JPH06291730A - Optical communication device - Google Patents

Optical communication device

Info

Publication number
JPH06291730A
JPH06291730A JP5073776A JP7377693A JPH06291730A JP H06291730 A JPH06291730 A JP H06291730A JP 5073776 A JP5073776 A JP 5073776A JP 7377693 A JP7377693 A JP 7377693A JP H06291730 A JPH06291730 A JP H06291730A
Authority
JP
Japan
Prior art keywords
power
light
optical
communication
base station
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5073776A
Other languages
Japanese (ja)
Inventor
Satoshi Terakubo
敏 寺久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP5073776A priority Critical patent/JPH06291730A/en
Publication of JPH06291730A publication Critical patent/JPH06291730A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Communication System (AREA)

Abstract

PURPOSE:To provide an optical communication device where a stable communication is made to be performed even when the loss of an optical transmission line is increased and decreased. CONSTITUTION:This device is provided with a light receiving monitor 17 detecting light receiving power of communication opposite stations 10 and 20 to be inputted in the optical communication devices of a base station 10 and a terminal station 20, respectively, via an optical fiber F and transmitting the detected power data to the communication opposite stations 10 and 20, and light emitting control circuits 18 and 18' adjusting the light emitting power of the light communication device based on light receiving power data transmitted from the light receiving monitor 17 of the communication opposite stations 10 and 20. By performing the detection of light emitting power on a communication opposite side and stabilizing the detection power of a light receiving element based on the detected value, a stable communication can be performed even when the loss of not only light emitting elements but also an optical transmission line are increased and decreased.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、交信相手側で光の致
遠パワーの検出を行い、その検出値に基づいて発光素子
の出力を調整し、受光素子に達する光強度の安定化を図
ることによって発光素子のみならず、光伝送路の損失が
増減した場合でも安定して通信を行なえるようにし、例
えば水中ロボットや潜水作業船と母船や陸上基地とを結
ぶ通信装置として海洋分野等の厳しい環境下での使用に
適するようにした光通信装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is intended to stabilize the light intensity reaching a light receiving element by detecting the far power of light on the communication partner side and adjusting the output of the light emitting element based on the detected value. This enables stable communication even when the loss of the optical transmission line increases or decreases, not only for the light emitting element. For example, as a communication device that connects an underwater robot or a submersible work boat with a mother ship or a land base, it is difficult in the marine field. The present invention relates to an optical communication device suitable for use in an environment.

【0002】[0002]

【従来の技術】光通信手段を有し、光伝送路を介して通
信を行なう光通信装置による光伝送システム、特に、伝
送路に光ファイバを用いたものは、無誘導、無漏話、広
帯域、低損失、細心、軽量であることから様々な分野で
メタル伝送システムに換えて使用されており、例えば、
海洋分野等でも、水中ロボットや潜水作業船の曳航ケー
ブル内に光ファイバを複合し、母船や陸上基地との間を
つなぐ通信装置として用いられている。
2. Description of the Related Art An optical transmission system including an optical communication device having an optical communication means and performing communication via an optical transmission line, particularly, an optical transmission system using an optical fiber for the transmission line is a non-induction, non-crosstalk, wide band, It has been used in place of metal transmission systems in various fields due to its low loss, meticulousness and light weight.
In the marine field and the like, an optical fiber is compounded in the tow cable of an underwater robot or a submersible work ship, and it is used as a communication device for connecting a mother ship and a land base.

【0003】ところで、前記光通信装置では、上記した
ような特長のある反面、光送信機に用いられる発光素子
の温度特性があまり良くないことから、周囲温度の変化
や経時変化等の影響を受けやすく、発光パワー出力が不
安定となり、通信エラーを生じることがある。
In the meantime, the optical communication device has the above-mentioned features, but on the other hand, the temperature characteristics of the light emitting element used in the optical transmitter are not so good, so that the optical communication device is affected by changes in ambient temperature and changes with time. The output power of the light emission becomes unstable, and a communication error may occur.

【0004】このため、図4に示すように、光送信機に
光センサ1を設け、そのセンサ1によって発光素子1’
の光出力の一部をモニタ光として取出し、それを基準値
と比較し、その比較値でもってバイアス電流を調整し、
光出力に帰還をかけることにより安定した発光出力を得
る方法が従来から行なわれている。
Therefore, as shown in FIG. 4, an optical sensor 1 is provided in the optical transmitter, and the light emitting element 1'is provided by the sensor 1.
A part of the optical output of is taken out as monitor light, it is compared with the reference value, and the bias current is adjusted by the comparison value,
Conventionally, a method of obtaining a stable light emission output by applying feedback to the light output has been performed.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記の
発光素子の発光パワーを光送信器内で検出し、その検出
値によって発光パワーを安定させる方法では、光通信装
置間を接続する光伝送路が伝送損失を起こした場合、光
受信機に入力される受光パワーが増減し、通信エラーを
生じる問題がある。
However, in the method of detecting the light emission power of the light emitting element in the optical transmitter and stabilizing the light emission power by the detected value, the optical transmission line connecting the optical communication devices is not provided. When a transmission loss occurs, there is a problem that the received light power input to the optical receiver increases or decreases, resulting in a communication error.

【0006】特に、光ファイバを曳航ケーブルに複合
し、厳しい環境下で使用される上記海洋分野では、常
に、光ファイバに曳航時の引っ張り力や潮流等の外力よ
る曲げ圧力が加わり、その結果、光ファイバの導波モー
ドと放射モードの間に変換を生じさせるマイクロベンド
損が発生し、伝送損失を生じさせる。さらに、この損失
は、曳航ケーブルの周囲温度の変化や曳航ケーブルにか
かる水圧、張力等の変化によって発生の程度や出現頻度
が微妙に異なることから発生を特定することも難しく、
防止することが難しいという問題がある。
In particular, in the above-mentioned marine field in which an optical fiber is combined with a tow cable and used in a harsh environment, a bending pressure due to an external force such as a pulling force or a tidal current at the time of towing is always applied to the optical fiber. Microbend loss that causes conversion between the guided mode and the radiated mode of the optical fiber occurs, causing transmission loss. Furthermore, it is difficult to identify the occurrence of this loss because the extent and frequency of occurrence of this loss are subtly different due to changes in the ambient temperature of the towing cable and changes in the water pressure and tension applied to the towing cable.
There is a problem that it is difficult to prevent.

【0007】またこのとき、例えば母船で受光パワーの
変動が検出されても水中ロボットや潜水作業船等の水中
装置が水中にある限り、発光パワーの調整ができないと
いう問題もある。
Further, at this time, there is a problem that the light emission power cannot be adjusted as long as an underwater device such as an underwater robot or a submersible work boat is underwater even if a variation in the light reception power is detected on the mother ship.

【0008】そこで、この発明の課題は、光伝送路が伝
送損失を起こした場合でも通信エラーを生じず、しか
も、発光パワーの変動を生じた光通信装置が水中にある
場合でも発光パワーの調整が行なえ、通信エラーの発生
を防止し、特に、使用環境の厳しい海洋分野での使用に
適した光通信装置を提供することである。
Therefore, an object of the present invention is to adjust the emission power even when the optical transmission line causes a communication loss without causing a communication error and the optical communication device in which the variation of the emission power has occurred is underwater. It is possible to prevent the occurrence of communication errors, and particularly to provide an optical communication device suitable for use in the marine field where the use environment is severe.

【0009】[0009]

【課題を解決するための手段】この発明では、上記の課
題を解決するため、光通信手段を有し、光伝送路を介し
て接続される水面下の端末局と水面上の基地局に、光伝
送路を介して入力される交信相手局からの受光パワーを
検出し、その検出したパワーデータを交信相手局へ伝送
する受光モニタ手段と、交信相手局より伝送される前記
受光パワーデータに基づいて光通信手段の発光パワー調
整を行なうコントロール手段を備えた構成としたのであ
る。
According to the present invention, in order to solve the above-mentioned problems, an underwater terminal station and an underwater base station which have optical communication means and are connected via an optical transmission line are provided. Light receiving monitor means for detecting the received light power from the communication partner station input through the optical transmission line and transmitting the detected power data to the communication partner station, and based on the received light power data transmitted from the communication partner station The control means for adjusting the emission power of the optical communication means is provided.

【0010】また、このとき、上記コントロール手段を
交信相手局より伝送される受光パワーデータに基づいて
光通信手段の発光パワーを調整して、交信相手局の受光
パワーを一定に保つようにしても良い。
At this time, the control means may adjust the light emission power of the optical communication means based on the light reception power data transmitted from the communication partner station to keep the light reception power of the communication partner station constant. good.

【0011】さらに、このとき、上記端末局に、基地局
からの指令に基づいて光通信手段の発光パワーの調整を
行う調整手段を備えるようにしても良い。
Further, at this time, the terminal station may be provided with adjusting means for adjusting the light emission power of the optical communication means based on a command from the base station.

【0012】なお、上記水面上の基地局とは、例えば水
面に浮かぶ船舶、水面から立ち上がったプラットホーム
に設けられた石油採掘ステーション等の洋上基地、さら
に、陸上に設けられた水中の端末局と結ばれる陸上基地
局などを含む。
The above-mentioned base station on the surface of the water is connected to, for example, a ship floating on the surface of the water, an offshore base such as an oil digging station provided on a platform rising from the surface of the water, and an underwater terminal station provided on land. Including land-based base stations.

【0013】また、水面下とは水表面も含むものとす
る。
Further, "below the water surface" includes the water surface.

【0014】[0014]

【作用】このように構成される光通信装置では、光伝送
路を介して入力される受光パワーをモニタ手段が検出す
ることによって、基地局と端末局の光送信手段の発光出
力の変化と、基地局と端末局とを接続する光伝送路の伝
送損失とが検出され、その検出値は、データに変換され
て伝送される。このため、光伝送路の伝送損失によるレ
ベル変動に無関係に正確な前記損失データが伝送され
る。
In the optical communication device configured as described above, when the monitor means detects the received light power input through the optical transmission line, the change in the light emission output of the optical transmitter means of the base station and the terminal station, The transmission loss of the optical transmission line connecting the base station and the terminal station is detected, and the detected value is converted into data and transmitted. Therefore, the accurate loss data is transmitted regardless of the level fluctuation due to the transmission loss of the optical transmission line.

【0015】また、こうして伝送される受光パワーのデ
ータは、コントロール手段へ入力され、この入力された
データによってコントロール手段が光通信手段の発光出
力を常に適正な状態に調整する。
Further, the received light power data thus transmitted is inputted to the control means, and the control means always adjusts the light emission output of the optical communication means to an appropriate state by the inputted data.

【0016】また、このとき、コントロール手段が交信
相手局より伝送される受光パワーデータに基づいて光通
信手段の発光パワーを調整して、交信相手局の受光パワ
ーを一定に保つようにしたものでは、水面上の基地局と
水面下の端末局との間に発光素子と光伝送路の損失を含
む帰還ループが形成され、基地局と端末局とがそれぞれ
受信する受光パワーが一定に保たれることによって通信
状態が最適に保持され、安定化が図られる。
At this time, the control means adjusts the light emission power of the optical communication means based on the light reception power data transmitted from the communication partner station so as to keep the light reception power of the communication partner station constant. , A feedback loop including the loss of the light emitting element and the optical transmission line is formed between the base station on the surface of the water and the terminal station on the surface of the water, and the light receiving power received by the base station and the terminal station is kept constant. As a result, the communication state is optimally maintained and stabilized.

【0017】さらに、このとき、上記端末局に、基地局
からの指令に基づいて光通信手段の発光パワーの調整を
行う調整手段を備えるようにしたものでは、水面下にあ
る端末局の発光パワー調整が基地局からの遠隔操作によ
り容易に行える。
Further, at this time, in the case where the above-mentioned terminal station is provided with the adjusting means for adjusting the light emitting power of the optical communication means based on the instruction from the base station, the light emitting power of the terminal station under the water surface is Adjustment can be easily performed by remote control from the base station.

【0018】[0018]

【実施例】以下、この発明の光通信装置の実施例を図面
に基づいて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of an optical communication device of the present invention will be described below with reference to the drawings.

【0019】図1に示すように、本実施例は、この発明
に係る光通信装置を母船2と曳航ケーブル3によって連
結された水中ロボットや水中作業船(以下水中装置)4
との間の通信装置として用いた一実施例を示す。
As shown in FIG. 1, in this embodiment, the optical communication device according to the present invention is connected to a mother ship 2 and a towing cable 3 to form an underwater robot or an underwater working ship (hereinafter referred to as an underwater device) 4.
An embodiment used as a communication device between and is shown.

【0020】図2の回路構成ブロック図に示すように、
本実施例の光通信装置は、母船2に積み込まれた基地局
10と水中装置4に積み込まれた端末局20とからな
り、両者は、曳航ケーブル3に複合された光ファイバF
よる光伝送路によって接続されている。また、基地局1
0と端末局20とは、それぞれ、光送信手段30と光受
信手段40とを有し、双方向通信を行なうようになって
いる。
As shown in the circuit block diagram of FIG.
The optical communication device of this embodiment includes a base station 10 loaded on a mother ship 2 and a terminal station 20 loaded on an underwater device 4, both of which are optical fibers F combined with a tow cable 3.
Are connected by an optical transmission line. Also, the base station 1
0 and the terminal station 20 have an optical transmission means 30 and an optical reception means 40, respectively, and are configured to perform bidirectional communication.

【0021】前記光送信手段30は、信号多重器(MI
X)11、電気→光変換器(以下E/O変換器)12及
び双方向分波合波器(WDM)13とで構成され、光受
信手段40は、信号分離器(DIV)14、光→電気変
換器(以下O/E変換器)15及び双方向分波合波器
(WDM)13とで構成されている。 また、これら基
地局10と端末局20には、発光モニタ16、受光モニ
タ17、発光コントロール回路18、18’が備えら
れ、さらに、基地局10には、異常判別回路19が設け
られている。
The optical transmission means 30 includes a signal multiplexer (MI).
X) 11, an electric → optical converter (hereinafter referred to as E / O converter) 12 and a bidirectional demultiplexer / multiplexer (WDM) 13, and the optical receiving means 40 includes a signal demultiplexer (DIV) 14 and an optical receiver. → It is composed of an electric converter (hereinafter referred to as an O / E converter) 15 and a bidirectional demultiplexer-multiplexer (WDM) 13. Further, the base station 10 and the terminal station 20 are provided with a light emission monitor 16, a light reception monitor 17, and light emission control circuits 18 and 18 ', and further, the base station 10 is provided with an abnormality determination circuit 19.

【0022】信号多重器11は、母船2から水中装置4
へ伝送される、例えば、シリアルパルス伝送データと受
光モニタ17からのシリアル出力データとが入力され、
それら入力される両データを多重化(例えば、時分割)
し、その多重化した入力信号をE/O変換器12へ入力
する。
The signal multiplexer 11 moves from the mother ship 2 to the underwater equipment 4
, For example, serial pulse transmission data and serial output data from the light receiving monitor 17 are input,
Both input data are multiplexed (for example, time division)
Then, the multiplexed input signal is input to the E / O converter 12.

【0023】E/O変換器12は、発光素子として、レ
ーザダイオード(双方向通信のため、基地局10と端末
局20とでは、波長の異なったものが用いられる)を有
する電気→光変換回路からなり、入力された前記多重化
データを光パルス列信号に変換し、双方向分波合波器1
3へ入射する。このE/O変換器12にはpinフォト
ダイオードをセンサとする受光回路と、その回路出力を
デジタルデータに変換するV/F変換器とからなる発光
モニタ16が設けられており、E/O変換器12の発光
素子の発光パワーを測定するようになっている。この発
光モニタ16出力は、基地局10では、異常判別回路1
9へ入力され、一方、端末局20では、信号多重器11
へ入力され、受光モニタ17の出力データ、基地局10
へのシリアル入力データ等と共に、多重化されて基地局
10へ伝送される。そして、基地局10で信号分離器1
4によって分離され、異常判別回路19へ入力されるよ
うになっている。
The E / O converter 12 has, as a light emitting element, a laser diode (for the two-way communication, different wavelengths are used in the base station 10 and the terminal station 20), which is an electric-to-optical conversion circuit. And converts the input multiplexed data into an optical pulse train signal, and the bidirectional demultiplexer-multiplexer 1
Incident on 3. The E / O converter 12 is provided with a light emission monitor 16 including a light receiving circuit having a pin photodiode as a sensor and a V / F converter converting the circuit output into digital data. The light emitting power of the light emitting element of the container 12 is measured. In the base station 10, the output of the light emission monitor 16 is output from the abnormality determination circuit 1
9 to the signal multiplexer 11 at the terminal station 20.
Input to the output data of the light receiving monitor 17, the base station 10
It is multiplexed with the serial input data to the base station 10 and transmitted. Then, in the base station 10, the signal separator 1
It is separated by 4 and input to the abnormality determination circuit 19.

【0024】双方向分波合波器13は、波長分割多重に
より双方向通信を行ない、両局10,20のE/O変換
器12から入射される多重化されたデータを光ファイバ
Fを介して相対する局のO/E変換器15へ出力する。
O/E変換器15は、受光センサにpinフォトダイオ
ードを用いた光→電気変換回路からなり、入射される光
パルス列信号をパルス列信号に変換し、信号分離器14
へ出力する。このO/E変換器15には、前記変換回路
出力を取り出すバッファ回路とその取り出した変換出力
レベルをデジタル変換するV/F変換器とからなる受光
モニタ17が設けられ、その出力は、信号多重器11へ
入力され、相手局への伝送データと多重化されて伝送さ
れる。また、この受光モニタ17出力は、基地局10で
は、異常判別回路19にも入力されている。
The bidirectional demultiplexer-multiplexer 13 performs bidirectional communication by wavelength division multiplexing, and transmits the multiplexed data incident from the E / O converters 12 of both stations 10 and 20 via the optical fiber F. And outputs to the O / E converter 15 of the opposite station.
The O / E converter 15 is composed of an optical-to-electrical conversion circuit using a pin photodiode as a light receiving sensor, converts an incident optical pulse train signal into a pulse train signal, and outputs the signal separator 14.
Output to. The O / E converter 15 is provided with a light receiving monitor 17 including a buffer circuit for taking out the output of the converting circuit and a V / F converter for digitally converting the taken out output level, and its output is a signal multiplex. The data is input to the device 11, multiplexed with the transmission data to the partner station, and transmitted. Further, the output of the light reception monitor 17 is also input to the abnormality determination circuit 19 in the base station 10.

【0025】基地局側信号分離器14は、O/E変換器
15から入力される多重化されたパルス列信号から、受
光パワーデータ、発光パワーデータと伝送データとを分
離し、伝送データを母船2端末局へ出力し、受光パワー
データを発光コントロール回路18と異常判定回路19
へ出力し、発光パワーデータを異常判定回路19へ出力
する。また、端末局側信号分離器14は、O/E変換器
15から入力される多重化されたパルス列信号から基地
局の受光パワーデータと伝送データとを分離し、伝送デ
ータを水中装置4へ出力し、受光パワーデータを発光コ
ントロール回路18’へ出力する。
The base station side signal separator 14 separates the received light power data, the light emission power data and the transmission data from the multiplexed pulse train signal input from the O / E converter 15, and the transmission data is transmitted to the mother ship 2 Output to the terminal station, the received light power data, the light emission control circuit 18 and the abnormality determination circuit 19
To the abnormality determination circuit 19. Further, the terminal station side signal separator 14 separates the received power data of the base station and the transmission data from the multiplexed pulse train signal input from the O / E converter 15, and outputs the transmission data to the underwater device 4. Then, the received light power data is output to the light emission control circuit 18 '.

【0026】発光コントロール回路18、18’は、入
力された前記受光パワーデータを基準値と比較し、両者
の差が無くなるように、E/O変換器12のレーザダイ
オードのバイアス電流を調整して出力を調整する。さら
に、端末局20の発光コントロール回路18’には、基
地局10を介し、母船側からのシリアル伝送データに多
重化されて送られてくる指令データをデコードし、その
指令データによって前記基準値を変更する手段と、端末
局側の発光パワーの調整を行う調整手段とが設けられて
おり、基地局10から遠隔操作により基準値の変更と、
発光パワー調整が行えるようになっている。
The light emission control circuits 18 and 18 'compare the input received light power data with a reference value and adjust the bias current of the laser diode of the E / O converter 12 so as to eliminate the difference between the two. Adjust the output. Further, the light emission control circuit 18 'of the terminal station 20 decodes the command data sent via the base station 10 by being multiplexed with the serial transmission data from the mother ship side, and the reference value is set by the command data. Means for changing and adjusting means for adjusting the light emission power on the terminal station side are provided, and the reference value is changed by remote control from the base station 10,
The light emission power can be adjusted.

【0027】異常判別回路19は、前述したように、基
地局10の受光モニタ17によって光ファイバFを介し
て検出される端末局20のE/O変換器12からの受光
パワーデータと端末局20の発光モニタ16によって検
出される端末局20の発光パワーデータ、端末局20の
受光モニタ17によって検出された基地局10のE/O
変換器12からの受光パワーデータと基地局10の発光
モニタ16によって検出される基地局10の発光パワー
データを突き合わせることにより、受光パワーの増減が
光ファイバFの損失によるものなのかあるいは、発光素
子によるものなのかを判別し、報知する。
As described above, the abnormality determining circuit 19 receives the received light power data from the E / O converter 12 of the terminal station 20 detected by the light receiving monitor 17 of the base station 10 through the optical fiber F and the terminal station 20. Light emission power data of the terminal station 20 detected by the light emission monitor 16 of the base station 10 and E / O of the base station 10 detected by the light reception monitor 17 of the terminal station 20.
By comparing the received light power data from the converter 12 and the emitted light data of the base station 10 detected by the emission monitor 16 of the base station 10, whether the increase or decrease in the received light power is due to the loss of the optical fiber F, or It is determined whether or not it is due to the element, and a notification is given.

【0028】この実施例は、以上のように構成されてお
り、次に、その作用を説明する。
This embodiment is constructed as described above, and its operation will be described below.

【0029】この光通信装置の基地局10及び端末局2
0では、受光モニタ17よって光ファイバFを介してO
/E変換器15に入射される光パルスのレベルが検出さ
れ、V/F変換器によってA/D変換されたシリアルパ
ルス信号が信号多重器11に入力されることによって、
信号多重器11に入力された伝送データと共に、それぞ
れの受光パワーデータが常時相手局へ伝送されている。
そして、その伝送された受光パワーデータは、信号分離
器14によって分離され、発光コントロール回路18、
18’へ入力される。発光コントロール回路18、1
8’は、その入力された受光パワーデータと、あらかじ
め設定された基準値とを比較し、両者の差が無くなるよ
うにE/O変換器12のレーザダイオードのバイアス電
流を変えて発光出力を変化させることによって、光ファ
イバFを介して入力され、O/E変換器15が受光する
光パルス信号の利得が通信エラーを生じないマージンを
保つように調整している。このとき、水面下にある端末
局20の前記基準値は、基地局10からの指令データに
より遠隔操作により設定が容易に行えるようになってい
る。
The base station 10 and the terminal station 2 of this optical communication device
At 0, the light receiving monitor 17 causes O through the optical fiber F.
The level of the optical pulse incident on the / E converter 15 is detected, and the serial pulse signal A / D converted by the V / F converter is input to the signal multiplexer 11,
Along with the transmission data input to the signal multiplexer 11, each received light power data is always transmitted to the partner station.
Then, the transmitted received light power data is separated by the signal separator 14, and the light emission control circuit 18,
18 'is input. Emission control circuit 18, 1
8'compares the received light power data inputted with a preset reference value, and changes the bias current of the laser diode of the E / O converter 12 so as to eliminate the difference between the two, thereby changing the light emission output. By doing so, the gain of the optical pulse signal input through the optical fiber F and received by the O / E converter 15 is adjusted so as to maintain a margin in which no communication error occurs. At this time, the reference value of the terminal station 20 below the surface of the water can be easily set by remote control according to command data from the base station 10.

【0030】また、端末局20では、E/O変換器12
の発光パワーが発光モニタ16によって検出され、デジ
タル変換されて信号多重器11に入力され、受光パワー
データ、伝送データと共に、基地局10へ伝送され、こ
の伝送された発光パワーデータは、信号分離器14によ
り分離され、異常判別回路19へ入力される。
In the terminal station 20, the E / O converter 12
The light emission power of is detected by the light emission monitor 16, is digitally converted and input to the signal multiplexer 11, and is transmitted to the base station 10 together with the light reception power data and the transmission data, and the transmitted light emission power data is a signal separator. It is separated by 14, and is input to the abnormality determination circuit 19.

【0031】同様に、基地局10のE/O変換器12の
発光パワーも発光モニタ16によって検出され、デジタ
ル変換されて異常判別回路19へ入力され、同時に、O
/E変換器15の受光モニタ17の検出データも異常判
別回路19へ入力されており、異常判別回路19は、こ
れら入力されるデータを突き合わせ伝送異常を判別して
いる。いま、このように、互いに相手局の受光パワーを
検出し、それぞれ、E/O変換器12の発光パワーの調
整のなされている状態で、曳航ロープ3に、例えば潮流
や波風の影響により曲げ圧力が加わり、そのため、複合
された光ファイバFに圧力が加わって導波モードが変化
し、伝送損失が生じ、伝送マージンが変化すると、その
伝送損失の変化に伴って、基地局10及び端末局20の
受光モニタ17で検出される受光パワーが変化する。そ
の検出されたパワーデータは、信号多重器11→E/O
変換器12→光ファイバF→O/E変換器15→信号分
離器14へと伝送され、信号分離器14で分離された受
光パワーデータは、発光コントロール回路18、18’
へ入力され、基準値と比較され、その差が0となるよう
にE/O変換器12の発光出力を増減させる。すると、
相手局で検出される受光パワーの検出値が増加あるいは
減少する。そして、このようにして、増加あるいは減少
した受光パワーは、上記と同様にして相手局へ伝送さ
れ、発光コントロール回路18、18’によって基準値
と比較され、その差が0となるよう上記動作が繰り返さ
れ、最適な受光パワーが維持される。このとき、異常判
別回路19は、基地局10へ伝送される端末局20のO
/E変換器15の受光パワーの値と基地局10の発光モ
ニタ16の検出した値とが通常の伝送損失相当量以上異
なることから光ファイバFが損失を起こしたことを特定
する。また、その逆系統のデータからも判断できる。
Similarly, the light emission power of the E / O converter 12 of the base station 10 is also detected by the light emission monitor 16, digitally converted and input to the abnormality determination circuit 19, and at the same time, O
The detection data of the light receiving monitor 17 of the / E converter 15 is also input to the abnormality determination circuit 19, and the abnormality determination circuit 19 compares the input data with each other to determine the transmission abnormality. Now, as described above, the light receiving powers of the other stations are detected with each other, and the light emitting powers of the E / O converters 12 are adjusted respectively. Therefore, when pressure is applied to the combined optical fiber F to change the guided mode and a transmission loss occurs and the transmission margin changes, the base station 10 and the terminal station 20 are changed in accordance with the change in the transmission loss. The light receiving power detected by the light receiving monitor 17 changes. The detected power data is signal multiplexer 11 → E / O
The received light power data transmitted to the converter 12 → optical fiber F → O / E converter 15 → signal separator 14 and separated by the signal separator 14 are emission control circuits 18 and 18 ′.
To the reference value, and the emission output of the E / O converter 12 is increased or decreased so that the difference becomes 0. Then,
The detection value of the received light power detected by the partner station increases or decreases. Then, the increased or decreased received light power is transmitted to the partner station in the same manner as described above and compared with the reference value by the emission control circuits 18 and 18 ', and the above operation is performed so that the difference becomes zero. Repeatedly, the optimum received light power is maintained. At this time, the abnormality determination circuit 19 causes the O of the terminal station 20 to be transmitted to the base station 10.
Since the value of the received light power of the / E converter 15 and the value detected by the light emission monitor 16 of the base station 10 are different from each other by the amount equivalent to the normal transmission loss, it is specified that the optical fiber F has a loss. It can also be judged from the data of its reverse system.

【0032】また、例えば端末局のE/O変換器12の
レーザダイオードの発光出力に変化が生じた場合にも、
その変化は、上記と同様、基地局の受光モニタ17によ
って検出され、その検出データは、信号多重器11→E
/O変換器12→光ファイバF→O/E変換器15→信
号分離器14へと伝送され、発光コントロール回路1
8’へ入力され、基準値と比較されて、その差が0とな
るようにE/O変換器12の発光出力が調整され、E/
O変換器12の発光出力を安定化し、最適な受光パワー
が維持される。このとき、異常判別回路19は、基地局
10の発光モニタ16の検出する基地局10のE/O変
換器12の発光パワーの変化と端末局20の発光モニタ
16の検出した発光パワーの変化を比較し、発光パワー
がコントロールされた端末局20のレーザダイオードの
出力変化が起こったことを特定する。
Also, for example, when the light emission output of the laser diode of the E / O converter 12 of the terminal station changes,
Similar to the above, the change is detected by the light receiving monitor 17 of the base station, and the detected data is the signal multiplexer 11 → E.
The light-emission control circuit 1 transmits the signal from the I / O converter 12 to the optical fiber F to the O / E converter 15 to the signal separator 14.
8 ', is compared with a reference value, and the light emission output of the E / O converter 12 is adjusted so that the difference becomes 0.
The light emission output of the O converter 12 is stabilized, and the optimum light receiving power is maintained. At this time, the abnormality determination circuit 19 detects the change in the light emission power of the E / O converter 12 of the base station 10 detected by the light emission monitor 16 of the base station 10 and the change of the light emission power detected by the light emission monitor 16 of the terminal station 20. By comparison, it is specified that the output change of the laser diode of the terminal station 20 whose emission power is controlled has occurred.

【0033】さらに、光ファイバFの損失とレーザダイ
オードの出力変化(例えば、基地局側)とが同時に発生
し、受光モニタ17の受光パワーが変化した場合も同様
に、その検出データは、信号多重器11→E/O変換器
12→光ファイバF→O/E変換器15→信号分離器1
4→発光コントロール回路18、18’→E/O変換器
12と伝送されることにより、受光パワーを最適な状態
で維持する。このとき、異常判別回路19は、基地局1
0の受光モニタ17の検出する端末局20のE/O変換
器12からの受光パワーの値と端末局20の発光モニタ
16の検出した値の差と通常の光損失量とを比較し、光
ファイバFの損失が生じたことを特定し、端末局20の
受光モニタ17の検出した値と、基地局10の発光モニ
タ16の検出した発光パワーを比較して、基地局側レー
ザダイオードの出力変化を特定する。
Further, even when the loss of the optical fiber F and the output change of the laser diode (for example, on the base station side) occur at the same time and the light receiving power of the light receiving monitor 17 changes, the detection data is also signal multiplexed. Device 11 → E / O converter 12 → optical fiber F → O / E converter 15 → signal separator 1
The light reception power is maintained in an optimum state by being transmitted from the 4 → emission control circuit 18, 18 ′ → E / O converter 12. At this time, the abnormality determination circuit 19 determines that the base station 1
The light reception power from the E / O converter 12 of the terminal station 20 detected by the light reception monitor 17 of 0 and the difference between the value detected by the light emission monitor 16 of the terminal station 20 and the normal light loss amount are compared, The loss of the fiber F is identified, the value detected by the light receiving monitor 17 of the terminal station 20 is compared with the light emitting power detected by the light emitting monitor 16 of the base station 10, and the output change of the laser diode on the base station side is compared. Specify.

【0034】このように、この光通信装置では、光ファ
イバFの損失の変化と発光素子の出力変化に追従して常
に受光パワーを一定に維持することができるので発光素
子の安定化と光ファイバFの伝送損失による利得の低下
の低減とを同時に行い、通信エラーの低減を図ることが
できる。
As described above, in this optical communication device, the light receiving power can be always maintained constant by following the change in the loss of the optical fiber F and the change in the output of the light emitting element. It is possible to reduce the decrease in gain due to the transmission loss of F at the same time and reduce the communication error.

【0035】なお、上記実施例では、母船2と水中装置
4等の曳航体について述べたが、これに、限定されるも
のではなく、例えば図3に示すように、陸上基地5と複
数の海底ステーション6とを結ぶのに用いたり、海底ケ
ーブルに用いても良い。
Although the towing body such as the mother ship 2 and the underwater device 4 has been described in the above embodiment, the present invention is not limited to this. For example, as shown in FIG. 3, a land base 5 and a plurality of seabeds are provided. It may be used for connecting to the station 6 or for a submarine cable.

【0036】[0036]

【効果】この発明は、以上のように構成し、発光素子の
出力に変動が生じたり、光伝送路に損失が生じた場合で
も、発光パワーを常時コントロールして常に一定レベル
(範囲)の受光パワーを受光できるので、発光素子の出
力に変動が生じたり、光伝送路に損失が生じた場合でも
安定した通信が可能である。
[Effect] The present invention is configured as described above, and even when the output of the light emitting element fluctuates or a loss occurs in the optical transmission line, the emission power is constantly controlled to always receive light of a constant level (range). Since power can be received, stable communication is possible even when the output of the light emitting element fluctuates or a loss occurs in the optical transmission line.

【0037】このため、特に、光の伝送路が曳航ケーブ
ル内に複合されている場合のように、張力や側圧を受け
て損失変動が生じやすい条件下で利用すると効果的であ
る。
Therefore, it is particularly effective to use under a condition where loss fluctuation is likely to occur due to tension or lateral pressure, such as in the case where the optical transmission line is combined in the tow cable.

【0038】また、遠隔操作によって発光パワーの調整
も行なえるので通信装置の片側が水中等に設置されるこ
とにより、常時メンテナンスの行なえない通信装置に用
いるのにも最適である。
Further, since the emission power can be adjusted by remote control, one side of the communication device is installed in water or the like, which is suitable for use in a communication device that cannot always be maintained.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例の使用形態図FIG. 1 is a diagram showing a usage pattern of an embodiment.

【図2】実施例の回路ブロック図FIG. 2 is a circuit block diagram of an embodiment.

【図3】実施例の他の使用形態図FIG. 3 is another usage pattern diagram of the embodiment.

【図4】従来例のブロック図FIG. 4 is a block diagram of a conventional example.

【符号の説明】[Explanation of symbols]

10 基地局 11 信号多重器 12 E/O変換器 13 双方向分波合波器 14 信号分離器 15 O/E変換器 16 発光モニタ 17 受光モニタ 18、18’ 発光コントロール回路 20 端末局 30 光送信手段 40 光受信手段 F 光ファイバ 10 base station 11 signal multiplexer 12 E / O converter 13 bidirectional demultiplexer-multiplexer 14 signal separator 15 O / E converter 16 light emission monitor 17 light reception monitor 18, 18 'light emission control circuit 20 terminal station 30 optical transmission Means 40 Optical receiving means F Optical fiber

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】水面下の端末局と水面上の基地局とを接続
する光通信装置であって、前記基地局と端末局とは、光
通信手段を有し、光伝送路を介して接続され、かつ、光
伝送路を介して入力される交信相手局からの受光パワー
を検出し、その検出したパワーデータを交信相手局へ伝
送する受光モニタ手段と、交信相手局より伝送される前
記受光パワーデータに基づいて光通信手段の発光パワー
調整を行なうコントロール手段を備えた光通信装置。
1. An optical communication device for connecting a terminal station under the water surface and a base station on the water surface, wherein the base station and the terminal station have optical communication means and are connected via an optical transmission line. Light receiving monitor means for detecting the received light power from the communication partner station which is input through the optical transmission line and transmitting the detected power data to the communication partner station, and the light reception monitor transmitted from the communication partner station. An optical communication device comprising control means for adjusting light emission power of optical communication means based on power data.
【請求項2】上記コントロール手段を、交信相手局より
伝送される受光パワーデータに基づいて光伝送手段の発
光パワーを調整して、交信相手局の受光パワーを一定に
保つことを特徴とする請求項1記載の光通信装置。
2. The control means adjusts the light emission power of the optical transmission means based on the light reception power data transmitted from the communication partner station to keep the light reception power of the communication partner station constant. Item 1. The optical communication device according to item 1.
【請求項3】上記端末局に、基地局からの指令に基づい
て光通信手段の発光パワーの調整を行う調整手段を備え
たことを特徴とする請求項1または2記載の光通信装
置。
3. The optical communication apparatus according to claim 1, wherein said terminal station is provided with adjusting means for adjusting the light emission power of the optical communication means based on a command from the base station.
JP5073776A 1993-03-31 1993-03-31 Optical communication device Pending JPH06291730A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5073776A JPH06291730A (en) 1993-03-31 1993-03-31 Optical communication device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5073776A JPH06291730A (en) 1993-03-31 1993-03-31 Optical communication device

Publications (1)

Publication Number Publication Date
JPH06291730A true JPH06291730A (en) 1994-10-18

Family

ID=13527950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5073776A Pending JPH06291730A (en) 1993-03-31 1993-03-31 Optical communication device

Country Status (1)

Country Link
JP (1) JPH06291730A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013110667A (en) * 2011-11-24 2013-06-06 Hitachi Ltd Output value control method and transmission device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013110667A (en) * 2011-11-24 2013-06-06 Hitachi Ltd Output value control method and transmission device

Similar Documents

Publication Publication Date Title
US4553268A (en) Circuit arrangement with a laser diode for transmission of communication signals through a light waveguide
US7072582B2 (en) Optical transmitter power setting using feedback
US7248762B2 (en) Optical fiber transmission system with increased effective modal bandwidth transmission
US20060215545A1 (en) Controlling loss of signal thresholds in an optical receiver
US6445471B1 (en) Apparatus and method for making transmission characteristics uniform in a wavelength division multiplexing optical communications system
EP0607029A2 (en) Wavelength division multiplex bidirectional optical communication system
US6785308B2 (en) Spectral conditioning system and method
CN108768533B (en) Optical transceiver integrated assembly for high-speed long-distance transmission
CN109120350B (en) Communication signal tracking system
US7283701B2 (en) Optical fiber transmission system with increased effective modal bandwidth transmission
US6124956A (en) Optical transmitter output monitoring tap
US11755091B2 (en) Optical power supply system
US6246499B1 (en) Optical signal communication apparatus and optical signal communication method
JP3774108B2 (en) Optical amplification repeater monitoring system
JPH06291730A (en) Optical communication device
US11705968B2 (en) Adjustment device and adjusting method for stabilizing optical characteristic parameters
US20150341120A1 (en) Optical modulator calibration
WO2020255636A1 (en) Optical fiber power supply system and data communication device
GB2428865A (en) A method for compensating for wavelength drift
AU2008318296B2 (en) Deployable photonic link and interface module
CN113438028A (en) Optical fiber communication system and method for dynamic power optimization therein
US20230224047A1 (en) Systems and Methods for Remote Optical Power Supply Communication for Uncooled WDM Optical Links
JP2000036794A (en) Optical transmission equipment
KR20020081708A (en) Optical Communication Apparatus for NetWork
KR20030097031A (en) Optical transceiver module having optical transmission loss compensating function