流量 7.5 l/分 O3 濃度 5 % このように、本実施例では、有機ソースガス5とO3
ス6間を仕切らないで有機ソースガス5とO3 ガス6を
接触させた状態でウエーハ3に向かって噴射したため、
ウエーハ3とインジェクター4間で有機ソースガス5と
3 ガス6を反応させて有機ソースガス5とO3 ガス6
のシロキサン結合体である中間生成物を得ることができ
る。そして、有機ソースガス5よりも外側から噴射され
るO3 ガス6の周囲を仕切るようにウエーハ3に向かっ
てN2 ガス7を噴射したため、ウエーハ3とインジェク
ター4間で形成された上記中間生成物を排気口8から排
気されないようにすることができ、十分な量の中間生成
物をウエーハ3表面に到達させ付着させて反応させるこ
とができる。このように、ウエーハ3とインジェクター
4間で予め形成された中間生成物をウエーハ3表面に付
着させて反応させることができるため、従来の有機ソー
スガスとO3 ガスをN2 ガスで仕切る場合よりも安定し
た膜質のBPSG膜を得ることができる。しかも、十分
な量の中間生成物をウエーハ3表面に付着させて反応さ
せることができるため、従来の仕切るガスを設けずにキ
ャリアガスを流す場合に生じていた成長速度の低下を抑
制することができる。
Further, in this embodiment, 30 is formed on the silicon substrate.
A BPSG film having a film thickness of about 00Å was formed. The growth conditions are
It went as follows. Substrate temperature 400 ° C TEOS N 2 flow rate 1.5 l / min TMP N 2 flow rate 0.9 l / min TMB N 2 flow rate 0.7 l / min N 2 flow rate 18 l / min O 2 / O 3 flow rate 7.5 l / min O 3 concentration 5% As described above, in this embodiment, since the organic source gas 5 and the O 3 gas 6 are not partitioned from each other, the organic source gas 5 and the O 3 gas 6 are sprayed toward the wafer 3 in a contact state.
The organic source gas 5 and the O 3 gas 6 are made to react between the wafer 3 and the injector 4 to generate the organic source gas 5 and the O 3 gas 6
It is possible to obtain an intermediate product which is a siloxane conjugate of Then, since the N 2 gas 7 was injected toward the wafer 3 so as to partition the periphery of the O 3 gas 6 injected from the outside of the organic source gas 5, the intermediate product formed between the wafer 3 and the injector 4 was formed. Can be prevented from being exhausted from the exhaust port 8, and a sufficient amount of the intermediate product can reach and adhere to the surface of the wafer 3 to cause a reaction. In this way, since the intermediate product formed in advance between the wafer 3 and the injector 4 can be attached to the surface of the wafer 3 and reacted, the conventional organic source gas and O 3 gas are separated from each other by N 2 gas. It is also possible to obtain a stable BPSG film. Moreover, since a sufficient amount of the intermediate product can be attached to the surface of the wafer 3 and reacted, it is possible to suppress the decrease in the growth rate that occurs when a carrier gas is flowed without providing a conventional partition gas. it can.

【0015】次に、本実施例と、比較例として従来の有
機ソースガスとO3 ガス間をN2 ガスで仕切る場合(成
膜条件は上記実施例と同じにする)とにおいて、ヘイズ
の発生状態を実際に調べたところ、成膜直後〜10時間後
に測定すると、図3(a)に示す如く、比較例では全面
にヘイズが発生していたのに対して、本実施例では、図
3(b)に示す如く、ほとんどヘイズが発生していなか
った。なお、この時、本発明と比較例共、上記実施例で
示した如く同一の成長条件で行い、ベルトスピードも4
インチ/分と同じで行った。なお、比較例の成膜時間は
2分である。
Next, in the present example, and as a comparative example, when the conventional organic source gas and the O 3 gas are partitioned by N 2 gas (the film forming conditions are the same as those in the above-mentioned examples), the generation of haze occurs. When the state was actually examined, when the film was measured immediately after film formation for 10 hours, haze was generated on the entire surface in the comparative example as shown in FIG. As shown in (b), almost no haze was generated. At this time, both the present invention and the comparative example were performed under the same growth conditions as shown in the above-mentioned examples, and the belt speed was 4
Same as inches / minute. The film forming time of the comparative example is 2 minutes.

【0016】次に、本実施例と同等の安定した膜を、上
記比較例で得る場合、ベルトスピードを4インチ/分か
ら2インチ/分に下げなければならなかった。これか
ら、本実施例は、比較例よりも成長速度が2倍程度向上
しているのが判った。なお、比較例においては、B/P
濃度を下げれば本実施例と同等の安定した膜を得ること
ができると考えるが、次工程の熱処理によるリフロー性
が悪化してしまうため好ましくない。これに対し、本実
施例では、高濃度にして次工程の熱処理によるリフロー
性が良好であった。
Next, when a stable film equivalent to that of this example was obtained in the comparative example, the belt speed had to be reduced from 4 inches / minute to 2 inches / minute. From this, it was found that the growth rate of this example was about twice as high as that of the comparative example. In the comparative example, B / P
Although it is thought that a stable film equivalent to that in this example can be obtained by decreasing the concentration, it is not preferable because the reflow property is deteriorated by the heat treatment of the next step. On the other hand, in this example, the reflow property by the heat treatment of the next step with a high concentration was good.

【0017】なお、上記実施例では、インジェクター4
中央部の噴射口から有機ソースガス5を噴射し、有機ソ
ースガス5よりも外側からO3 ガス6を噴射し、この有
機ソースガス5よりも外側から噴射されるO3 ガス6の
周囲を仕切るようにN2 ガス7を噴射する場合について
説明したが、本発明はこれに限定されるものではなく、
インジェクター4中央部の噴射口からO3 ガス6を噴射
し、O3 ガス6よりも外側から有機ソースガス5を噴射
し、このO3 ガス6よりも外側から噴射される有機ソー
スガス5の周囲を仕切るようにN2 ガス7を噴射する場
合であってもよく、この場合も上記実施例と同様の効果
を得ることができる。
In the above embodiment, the injector 4
The organic source gas 5 is injected from the central injection port, the O 3 gas 6 is injected from outside the organic source gas 5, and the periphery of the O 3 gas 6 injected from outside the organic source gas 5 is partitioned. As described above, the case of injecting the N 2 gas 7 has been described, but the present invention is not limited to this.
Injecting the O 3 gas 6 from the injection port of the injector 4 the central portion, an organic source gas 5 is jetted from the outside than the O 3 gas 6, the periphery of the organic source gas 5 is injected from the outside than the O 3 gas 6 Alternatively, the N 2 gas 7 may be injected so as to partition the same. In this case, the same effect as that of the above embodiment can be obtained.

【0018】また、上記実施例では、有機ソースガス5
とO3 ガス6が噴射される領域をN 2 ガスで完全に仕切
ることで成長速度、得られるBPSG膜の膜質の点で好
ましい態様の場合であるが、本発明はこれに限定される
ものではなく、N2 ガスで一部を仕切る場合であっても
よい。
In the above embodiment, the organic source gas 5
And O3The region where the gas 6 is injected is N 2Completely partitioned by gas
The growth rate and the quality of the obtained BPSG film.
The present invention is not limited to this, though it is a preferable embodiment.
N, not something2Even if you use gas to partition
Good.

【0019】[0019]

【発明の効果】本発明によれば、成長速度を低下させる
ことなく安定した膜質のBPSG膜を得ることができる
という効果がある。
According to the present invention, there is an effect that a BPSG film having a stable film quality can be obtained without lowering the growth rate.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に則した半導体製造装置の構
成を示す概略図である。
FIG. 1 is a schematic diagram showing a configuration of a semiconductor manufacturing apparatus according to an embodiment of the present invention.

【図2】本発明の一実施例に則した流量コントロール部
の構成を示す概略図である。
FIG. 2 is a schematic diagram showing a configuration of a flow rate control unit according to an embodiment of the present invention.

【図3】比較例と本発明との場合におけるウェハ表面に
ヘイズが発生している様子を示す図である。
FIG. 3 is a diagram showing how haze is generated on the wafer surface in the case of the comparative example and the present invention.

【図4】従来例の半導体製造装置の構成を示す概略図で
ある。
FIG. 4 is a schematic diagram showing the configuration of a conventional semiconductor manufacturing apparatus.

【符号の説明】[Explanation of symbols]

1 反応室 2 サセプタ 3 ウエーハ 4 インジェクター 5 有機ソースガス 6 O3 ガス 7 N2 ガス 8 排気口1 Reaction Chamber 2 Susceptor 3 Wafer 4 Injector 5 Organic Source Gas 6 O 3 Gas 7 N 2 Gas 8 Exhaust Port

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 有機ソースガスとオゾンガスをウエーハ
に向かって噴射するとともに、該有機ソースガス及び該
オゾンガスが噴射される領域とそれを取り囲む領域とを
少なくとも一部仕切るように該ウエーハに向かって不活
性ガスを噴射し、該有機ソースガスと該オゾンガスを化
学反応させて該ウエーハ表面に薄膜を形成する工程を含
むことを特徴とする半導体装置の製造方法。
1. An organic source gas and an ozone gas are jetted toward a wafer, and an area where the organic source gas and the ozone gas are jetted and a region surrounding the same are at least partially separated from each other toward the wafer. A method of manufacturing a semiconductor device, comprising a step of injecting an active gas and chemically reacting the organic source gas and the ozone gas to form a thin film on the surface of the wafer.
JP18205892A 1992-07-09 1992-07-09 Manufacture of semiconductor device Withdrawn JPH0629221A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18205892A JPH0629221A (en) 1992-07-09 1992-07-09 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18205892A JPH0629221A (en) 1992-07-09 1992-07-09 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH0629221A true JPH0629221A (en) 1994-02-04

Family

ID=16111612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18205892A Withdrawn JPH0629221A (en) 1992-07-09 1992-07-09 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH0629221A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100256263B1 (en) * 1993-12-29 2000-05-15 김영환 Semiconductor element trench type isolation layer manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100256263B1 (en) * 1993-12-29 2000-05-15 김영환 Semiconductor element trench type isolation layer manufacturing method

Similar Documents

Publication Publication Date Title
US6251807B1 (en) Method for improving thickness uniformity of deposited ozone-teos silicate glass layers
US5356722A (en) Method for depositing ozone/TEOS silicon oxide films of reduced surface sensitivity
EP0572704B1 (en) Method for manufacturing a semiconductor device including method of reforming an insulating film formed by low temperature CVD
JPH04213829A (en) Two stem method forming oxide layer which does not contain voids on stepwise sur- face of semiconductor wafer
JPH09172008A (en) Method and device that form good boundary between sacvd oxide film and pecvd oxide film
US8304353B2 (en) Silicon dioxide deposition methods using at least ozone and TEOS as deposition precursors
JPH0629221A (en) Manufacture of semiconductor device
US6090725A (en) Method for preventing bubble defects in BPSG film
JP3319014B2 (en) Film forming method, film forming apparatus, and semiconductor device manufacturing method
US6232234B1 (en) Method of reducing in film particle number in semiconductor manufacture
JPH05121568A (en) Manufacture of semiconductor device
JPH07245268A (en) Thin-film forming method
JPH10256183A (en) Manufacture of semiconductor device
JPH07116609B2 (en) Chemical vapor deposition equipment
EP0024094B1 (en) Method of producing semiconductor devices
JPS61156741A (en) Method for formation of phosphosilicate film
JP3203531B2 (en) Sidewall manufacturing method and semiconductor device
JPH06342786A (en) Forming method of insulating film and vacuum cvd device
JPS6125213B2 (en)
JPH0625859A (en) Cvd film forming device and plasma cleaning method
JPH06181205A (en) Method of manufacturing semiconductor device
JPH09181176A (en) Manufacture of semiconductor device
JPH06209048A (en) Formation of thin insulating film
JPH04278533A (en) Manufacture of semiconductor device
JPH08172090A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19991005