JPH06291432A - Mullite ceramic substrate and manufacture thereof - Google Patents

Mullite ceramic substrate and manufacture thereof

Info

Publication number
JPH06291432A
JPH06291432A JP5105106A JP10510693A JPH06291432A JP H06291432 A JPH06291432 A JP H06291432A JP 5105106 A JP5105106 A JP 5105106A JP 10510693 A JP10510693 A JP 10510693A JP H06291432 A JPH06291432 A JP H06291432A
Authority
JP
Japan
Prior art keywords
mullite
glass
mgo
point
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5105106A
Other languages
Japanese (ja)
Inventor
Shigeru Taga
茂 多賀
Eiji Kodera
英司 小寺
Yukihiro Kimura
幸広 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP5105106A priority Critical patent/JPH06291432A/en
Publication of JPH06291432A publication Critical patent/JPH06291432A/en
Pending legal-status Critical Current

Links

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To obtain a mullite ceramic substrate having excellent adhesion to metallized particles but no warpage at all by specifying the content ratio between the mullite particles and a sintering agent as well as the composition of the latter. CONSTITUTION:A mullite ceramic substrate mainly comprising mullite is provided with an insulator containing Al2O3-SiO2-MgO base glass in 10-40wt.% while the glass composition comes within the range encircled by the four points of A, B, C, D in said glass composition figure. Within such a range, the weight% of Al2O3:SiO2:MgO is specified to be 40:58:2 at the point A, 42:43:15 at the point B, 60:23:17 at the point C and 58:38:4 at the point D. Through these procedures, the adhesion to the metallized particles can be enhanced while avoiding the warpage of the title mullite ceramic substrate by specifying the glass content as well as the composition ratio between Al2O3, SiO2 and MgO.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、ムライトセラミック
基板とその製造方法に関する。このムライトセラミック
基板は、高密度且つ高信頼性の多層配線基板に好適に利
用され得る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a mullite ceramic substrate and its manufacturing method. This mullite ceramic substrate can be suitably used for a high-density and highly reliable multilayer wiring substrate.

【0002】[0002]

【従来の技術】従来のセラミック配線基板は、アルミナ
等を主成分とするセラミックスからなり、板形状の複数
枚の絶縁層と、各絶縁層の主表面にタングステン、モリ
ブデン等の高融点金属にて形成された各種配線パターン
とを備えている。
2. Description of the Related Art A conventional ceramic wiring board is made of ceramics containing alumina as a main component, and has a plurality of plate-shaped insulating layers, and the main surface of each insulating layer is made of a refractory metal such as tungsten or molybdenum. And various formed wiring patterns.

【0003】このようなセラミック配線基板は、次の手
順で製造される。まず、アルミナ等のセラミックス粉末
を主成分とするグリーンシートに打ち抜きによって貫通
孔を設け、その中に導体ペーストを充填する。そして、
グリーンシートの表面に、タングステンW等の導体ペー
ストを所定パターンにスクリーン印刷して、各配線パタ
ーンを形成する。次にこれらグリーンシートを積層し、
圧力下で接着する。その後、積層体が1500℃前後の
高温で焼成され、その表面にTi、Cu、Cr等の活性
金属がスパッタリングされたり又はNi鍍金等が施され
てセラミックス多層配線基板となる。かくして貫通孔に
充填された導体ペーストは、導体柱となって各層の配線
を電気的に接続する。
Such a ceramic wiring board is manufactured by the following procedure. First, a through hole is formed in a green sheet containing ceramic powder such as alumina as a main component by punching, and a conductor paste is filled in the through hole. And
A conductive paste such as tungsten W is screen-printed in a predetermined pattern on the surface of the green sheet to form each wiring pattern. Next, stack these green sheets,
Glue under pressure. After that, the laminated body is fired at a high temperature of around 1500 ° C., and the surface thereof is sputtered with an active metal such as Ti, Cu, or Cr, or is plated with Ni or the like to form a ceramic multilayer wiring board. Thus, the conductor paste filled in the through holes becomes a conductor pillar and electrically connects the wirings of the respective layers.

【0004】ところで、近年、信号伝播速度を速くする
ことと、集積回路ICの接続不良及び剥離を未然に防止
することのために、高密度ICパッケージの多層基板中
の絶縁層として、アルミナ系セラミックスに代えてムラ
イト系セラミックスを用いようとする提案がなされてい
る(特開昭61−230204号公報)。
By the way, in recent years, in order to increase the signal propagation speed and prevent connection failures and peeling of integrated circuit ICs, alumina ceramics are used as an insulating layer in a multilayer substrate of a high density IC package. A proposal has been made to use mullite ceramics instead of the above (Japanese Patent Laid-Open No. 61-230204).

【0005】すなわち、電気信号の伝播遅延時間は、配
線導体をとりまく絶縁層の誘電率の平方根に比例するの
で、比誘電率の小さいムライトを絶縁層の主成分として
信号の高速化を達成しようとするのである。また、集積
回路ICが半導体シリコンよりなるものの場合、シリコ
ンの熱膨張係数が3.4×10-6/℃であるから、これ
と熱膨張差の小さいムライトをIC搭載部の絶縁層の主
成分とすることにより、IC接続部分の熱応力を軽減し
ようとするのである。
That is, since the propagation delay time of an electric signal is proportional to the square root of the dielectric constant of the insulating layer surrounding the wiring conductor, mullite having a small relative dielectric constant is used as the main component of the insulating layer to achieve high speed signals. To do. When the integrated circuit IC is made of semiconductor silicon, the coefficient of thermal expansion of silicon is 3.4 × 10 −6 / ° C., and thus mullite having a small thermal expansion difference is used as the main component of the insulating layer of the IC mounting portion. By doing so, the thermal stress of the IC connecting portion is reduced.

【0006】ちなみにアルミナセラミックの熱膨張係数
が7.5×10-6/℃、比誘電率が約9であるのに対し
て、前記特開昭61−230204号公報に記載された
ムライト基板の熱膨張係数は4.6×10-6/℃、同じ
く比誘電率は5.7であり、その限りでは優れた材質で
ある。
Incidentally, while the coefficient of thermal expansion of alumina ceramics is 7.5 × 10 −6 / ° C. and the relative dielectric constant is about 9, the mullite substrate disclosed in the above-mentioned Japanese Patent Laid-Open No. 61-230204. It has a thermal expansion coefficient of 4.6 × 10 −6 / ° C. and a relative dielectric constant of 5.7, which is an excellent material.

【0007】[0007]

【発明が解決しようとする課題】ムライトセラミック基
板もアルミナセラミック基板の場合と同様に高融点金属
の導体ペーストとセラミック粉末とが同時焼成して得ら
れるものであるから、セラミックに密着し且つ緻密で低
抵抗の配線パターンを得るためには、セラミック基板中
で焼結助剤として機能しているガラス成分が高融点金属
に充分濡れる必要が有る。
Similar to the case of the alumina ceramic substrate, the mullite ceramic substrate is obtained by cofiring the conductor paste of the refractory metal and the ceramic powder, so that the mullite ceramic substrate adheres closely to the ceramic and is dense. In order to obtain a low resistance wiring pattern, it is necessary that the glass component functioning as a sintering aid in the ceramic substrate be sufficiently wet with the high melting point metal.

【0008】この点につき、前記特開昭61−2302
04号公報によると、ガラスマトリックスの成分をAl
23(4〜30%)−SiO2(60〜95%)−Mg
O(1〜10%)と限定させることにより導体金属であ
るタングステンやモリブデンメタライズ粒子との同時焼
成を速やかに行え、かつ、ムライト基板本来の特性であ
る低熱膨張係数、低誘電率を維持できるとしている。し
かしながら、ムライト粒子は難焼結粒子であるから、こ
れをガラス成分により液相焼結することによって得られ
たムライトセラミック基板は、ガラス成分の特性の影響
を受け易い。
Regarding this point, the above-mentioned JP-A-61-2302
According to the 04 publication, the glass matrix component is Al
2 O 3 (4 to 30%)-SiO 2 (60 to 95%)-Mg
By limiting the content to O (1 to 10%), it is possible to rapidly co-fire with the conductor metal tungsten or molybdenum metallized particles, and to maintain the low thermal expansion coefficient and low dielectric constant, which are the original characteristics of the mullite substrate. There is. However, since the mullite particles are hardly sintered particles, the mullite ceramic substrate obtained by liquid-phase sintering the mullite particles is easily affected by the characteristics of the glass component.

【0009】例えば、基板を実際に生産する際に問題と
なることの一つに焼成時の基板とセッターとの融着や焼
成された基板の反りがあげられ、これらのことが基板生
産時の歩留まりを大きく左右することがある。特開昭6
1−230204号公報記載の組成にしてもガラス成分
中のAl23とSiO2の比についてのみ検討しており
MgOの添加量についての検討が十分になされていない
せいか、やはりそのような不具合が生じる。
For example, one of the problems in actual production of substrates is fusion of the substrate and the setter during firing and warpage of the fired substrate. Yield can be greatly affected. JP-A-6
Even with the composition described in JP-A 1-230204, only the ratio of Al 2 O 3 and SiO 2 in the glass component has been investigated, and the amount of MgO added has not been thoroughly investigated. Defect occurs.

【0010】従って、この様にムライト粉末と高融点金
属とを同時焼成して配線基板を製造するにあたって、ム
ライト粒子とガラスとの濡れ性、及びメタライズ粒子と
ガラスとの濡れ性を最適範囲とし、なお且つ焼成基板と
して優れた特性を発揮し得る助剤ガラスの組成は、解明
されていない。本発明の目的は、このような課題を解決
し、ムライト粒子と焼結助剤の含有比並びに焼結助剤の
組成を特定することにより、反りの無くかつメタライズ
粒子との密着性に優れたムライト基板を提供することで
ある。
Therefore, when the mullite powder and the refractory metal are co-fired in this way to produce a wiring board, the wettability between the mullite particles and the glass and the wettability between the metallized particles and the glass are set to the optimum ranges. Moreover, the composition of the auxiliary glass that can exhibit excellent properties as a fired substrate has not been clarified. The object of the present invention is to solve such problems, and by specifying the content ratio of the mullite particles and the sintering aid and the composition of the sintering aid, there is no warp and excellent adhesion with the metallized particles. It is to provide a mullite substrate.

【0011】[0011]

【課題を解決するための手段】この発明のムライトセラ
ミック基板は、ムライトを主成分とし且つ10〜40重
量%のAl23−SiO2−MgO系ガラスを含む絶縁
体を備え、ガラス組成が、図1に示すAl23−SiO
2−MgO3成分系組成図の下記の点A,B,C及びD
によって囲まれる範囲内(境界線上を含む)に属するこ
とを特徴とする。
A mullite ceramic substrate of the present invention comprises an insulator containing mullite as a main component and 10 to 40% by weight of Al 2 O 3 —SiO 2 —MgO system glass, and has a glass composition. , Al 2 O 3 —SiO shown in FIG.
2- MgO 3-component composition chart, points A, B, C and D
It is characterized by belonging to the range surrounded by (including on the boundary line).

【0012】同じくその製造方法は、ムライト粉末に焼
結助剤を添加し混合し、混合物をグリーンシートに成形
し焼成する方法において、焼結助剤の添加量が混合物中
10〜40重量%であって、その組成が、酸化物に換算
してAl23−SiO2−MgO3成分系組成図の下記
の点A,B,C及びDによって囲まれる範囲内(境界線
上を含む)に属することを特徴とする。
[0012] Similarly, the manufacturing method is a method in which a sintering aid is added to and mixed with mullite powder, and the mixture is molded into a green sheet and fired, and the addition amount of the sintering aid is 10 to 40% by weight in the mixture. That is, the composition belongs to the range surrounded by the following points A, B, C and D (including the boundary line) of the Al 2 O 3 —SiO 2 —MgO 3 component composition diagram in terms of oxide. It is characterized by

【0013】 Al23 SiO2 MgO 点A 40 58 2 点B 42 43 15 点C 60 23 17 点D 58 38 4 [単位:重量%]Al 2 O 3 SiO 2 MgO point A 40 58 2 point B 42 43 15 point C 60 23 17 point D 58 38 4 [unit: wt%]

【作用】本発明の作用を、ガラス添加含有量並びにAl
23,SiO2及びMgOの組成比を限定した理由とと
もに詳細に述べる。
The function of the present invention is to add the glass addition content and Al.
The reason for limiting the composition ratio of 2 O 3 , SiO 2 and MgO will be described in detail.

【0014】まず、ガラス添加含有量を10〜40%と
限定した理由について述べる。ムライト基板はアルミナ
基板と同様、タングステンやモリブデン金属との同時焼
成が行われる。したがって、セラミックもこれらのメタ
ライズが焼結する温度で焼成される。この同時焼成する
温度とは通常1500℃〜1650℃である。
First, the reason why the glass addition content is limited to 10 to 40% will be described. Like the alumina substrate, the mullite substrate is co-fired with tungsten or molybdenum metal. Therefore, the ceramic is also fired at the temperature at which these metallizations sinter. This co-firing temperature is usually 1500 ° C to 1650 ° C.

【0015】ガラス成分を40%より多くすると、過剰
のガラスの存在により焼成温度が1500℃以下となっ
てしまいタングステン、モリブデンとの同時焼成には適
さない。また、ガラスの量が多すぎて焼成された基板
は、機械的特性がガラスに支配されることになり、強度
の弱いものとなってしまう。逆に、ムライト含有量が9
0%より多くなるとガラスの不足により焼成温度が高く
なり実用的でない。したがって、ガラス添加含有量は1
0〜40%とした。
When the glass component is more than 40%, the firing temperature becomes 1500 ° C. or less due to the presence of excess glass, which is not suitable for simultaneous firing with tungsten and molybdenum. In addition, a substrate that has been fired due to an excessive amount of glass will be dominated by the mechanical properties of the glass, resulting in weak strength. Conversely, the mullite content is 9
If it exceeds 0%, the firing temperature becomes high due to lack of glass, which is not practical. Therefore, the glass addition content is 1
It was set to 0 to 40%.

【0016】次に焼結助剤の組成を3成分系組成図(図
1)中の点A,B,C,Dを含む4点に囲まれた範囲内
に限定した理由について詳細に述べる。ムライト粒子そ
れ自体は難焼結粒子であるためそれをAl23−SiO
2−MgO系の三成分の焼結助剤により液相焼結させる
わけであるが、この際に問題となるのが基板の焼成温度
におけるムライト粒子およびタングステン、モリブデン
等のメタライズ粒子と溶融したガラスとの濡れ性であ
る。この濡れ性を左右する要因としてガラスの溶融開始
温度と基板焼成温度時のガラスの粘度とがある。
Next, the reason why the composition of the sintering aid is limited to a range surrounded by four points including points A, B, C and D in the three-component composition diagram (FIG. 1) will be described in detail. Since the mullite particles themselves are difficult to sinter, they are treated as Al 2 O 3 -SiO 2.
Liquid phase sintering is performed with a 2- MgO-based three-component sintering additive, but the problem in this case is mullite particles at the firing temperature of the substrate and metallized particles such as tungsten and molybdenum, and molten glass. It is wettable with. Factors that influence the wettability are the glass melting start temperature and the glass viscosity at the substrate baking temperature.

【0017】このガラスの融点及び粘度と組成の関係に
ついてまずAl23とSiO2の組成比について説明す
る。というのは、Al23とSiO2の二成分中に少量
のMgOを添加するだけで融点が著しく下がる。したが
って、タングステンやモリブデンメタライズ粒子とAl
23−SiO2−MgO系ガラスとの濡れ性はMgO添
加量に大きく影響を受ける。よって、MgO量を適量と
仮定したうえでAl23とSiO2との量比を考察し、
次いでMgOの含有量について詳述する。
Regarding the relationship between the melting point and viscosity of the glass and the composition, the composition ratio of Al 2 O 3 and SiO 2 will be described first. The reason is that the melting point is remarkably lowered only by adding a small amount of MgO to the two components of Al 2 O 3 and SiO 2 . Therefore, tungsten or molybdenum metallized particles and Al
Wettability between 2 0 3 -SiO 2 -MgO based glass greatly influenced by the MgO addition amount. Therefore, the amount ratio of Al 2 O 3 and SiO 2 is considered on the assumption that the amount of MgO is appropriate.
Next, the content of MgO will be described in detail.

【0018】Al23−SiO2−MgO系の三成分ガ
ラスにおいてSiO2含有量が60%より多くなるとガ
ラスの溶融温度が低下し、また焼成温度時におけるガラ
スの粘度も低下する。このことは、ムライト粒子および
メタライズ粒子とガラスとの濡れ性に対しては良いこと
ではあるが、基板焼成時にムライトセラミック中のガラ
ス成分が流出してしまい結果としてセッターとの融着が
発生したり、急激な焼成収縮が起きるため、基板焼成時
の僅かの温度差で不均一な収縮による基板の反りが発生
する。特に、基板のコーナーやエッジ部分は炉内温度へ
の追随が速いので反りが発生しやすい。
When the SiO 2 content of the Al 2 O 3 --SiO 2 --MgO system ternary glass is more than 60%, the melting temperature of the glass lowers and the viscosity of the glass at the firing temperature also lowers. This is good for the wettability between the mullite particles and the metallized particles and the glass, but the glass component in the mullite ceramic flows out during the firing of the substrate, resulting in fusion with the setter. Since a rapid shrinkage occurs, the substrate warps due to uneven shrinkage due to a slight temperature difference during the baking of the substrate. In particular, since the corners and edge portions of the substrate follow the temperature inside the furnace quickly, warpage is likely to occur.

【0019】逆にSiO2含有量を少なくし、Al23
含有量を40%より多くするとガラスの融点が高く、焼
成温度時におけるガラスの粘度が高くなるためにムライ
ト粒子およびメタライズ粒子との濡れ性は若干悪化する
が焼成時にガラスが流出することもなくセッターとの融
着は無い。また、基板の収縮が緩慢に行われるために反
りは生じない。しかしながら、Al23含有量が多くな
りすぎるとガラスの溶融温度が高くなりすぎて液相焼結
には適さない。また、Al23はそれ自体が熱膨張係数
が高く、また比誘電率も高いため過剰なアルミナを添加
する事はこの点からも好ましくない。
On the contrary, the SiO 2 content is reduced to reduce the Al 2 O 3 content.
When the content is more than 40%, the melting point of the glass is high, and the viscosity of the glass at the firing temperature is high, so that the wettability with mullite particles and metallized particles is slightly deteriorated, but the glass does not flow out during firing and the setter does not flow out. There is no fusion with. Further, since the substrate shrinks slowly, no warpage occurs. However, if the Al 2 O 3 content is too high, the melting temperature of the glass becomes too high, which is not suitable for liquid phase sintering. Further, since Al 2 O 3 itself has a high thermal expansion coefficient and a high relative dielectric constant, it is not preferable to add an excessive amount of alumina also from this point.

【0020】次にガラス組成中のMgO添加量について
述べる。まずAl23−SiO22成分のみではガラス
の融点が高すぎること、及びガラスの粘度が高くムライ
ト粒子及びメタライズ粒子との濡れ性が悪いことから好
ましくない。したがつて、少量のMgOの添加が不可欠
となる。逆に、MgOの添加を増加させるとガラスの融
点は低下し濡れ性は向上するが、その反面過剰量を添加
するとガラスの粘度が低くなりすぎて基板焼成時にガラ
スのシミ出しによりセッターとの融着や基板の反りが発
生する。また、過剰のMgO添加はスピネル(MgO・
Al23)等のMgO系複合酸化物を多量に生成させて
しまう。これらの複合酸化物は熱膨張係数がシリコンチ
ップと大きく異なるためムライト基板中に多量に生成す
ることは好ましくない。また、これらの複合酸化物の多
量の生成は基板上へのMgOの偏析による斑点状の変色
を発生させるため外観上好ましくない。
Next, the amount of MgO added in the glass composition will be described. First, the Al 2 O 3 —SiO 2 component alone is not preferable because the melting point of glass is too high, and the viscosity of glass is high and the wettability with mullite particles and metallized particles is poor. Therefore, the addition of a small amount of MgO is indispensable. On the contrary, when the addition of MgO is increased, the melting point of the glass is lowered and the wettability is improved, but when the excess amount is added, the viscosity of the glass becomes too low and the glass melts out during the baking of the substrate to melt with the setter. Adhesion or warpage of the substrate occurs. In addition, excess MgO is added to spinel (MgO.
A large amount of MgO-based composite oxide such as Al 2 O 3 ) is produced. Since the thermal expansion coefficient of these complex oxides is greatly different from that of silicon chips, it is not preferable to generate a large amount in the mullite substrate. Further, generation of a large amount of these complex oxides causes a spot-like discoloration due to segregation of MgO on the substrate, which is not preferable in appearance.

【0021】以上の様な理由によりガラス組成を上記の
範囲内に限定した。
For the above reasons, the glass composition is limited to the above range.

【実施例】以下本発明の実施例について記載するが本発
明はこれらの実施例に限定されるものではない。
EXAMPLES Examples of the present invention will be described below, but the present invention is not limited to these examples.

【0022】−実施例1− 本例は、本発明ムライトセラミック基板の生産性を評価
するものである。平均粒径2.4μmの電融ムライト7
50gと平均粒径1.7μmのアルミナ115gと平均
粒径2.4μmのシリカ115gと平均粒径0.4μm
の炭酸マグネシウムを酸化マグネシウムに換算して20
gとを、トルエンを分散媒体として24時間ボールミル
中で混合した。続いてグリーンシート成形用のバインダ
ーとしてジブチルフタレートとポリビニルブチラールを
加えさらに24時間混合した。
Example 1 In this example, the productivity of the mullite ceramic substrate of the present invention is evaluated. Electrofused mullite 7 with an average particle size of 2.4 μm
50 g, 115 g of alumina having an average particle size of 1.7 μm, 115 g of silica having an average particle size of 2.4 μm, and 0.4 μm of an average particle size
20 of magnesium carbonate is converted to magnesium oxide
and g were mixed in a ball mill for 24 hours with toluene as the dispersion medium. Then, dibutyl phthalate and polyvinyl butyral were added as a binder for forming the green sheet, and the mixture was further mixed for 24 hours.

【0023】得られた混合物を真空脱泡した後、ドクタ
ーブレード法により厚さ0.5mmのグリーンシートに
成形した。このグリーンシートを積層圧着し焼成前のサ
イズとして100×100×2.0tmmのグリーン体
に切断加工した。このグリーン体を予め酸素雰囲気中2
50℃にて有機成分を取り除いた後、還元雰囲気中にて
金属モリブデン板をセッターとして1400℃〜165
0℃まで焼成温度を変化させて焼成した。その際の焼成
温度と焼成比重、焼成温度と収縮率の関係を図2および
図3に示す。
The resulting mixture was vacuum degassed and then formed into a green sheet having a thickness of 0.5 mm by the doctor blade method. The green sheets were laminated and pressure-bonded and cut into green bodies having a size of 100 × 100 × 2.0 t mm before firing. 2 this green body in the oxygen atmosphere beforehand
After removing organic components at 50 ° C., 1400 ° C. to 165 ° C. using a metal molybdenum plate as a setter in a reducing atmosphere.
Firing was performed by changing the firing temperature to 0 ° C. The firing temperature and firing specific gravity at that time and the relationship between firing temperature and shrinkage are shown in FIGS. 2 and 3.

【0024】図2及び図3より、1400℃から焼結が
開始し1500℃から1600℃の広範囲において安定
した収縮率を示すことが明きらかである。この事は、こ
の基板を1500℃から1600℃のある温度で焼成し
た際に、基板の焼成後の寸法のばらつきを小さく抑えら
れるため生産上非常に有用なことである。
From FIGS. 2 and 3, it is clear that the sintering starts from 1400 ° C. and shows a stable shrinkage ratio in a wide range of 1500 ° C. to 1600 ° C. This is very useful in production because when the substrate is fired at a temperature of 1500 ° C. to 1600 ° C., variations in the dimensions of the substrate after firing can be suppressed.

【0025】−実施例2及び比較例− 本例は、焼結助剤の組成の望ましい範囲を求めるもので
ある。ムライト粒子含有量を75重量%、焼結助剤の合
計添加量を25重量%として、焼結助剤の成分含有比を
表1のようにさまざまに変え、そのほかは実施例1と同
じ条件でムライトセラミック基板を製造した。ただし、
焼成温度についてはその組成のものが完全に焼結する温
度とし、基本的にはムライト粒子含有量により変化させ
た。基板No.1〜9は、本発明範囲に属するムライト
セラミック基板であり、基板No.10〜15は、比較
例である。尚、基板No.1は、実施例1で示したもの
である。
-Example 2 and Comparative Example-This example seeks a desirable range of the composition of the sintering aid. With the content of mullite particles being 75% by weight and the total addition amount of the sintering additive being 25% by weight, the content ratio of the components of the sintering additive was variously changed as shown in Table 1, and the other conditions were the same as in Example 1. A mullite ceramic substrate was manufactured. However,
The firing temperature was the temperature at which the composition having the composition was completely sintered, and was basically changed depending on the content of mullite particles. Substrate No. 1 to 9 are mullite ceramic substrates belonging to the scope of the present invention. 10 to 15 are comparative examples. The substrate No. 1 is shown in Example 1.

【0026】[0026]

【表1】 これらの各組成の基板について、以下に示す評価を行っ
た。 [焼結体の基本特性評価]先ず、焼結体の熱膨張係数、
比誘電率及び抗析強度を測定した。尚、抗析強度はJI
S R1601に基づき測定した。また、基板の反り、
基板上の斑点状の変色の有無及び基板とセッターとの融
着の有無を観察した。それらの結果を表2に示す。
[Table 1] The following evaluations were performed on the substrates having each of these compositions. [Evaluation of basic characteristics of sintered body] First, the thermal expansion coefficient of the sintered body,
The relative dielectric constant and the anti-deposition strength were measured. The anti-deposition strength is JI
It measured based on SR1601. Also, the warpage of the substrate,
The presence or absence of spot-like discoloration on the substrate and the presence or absence of fusion between the substrate and the setter were observed. The results are shown in Table 2.

【0027】[0027]

【表2】 表2にみられるように、本発明の基板No.1〜9は、
熱膨張係数が4.0〜4.6×10-6/℃(0〜400
℃)で半導体シリコンのそれに近く、比誘電率が6.1
〜6.8と低く、抗析強度が220〜250MPaと高
いものであった。また、生産性についても基板の反り量
は50〜150μmと少なかった。しかも焼成時の基板
上の斑点状の変色はなく、セッターとの融着についても
No.5で若干の融着が発生したことを除き確認されな
かった。
[Table 2] As seen in Table 2, the substrate No. 1-9 are
The coefficient of thermal expansion is 4.0 to 4.6 × 10 −6 / ° C. (0 to 400
C) close to that of semiconductor silicon, with a relative dielectric constant of 6.1
It was as low as ˜6.8 and had a high anti-deposition strength of 220-250 MPa. In terms of productivity, the warp amount of the substrate was as small as 50 to 150 μm. Moreover, there is no spot-like discoloration on the substrate during firing, and the fusion with the setter is also no. It was not confirmed except that some fusion occurred in No. 5.

【0028】これに対して、焼結助剤が点E,F,Gの
組成の基板No.10〜12はSiO2の含有量が多す
ぎて基板の反りが大きく、またガラス成分のシミ出しに
よるセ ッターとの融着が確認された。その際反り量、
融着の程度はSiO2の含有量が多い程大きかった。焼
結助剤が点Iの組成の基板No.13はMgOの含有量
が多すぎてやはり基板の反りが大きく、またガラス成分
のシミ出しによるセッターとの融着及び基板の変色が確
認された。点Jの組成の基板No.14はAl23含有
量が多すぎ熱膨張係数が高くなりすぎるので、シリコン
チップを搭載する配線基板としては適さない。
On the other hand, the substrate No. having the composition of the sintering aids at points E, F, and G was not. It was confirmed that Nos. 10 to 12 had a large amount of SiO 2 and had a large warp of the substrate, and that the glass component was fused with the setter due to the appearance of stains. In that case, the amount of warp,
The degree of fusion was greater as the content of SiO 2 was higher. Substrate No. having a composition in which the sintering aid is point I. In No. 13, the content of MgO was too large and the warp of the substrate was still large, and fusion with the setter and discoloration of the substrate due to the spotting of the glass component were confirmed. Substrate No. having the composition of point J. No. 14 is not suitable as a wiring board on which a silicon chip is mounted, because the Al 2 O 3 content is too large and the thermal expansion coefficient becomes too high.

【0029】[メタライズ金属との適合性評価]組成が
表1に示したものである以外は、実施例1と同一条件で
得られた厚さ0.5mmのグリーンシートに0.5mm
φ,0.25mmφ,0.12mmφのスルーホールを
各孔径につき500個、合計1500個打ち抜き、その
中に導体ペーストを充填させた。この導体ペーストは平
均粒径2.0μmのタングステン粉末100重量部に対
して平均粒径1.7μmのムライト粉末1重量部、エチ
ルセルロース2.8重量部及びブチルカルビトール6重
量部を加えたものである。このように導体ペーストを充
填したグリーンシートを各層のスルーホールがつながる
ように6層積層し、表1の温度にて焼成した。
[Evaluation of Compatibility with Metallized Metal] 0.5 mm thick green sheet obtained under the same conditions as in Example 1 except that the composition was as shown in Table 1.
Through holes of φ, 0.25 mmφ, and 0.12 mmφ were punched out at 500 holes for a total of 1500 holes, and a conductor paste was filled therein. This conductor paste was obtained by adding 1 part by weight of mullite powder having an average particle size of 1.7 μm, 2.8 parts by weight of ethyl cellulose and 6 parts by weight of butyl carbitol to 100 parts by weight of tungsten powder having an average particle size of 2.0 μm. is there. Six layers of the green sheets thus filled with the conductor paste were laminated so that the through holes of each layer were connected and fired at the temperature shown in Table 1.

【0030】それぞれの孔径のスルーホールの焼成後の
断面を電子プローブマイクロアナライザーにて元素分析
し、ムライトシート中のガラス成分であるAl23とS
iO2とMgOが均一にタングステン中に拡散している
か否かを観察した。また、各孔径につき30個のスルー
ホール部の比抵抗を測定し、その平均値を算出した。結
果を表3に示す。
The cross-sections of the through-holes having the respective hole diameters after firing were subjected to elemental analysis with an electron probe microanalyzer, and Al 2 O 3 and S, which are glass components in the mullite sheet, were analyzed.
It was observed whether iO 2 and MgO were uniformly diffused in tungsten. Further, the specific resistance of 30 through-hole portions was measured for each hole diameter, and the average value was calculated. The results are shown in Table 3.

【0031】さらに、グリーンシートに焼成後の線幅1
00μmの配線となるようにメタライズペーストを印刷
し、1550℃にて焼成した。この際に使用したメタラ
イズペーストは平均粒径2.0μmのタングステン粉末
100重量部に対してエチルセルローズ4.0重量部及
びブチルカルビトール6重量部を加えたものである。な
お、印刷に際しては印刷に適した粘度となるようにブチ
ルカルビトールを追加してペーストの粘度を調整した。
Furthermore, the line width 1 after firing on the green sheet
The metallizing paste was printed so that the wiring had a thickness of 00 μm, and was baked at 1550 ° C. The metallizing paste used at this time was obtained by adding 4.0 parts by weight of ethyl cellulose and 6 parts by weight of butyl carbitol to 100 parts by weight of tungsten powder having an average particle size of 2.0 μm. At the time of printing, the viscosity of the paste was adjusted by adding butyl carbitol so that the viscosity became suitable for printing.

【0032】焼成後のメタライズ部すなわち配線部分を
電子プローブマイクロアナライザーにて元素分析し、ム
ライトシート中のガラス成分であるAl23とSiO2
とMgOが均一に導体中に拡散しているか否かを観察し
た。また、比抵抗も測定した。結果を表3に示す。
The metallized portion after firing, that is, the wiring portion was subjected to elemental analysis by an electron probe microanalyzer, and Al 2 O 3 and SiO 2 which were glass components in the mullite sheet were analyzed.
It was observed whether MgO and MgO were uniformly dispersed in the conductor. The specific resistance was also measured. The results are shown in Table 3.

【0033】さらに、グリーンシート上の30箇所に焼
成後1.4mmφとなるように円形パターンのメタライ
ズ印刷を施し、表1の温度にて焼成し、メタライズ上に
ニッケルメッキを施しピンパッドを形成した。続いて各
パツド上にコバール製0.45mmφのI/Oピンを銀
銅共晶ロウ(72Ag-28Cu)にて接合した。その後、I/
Oピンをピンパッドに対して45°方向に引っ張り、ピ
ンパッドとムライトセラミックとの接合強度すなわちメ
タライズ密着強度を測定し、同時に破壊モードを観察し
た。結果を表3に示す。
Further, 30 positions on the green sheet were subjected to metallization printing in a circular pattern so as to have a diameter of 1.4 mm after firing, followed by firing at the temperature shown in Table 1 and nickel plating on the metallization to form pin pads. Subsequently, 0.45 mmφ I / O pins made of Kovar were joined on each pad with silver-copper eutectic solder (72Ag-28Cu). Then I /
The O pin was pulled in the direction of 45 ° with respect to the pin pad, the bonding strength between the pin pad and the mullite ceramic, that is, the metallized adhesion strength was measured, and at the same time, the fracture mode was observed. The results are shown in Table 3.

【0034】[0034]

【表3】 表3にみられるように、焼結助剤の組成が点Kの基板N
o.15を除くすべての基板につき、ムライトセラミッ
ク中のガラスがスルーホール部及び配線部双方のタング
ステン粒子間へ均一に浸透していた。また、このように
絶縁物質のガラスが浸透していたにもかかわらず、それ
らの基板の比抵抗は、スルーホール部で14〜18μΩ
・cm、配線部で14〜18μΩ・cmと低く、必要な
導電性を確保していた。これは、ガラスの存在によりタ
ングステン粒子が緻密焼結したことによると考えられ
る。さらにメタライズ密着強度は、8〜10kg・f
(n=30)の引っ張り荷重でピン切れを起こすほどに
高いものであった。
[Table 3] As shown in Table 3, the substrate N whose composition of the sintering aid is point K
o. In all the substrates except 15, the glass in the mullite ceramic was uniformly permeated between the tungsten particles in both the through hole portion and the wiring portion. In addition, even though the glass of the insulating material permeated in this manner, the specific resistance of those substrates was 14 to 18 μΩ in the through hole portion.
Cm, the wiring portion was as low as 14-18 μΩ · cm, and required conductivity was secured. It is considered that this is because the tungsten particles were densely sintered due to the presence of glass. Further, the metallized adhesion strength is 8 to 10 kgf
It was high enough to cause pin breakage under a tensile load of (n = 30).

【0035】これに対して、焼結助剤の組成が点Kの基
板No.15についてはムライトセラミックの基本特性
としては満足できるものではあった(表2参照)が、M
gO含有量が少なすぎたせいか、メタライズ中へのガラ
ス成分の侵入が不十分で、メタライズ粒子が完全に焼結
していなかったため抵抗値が高く、しかもメタライズ密
着強度は、1kg・f以下(n=30)の引っ張り荷重
でピンパッドが剥離するほどに低いものであった。従っ
て、配線基板としては適さないものであった。
On the other hand, when the composition of the sintering aid is Point K, the substrate No. No. 15 was satisfactory as the basic characteristic of mullite ceramic (see Table 2), but M
Since the gO content was too small, the glass component did not fully penetrate into the metallization, and the metallized particles were not completely sintered, resulting in a high resistance value and a metallized adhesion strength of 1 kgf or less ( It was so low that the pin pad was peeled off under a tensile load of n = 30). Therefore, it was not suitable as a wiring board.

【0036】−実施例3− 本例は、焼結助剤の添加量の望ましい範囲を求めるもの
である。ムライト粒子含有量、焼結助剤の合計添加量及
び焼結助剤の成分含有比を表4のようにさまざまに変
え、そのほかは実施例1と同じ条件でムライトセラミッ
ク基板を製造した。ただし、焼成温度についてはその組
成のものが完全に焼結する温度とし、基本的にはムライ
ト粒子含有量により変化させた。こうして得られた基板
No.16〜27は、すべて本発明範囲に属するムライ
トセラミック基板である。
Example 3 In this example, the desirable range of the addition amount of the sintering aid is determined. The mullite ceramic substrate was manufactured under the same conditions as in Example 1 except that the mullite particle content, the total addition amount of the sintering aid, and the component content ratio of the sintering aid were variously changed as shown in Table 4. However, the firing temperature was set to a temperature at which the composition having the composition was completely sintered, and was basically changed depending on the content of mullite particles. Substrate No. thus obtained 16 to 27 are mullite ceramic substrates that all belong to the scope of the present invention.

【0037】[0037]

【表4】 これらの各組成の基板について、以下に示す評価を行っ
た。 [焼結体の基本特性評価]先ず、実施例2と同一条件で
焼結体の熱膨張係数、比誘電率及び抗析強度を測定し
た。それらの結果を表5に示す。
[Table 4] The following evaluations were performed on the substrates having each of these compositions. [Evaluation of Basic Properties of Sintered Body] First, the thermal expansion coefficient, the relative dielectric constant and the segregation strength of the sintered body were measured under the same conditions as in Example 2. The results are shown in Table 5.

【0038】[0038]

【表5】 表5にみられるように、本発明の基板No.16〜27
は、熱膨張係数が3.7〜4.9×10-6/℃(0〜4
00℃)で半導体シリコンのそれに近く、比誘電率が
6.0〜7.4と低く、抗析強度が200〜290MP
aと高いものであった。また、生産性についても基板の
反り量は40〜60μmと少なかった。しかも焼成時の
基板上の斑点状の変色はなく、セッターとの融着につい
ても確認されなかった。
[Table 5] As seen in Table 5, the substrate No. 16-27
Has a thermal expansion coefficient of 3.7 to 4.9 × 10 −6 / ° C. (0 to 4
At 00 ° C), it is close to that of semiconductor silicon, has a low relative dielectric constant of 6.0 to 7.4, and has a segregation strength of 200 to 290MP.
It was as high as a. In terms of productivity, the warp amount of the substrate was as small as 40 to 60 μm. Moreover, there was no spot-like discoloration on the substrate during firing, and no fusion with the setter was confirmed.

【0039】[メタライズ金属との適合性評価]原料組
成及び焼成温度が表4に示したものである以外は、実施
例2と同一条件でグリーンシートを作製し積層し焼成し
た。実施例2と同様にスルーホール部及び配線部分の比
抵抗を測定し、その平均値を算出し、結果を表6に示し
た。また、ガラス成分が導体中への浸透状況及びメタラ
イズ密着強度も実施例2と同様に測定した。結果を表6
に示す。
[Evaluation of Compatibility with Metallized Metals] Green sheets were prepared, laminated and fired under the same conditions as in Example 2 except that the raw material composition and firing temperature were as shown in Table 4. The specific resistances of the through hole portion and the wiring portion were measured in the same manner as in Example 2, and the average value thereof was calculated, and the results are shown in Table 6. Further, the state of penetration of the glass component into the conductor and the metallized adhesion strength were measured in the same manner as in Example 2. The results are shown in Table 6.
Shown in.

【0040】[0040]

【表6】 表6にみられるように、本発明の範囲内であれば焼結助
剤の添加量が変動しても、ムライトセラミック中のガラ
スがスルーホール部及び配線部双方のタングステン粒子
間へ均一に浸透していた。また、このように絶縁物質の
ガラスが浸透していたにもかかわらず、それらの基板の
比抵抗は、スルーホール部で14〜20μΩ・cm、配
線部で13〜20μΩ・cmと低く、必要な導電性を確
保していた。さらにメタライズ密着強度は、8〜10k
g・f(n=30)の引っ張り荷重でピン切れを起こす
ほどに高いものであった。従って、焼結助剤の添加量
は、10〜40重量%が好適であることが判った。
[Table 6] As can be seen from Table 6, even if the addition amount of the sintering aid varies within the range of the present invention, the glass in the mullite ceramic uniformly permeates into the tungsten particles in both the through hole portion and the wiring portion. Was. In addition, even though the glass of the insulating material has permeated in this way, the specific resistance of these substrates is as low as 14 to 20 μΩ · cm at the through hole portion and 13 to 20 μΩ · cm at the wiring portion, which is necessary. The conductivity was secured. Further, metallized adhesion strength is 8 to 10k
It was high enough to cause pin breakage under a tensile load of g · f (n = 30). Therefore, it was found that the addition amount of the sintering aid is preferably 10 to 40% by weight.

【0041】[0041]

【発明の効果】本発明ムライトセラミック基板は、以下
のように多大の効果を発揮する。 (1)高融点金属との同時焼結が可能であるから、配線
の多層化が容易となる。 (2)熱膨張係数がシリコンチップのそれに近いから、
シリコンチップとの接合部の信頼性に優れている。 (3)比誘電率が低いから、信号伝搬速度が速い。 (4)抗折強度が高いから、搬送時に割れ、欠けを生じ
にくい。 (5)基板の反り、セッターとの融着及び基板上に変色
が少ないから、生産性に優れる。 (6)比抵抗が低いから、配線の微細化が可能であり高
密度配線に適している。 (7)メタライズ密着強度が高いから、入出力端子との
接合部の信頼性に優れている。
The mullite ceramic substrate of the present invention exerts great effects as follows. (1) Since it is possible to co-sinter with a refractory metal, it is easy to form a multilayer wiring. (2) Since the coefficient of thermal expansion is close to that of silicon chips,
The reliability of the joint with the silicon chip is excellent. (3) Since the relative permittivity is low, the signal propagation speed is high. (4) Because of high bending strength, cracking and chipping are unlikely to occur during transportation. (5) Since there is little warpage of the substrate, fusion with the setter, and discoloration on the substrate, the productivity is excellent. (6) Since the specific resistance is low, the wiring can be miniaturized, which is suitable for high-density wiring. (7) Since the metallized adhesion strength is high, the reliability of the joint with the input / output terminal is excellent.

【図面の簡単な説明】[Brief description of drawings]

【図1】Al23−SiO2−MgO3成分系組成図で
ある。
FIG. 1 is an Al 2 O 3 —SiO 2 —MgO 3 component system composition diagram.

【図2】実施例1のムライトセラミック基板の焼成温度
と焼成比重との関係を示すグラフである。
FIG. 2 is a graph showing the relationship between the firing temperature and the firing specific gravity of the mullite ceramic substrate of Example 1.

【図3】実施例1のムライトセラミック基板の焼成温度
と焼成収縮率との関係を示すグラフである。
FIG. 3 is a graph showing the relationship between the firing temperature and the firing shrinkage of the mullite ceramic substrate of Example 1.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ムライトを主成分とし且つ10〜40重
量%のAl23−SiO2−MgO系ガラスを含む絶縁
体を備え、ガラス組成が、Al23−SiO2−MgO
3成分系組成図の下記の点A,B,C及びDによって囲
まれる範囲内(境界線上を含む)に属することを特徴と
するムライトセラミック基板。 Al23 SiO2 MgO 点A 40 58 2 点B 42 43 15 点C 60 23 17 点D 58 38 4 [単位:重量%]
1. An insulator comprising mullite as a main component and containing 10 to 40% by weight of Al 2 O 3 —SiO 2 —MgO-based glass and having a glass composition of Al 2 O 3 —SiO 2 —MgO.
A mullite ceramic substrate characterized by belonging to a range (including a boundary line) surrounded by the following points A, B, C and D in a three-component composition diagram. Al 2 O 3 SiO 2 MgO point A 40 58 2 point B 42 43 15 point C 60 23 17 point D 58 38 4 [unit: wt%]
【請求項2】 ムライト粉末に焼結助剤を添加し混合
し、混合物をグリーンシートに成形し焼成する方法にお
いて、焼結助剤の添加量が混合物中10〜40重量%で
あって、その組成が、酸化物に換算してAl23−Si
2−MgO3成分系組成図の下記の点A,B,C及び
Dによって囲まれる範囲内(境界線上を含む)に属する
ことを特徴とするムライトセラミック基板の製造方法。 Al23 SiO2 MgO 点A 40 58 2 点B 42 43 15 点C 60 23 17 点D 58 38 4 [単位:重量%]
2. A method in which a sintering aid is added to and mixed with mullite powder, and the mixture is molded into a green sheet and fired, wherein the addition amount of the sintering aid is 10 to 40% by weight in the mixture. The composition is Al 2 O 3 -Si in terms of oxide.
A method for manufacturing a mullite ceramic substrate, characterized in that it belongs to a range surrounded by points A, B, C and D (including the boundary line) of the O 2 —MgO 3 component composition diagram. Al 2 O 3 SiO 2 MgO point A 40 58 2 point B 42 43 15 point C 60 23 17 point D 58 38 4 [unit: wt%]
JP5105106A 1993-04-05 1993-04-05 Mullite ceramic substrate and manufacture thereof Pending JPH06291432A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5105106A JPH06291432A (en) 1993-04-05 1993-04-05 Mullite ceramic substrate and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5105106A JPH06291432A (en) 1993-04-05 1993-04-05 Mullite ceramic substrate and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH06291432A true JPH06291432A (en) 1994-10-18

Family

ID=14398613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5105106A Pending JPH06291432A (en) 1993-04-05 1993-04-05 Mullite ceramic substrate and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH06291432A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010093197A (en) * 2008-10-10 2010-04-22 Ngk Spark Plug Co Ltd Multilayer ceramic substrate and manufacturing method thereof
JP2011018911A (en) * 1996-11-08 2011-01-27 Wl Gore & Associates Inc Method of increasing package reliability by designing in plane cte gradients

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011018911A (en) * 1996-11-08 2011-01-27 Wl Gore & Associates Inc Method of increasing package reliability by designing in plane cte gradients
JP2010093197A (en) * 2008-10-10 2010-04-22 Ngk Spark Plug Co Ltd Multilayer ceramic substrate and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US4861646A (en) Co-fired metal-ceramic package
JPH0715101A (en) Oxide ceramic circuit board and its manufacture
JPH11511719A (en) Low dielectric loss glass
JP3517062B2 (en) Copper metallized composition and glass-ceramic wiring board using the same
JP3566569B2 (en) Wiring board and method of manufacturing the same
US6762369B2 (en) Multilayer ceramic substrate and method for manufacturing the same
US5138426A (en) Ceramic joined body
JP4673086B2 (en) Conductor paste for via conductor metallization and method of manufacturing ceramic wiring board using the same
JP3538549B2 (en) Wiring board and method of manufacturing the same
JP2002193691A (en) Low-permittivity ceramic sintered-compact, method for manufacturing the same, and wiring board using the same
JPH06291432A (en) Mullite ceramic substrate and manufacture thereof
JP3630372B2 (en) Multilayer ceramic substrate and manufacturing method thereof
JPH06334351A (en) Conductor paste and ceramic multilayer interconnection board using same
JPH11186727A (en) Wiring board and manufacture thereof
JPH08153945A (en) Ceramic circuit board
JP3130914B2 (en) Multilayer circuit board
JP2001072473A (en) Production of ceramic substrate
JP3047985B2 (en) Manufacturing method of multilayer ceramic wiring board
JP2000312057A (en) Wiring substrate and manufacture thereof
JP3934811B2 (en) High thermal expansion glass ceramic sintered body and manufacturing method thereof, wiring board and mounting structure thereof
JP4126588B2 (en) Aluminum nitride sintered body having metallized layer and method for producing the same
JP3652184B2 (en) Conductive paste, glass-ceramic wiring board and manufacturing method thereof
JP3905991B2 (en) Glass ceramic wiring board
JP4762564B2 (en) Conductor composition, wiring board using the same, and method for producing the same
JPH0450141A (en) Glass-ceramic substrate