JPH06291217A - Heat dissipation type lead frame - Google Patents

Heat dissipation type lead frame

Info

Publication number
JPH06291217A
JPH06291217A JP9552493A JP9552493A JPH06291217A JP H06291217 A JPH06291217 A JP H06291217A JP 9552493 A JP9552493 A JP 9552493A JP 9552493 A JP9552493 A JP 9552493A JP H06291217 A JPH06291217 A JP H06291217A
Authority
JP
Japan
Prior art keywords
heat
lead frame
heat dissipation
thermal expansion
expansion coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9552493A
Other languages
Japanese (ja)
Inventor
Tatsuya Otaka
達也 大高
Takashi Suzumura
隆志 鈴村
Yasuharu Kameyama
康晴 亀山
Takumi Sato
佐藤  巧
Shigeo Hagitani
重男 萩谷
Shigeji Takahagi
茂治 高萩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP9552493A priority Critical patent/JPH06291217A/en
Publication of JPH06291217A publication Critical patent/JPH06291217A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item

Landscapes

  • Lead Frames For Integrated Circuits (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PURPOSE:To contrive matching of thermal expansion coefficient of each component material, and to suppress residual stress generated by heat in a package structure by a method wherein a heat radiating plate is composed of a ceramic plate having specific thermal conductivity and thermal expansion coefficient. CONSTITUTION:A heat radiating plate 4 is composed of a ceramic plate, which is mainly composed of AlN, having the thermal conductivity of 100W/mk or higher and the thermal expansion coefficient of 10X10<-4> deg.C or lower. The material having the smallest heat expansion coefficient is a semiconductor element 1 of 3.5X10<-6> deg.C, and the material having the largest heat expansion coefficient is the low heat expansion mold range 5 of 10X10<-6> deg.C. The difference is 6.5X10<-6>. The difference in heat expansion coefficient can be reduced to about 50% or less when compared with that used the past, and residual stress can be reduced. Also, the difference in heat expansion between 42Ni of a lead frame 2 and the AlN of the heat radiating plate 4 is about 1X10<-6> to 2X10<-6> deg.C, there is almost no effect of residual distortion by heat, and an excellent frame shape can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体素子の発熱を有効
的に放熱する熱放散型リードフレームに関し、特に、パ
ッケージ内の熱膨張の整合が図れ、パッケージの信頼性
を大幅に向上させる熱放散型リードフレームに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat-dissipating lead frame for effectively dissipating heat generated by a semiconductor element, and more particularly, to heat expansion matching in the package and greatly improving the reliability of the package. Mold lead frame.

【0002】[0002]

【従来の技術】近年、ロジック系素子の高集積化,高速
化が進むなど、1〜数w程度の発熱を生じる半導体素子
が次々に現れ、これを搭載するリードフレームにも放熱
性に対する要求が強まっている。
2. Description of the Related Art In recent years, semiconductor devices that generate heat of about 1 to several watts have appeared one after another due to the progress of higher integration and higher speed of logic devices. I'm getting stronger.

【0003】そこで、最近では、タブなしリードフレー
ムのインナーリードの先端に放熱板を貼付し、この放熱
板の一面に直接、半導体素子を搭載するようにした熱放
散型リードフレームが検討されている。この熱放散型リ
ードフレームは、半導体素子の発熱を放熱板を介してモ
ールドレジン、すなわち、パッケージ全体に伝熱して放
熱するようになっている。また、より放熱効果を高める
ために、リードフレームや放熱板の材質としてMF20
2,KLF125等の銅材を使用することが主流になっ
ている。
Therefore, recently, a heat-dissipating lead frame in which a heat dissipation plate is attached to the tips of the inner leads of the tabless lead frame and a semiconductor element is directly mounted on one surface of the heat dissipation plate has been studied. . In this heat dissipation type lead frame, the heat generated by the semiconductor element is transferred to the mold resin, that is, the entire package through the heat dissipation plate to dissipate the heat. In order to further enhance the heat radiation effect, the MF20 is used as the material of the lead frame and the heat radiation plate.
2, the use of copper materials such as KLF125 is the mainstream.

【0004】しかし、このように熱放散型リードフレー
ムであっても、より高速、且つ、処理信号数の多い高級
LSIを搭載させると、以下のような問題が生じた。 (1) 半導体素子へのダメージをより少なくするために開
発された10×10-6/℃程度の低熱膨張のモールドレ
ジンより銅材の熱膨張の方が大きいため、パッケージ内
で熱膨張係数の整合が取れなくなり、素子に残留応力を
与えたり、モールドレジンにパッケージクラックとなる
残留応力を与え、パッケージの信頼性を低下させる。 (2) 前述したように処理信号数が多くなり、例えば、リ
ードフレームが200ピン以上の微細、且つ、多ピンに
なると、加工上の問題からフレーム厚を小さくする必要
がある。このため、銅材であるピンの強度が大幅に低下
する。特に問題となるのは、パッケージの外にでるアウ
ターリードの強度であり、この強度が確保されないとア
ウターリードに上下左右方向のシフトが生じ、安定した
基板への実装が不可能となる。
However, even in such a heat dissipation type lead frame, when a high-speed LSI having a higher speed and a larger number of processed signals is mounted, the following problems occur. (1) The thermal expansion coefficient of the copper material is larger than that of the mold resin with a low thermal expansion of about 10 × 10 -6 / ° C, which was developed to reduce the damage to the semiconductor element. Alignment is lost, residual stress is applied to the element, and residual stress that causes package cracks is applied to the mold resin, which lowers the reliability of the package. (2) As described above, when the number of processed signals is large and, for example, the lead frame is fine with 200 pins or more and has a large number of pins, it is necessary to reduce the frame thickness due to processing problems. Therefore, the strength of the pin made of the copper material is significantly reduced. A particular problem is the strength of the outer leads outside the package. If this strength is not ensured, the outer leads will shift in the vertical and horizontal directions, making stable mounting on the substrate impossible.

【0005】レジンとの熱膨張との整合および強度の点
を考慮すると、リードフレームと放熱板をレジンの熱膨
張係数と略同等で、しかも強度が高い42Ni合金から
構成することが最も好ましいが、42Ni合金は熱伝導
率が小さく放熱効果に乏しいという放熱材料としては致
命的な欠点がある。
Considering the matching with the thermal expansion of the resin and the strength, it is most preferable that the lead frame and the heat radiating plate are made of 42Ni alloy which has substantially the same thermal expansion coefficient as that of the resin and high strength. The 42Ni alloy has a fatal defect as a heat dissipation material that has a low thermal conductivity and a poor heat dissipation effect.

【0006】そこで、42Ni合金のリードフレームと
銅材の放熱板を組み合せた構造が、放熱効果に優れ、且
つ、リードフレームの強度が高い半導体装置として考え
られる。
Therefore, a structure in which a lead frame made of 42Ni alloy and a heat radiation plate made of copper are combined is considered as a semiconductor device which is excellent in heat radiation effect and high in strength of the lead frame.

【0007】[0007]

【発明が解決しようとする課題】しかし、上記のように
42Ni合金のリードフレームと銅材の放熱板を組み合
わせたとしても、アウターリードの強度と放熱効果は十
分確保することができるが、両者の熱膨張の差が約9×
10-6/℃と大きいため、熱による残留応力によってパ
ッケージクラック等を発生させ、パッケージの信頼性を
低下させる。また、製作段階において、リードフレーム
と放熱板を接着一体化する際、熱硬化性接着剤では約2
00℃程度で、また、熱可塑性接着剤では200から4
00℃程度で加熱することになるが、このとき、リード
フレームと放熱板の間で熱膨張差が大きくなり、全体の
フレーム形状に反り等の大きな変形が生じる。
However, even if the lead frame made of 42Ni alloy and the heat radiation plate made of copper are combined as described above, the strength and heat radiation effect of the outer lead can be sufficiently secured. The difference in thermal expansion is about 9x
Since it is as large as 10 −6 / ° C., residual stress due to heat causes package cracks and the like, which lowers the reliability of the package. In addition, when the lead frame and the heat sink are bonded and integrated at the manufacturing stage, about 2% of thermosetting adhesive is used.
At about 00 ° C, and from 200 to 4 for thermoplastic adhesives
Although heating is performed at about 00 ° C., at this time, the difference in thermal expansion between the lead frame and the heat radiating plate becomes large, and the entire frame shape is largely deformed such as warped.

【0008】従って、本発明の目的はパッケージ構造と
したとき、各構成材料の熱膨張係数の整合が図れ、熱に
よる残留応力を抑えると共に、製作段階においてフレー
ム形状に変形が生じることがない熱放散型リードフレー
ムを提供することである。
Therefore, the object of the present invention is to provide a package structure in which the coefficient of thermal expansion of each constituent material can be matched, the residual stress due to heat can be suppressed, and the heat dissipation which does not cause the deformation of the frame shape in the manufacturing stage. To provide a mold lead frame.

【0009】[0009]

【課題を解決するための手段】本発明は上記問題点に鑑
み、パッケージ構造としたとき、各構成材料の熱膨張係
数の整合が図れ、熱による残留応力を抑えると共に、製
作段階においてフレーム形状に変形が生じるのを防ぐた
め、放熱板を熱伝導率100W/mK以上、且つ、熱膨
張係数10×10-6/℃以下のセラミック板より構成し
た熱放散型リードフレームを提供するものである。
In view of the above problems, the present invention has a package structure in which the thermal expansion coefficients of the respective constituent materials can be matched, the residual stress due to heat is suppressed, and the frame shape is changed in the manufacturing stage. In order to prevent deformation, a heat dissipation type lead frame is provided in which a heat dissipation plate is composed of a ceramic plate having a thermal conductivity of 100 W / mK or more and a thermal expansion coefficient of 10 × 10 −6 / ° C. or less.

【0010】すなわち、タブなしリードフレームのイン
ナーリードの先端に、半導体素子を搭載するための所定
の厚さの放熱板を絶縁性接着層を介して一体化した熱放
散型リードフレームにおいて、放熱板として熱膨張係数
が5×10-6/℃〜7×10-6/℃と小さく、且つ、純
銅の半分程度の良好な熱伝導性の得られるAlN(チッ
化アルミ)セラミック板を利用している。
That is, in a heat dissipation type lead frame in which a heat dissipation plate having a predetermined thickness for mounting a semiconductor element is integrated at the tip of the inner lead of the tabless lead frame via an insulating adhesive layer, the heat dissipation plate is used. Using an AlN (aluminum nitride) ceramic plate having a small thermal expansion coefficient of 5 × 10 −6 / ° C. to 7 × 10 −6 / ° C. and good thermal conductivity of about half that of pure copper There is.

【0011】上記リードフレームは、42Ni合金であ
り、熱膨張係数が8×10-6/℃以下と放熱板の熱膨張
係数に近く、温度をかけた積層を行っても、両者に問題
となるような歪が差がほとんど生じることがない。
The lead frame is made of 42Ni alloy and has a thermal expansion coefficient of 8 × 10 -6 / ° C. or less, which is close to the thermal expansion coefficient of the heat radiating plate. There is almost no difference in such distortion.

【0012】[0012]

【実施例】以下、本発明の熱放散型リードフレームにつ
いて添付図面を参照しながら詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The heat dissipation type lead frame of the present invention will be described in detail below with reference to the accompanying drawings.

【0013】図1には、本発明の熱放散型リードフレー
ムを適用した半導体装置の一実施例が示されている。こ
の半導体装置は、42Ni合金から成るタブなしのリー
ドフレーム2と、これにポリイミド系熱可塑性接着剤3
を介して一体化された所定の厚さの放熱板4と、この放
熱板4の上面に素子固定接着剤7を介して接着された半
導体素子1と、半導体素子1とリードフレーム2のイン
ナーリードを接続するボンディングワイヤ6と、半導体
素子1,ボンディングワイヤ6,及びリードフレーム2
のボンディングワイヤ接続部を封止するモールドレジン
5より構成されている。
FIG. 1 shows an embodiment of a semiconductor device to which the heat dissipation type lead frame of the present invention is applied. This semiconductor device comprises a lead frame 2 without a tab made of 42Ni alloy, and a polyimide-based thermoplastic adhesive 3 on the lead frame 2.
A heat sink 4 having a predetermined thickness integrated via the semiconductor chip 1, a semiconductor element 1 bonded to the upper surface of the heat sink 4 with an element fixing adhesive 7, an inner lead of the semiconductor element 1 and the lead frame 2. Bonding wire 6 for connecting the semiconductor element 1, the bonding wire 6, and the lead frame 2
It is composed of a mold resin 5 for sealing the bonding wire connection part.

【0014】放熱板4は、AlN(チッ化アルミ)を主
成分としたセラミック板より構成されている。
The heat dissipation plate 4 is composed of a ceramic plate whose main component is AlN (aluminum nitride).

【0015】以上の構成において、最も熱膨張係数の小
さいものは半導体素子1の3.5×10-6/℃で、ま
た、最も大きいものは低熱膨張モールドレジン5の10
×10-6/℃であり、その差は約6.5×10-6/℃で
ある。一方、従来の熱放散型リードフレームにあって
は、銅が約17×10-6/℃で半導体素子1との差が1
3.5×10-6/℃であることから、本発明の熱放散型
リードフレームは従来に比べて、熱膨張の差を約50%
以下に低減している。このため、パッケージ内の熱によ
る残留応力を大幅に低減することができる。構造解析の
結果では、28角パッケージの標準サイズの場合、熱に
よる残留応力が約半分になることを確認した。
In the above structure, the one having the smallest coefficient of thermal expansion is 3.5 × 10 −6 / ° C. of the semiconductor element 1, and the one having the largest coefficient is 10 of the low thermal expansion mold resin 5.
× 10 -6 / ° C, and the difference is about 6.5 × 10 -6 / ° C. On the other hand, in the conventional heat dissipation type lead frame, copper is about 17 × 10 −6 / ° C. and the difference from the semiconductor element 1 is 1
Since it is 3.5 × 10 −6 / ° C., the heat dissipation type lead frame of the present invention has a difference in thermal expansion of about 50% as compared with the conventional one.
It is reduced below. Therefore, residual stress due to heat in the package can be significantly reduced. As a result of the structural analysis, it was confirmed that the residual stress due to heat was reduced to about half in the case of the standard size of the 28-sided package.

【0016】また、リードフレーム2の42Niと放熱
板4のAlNの熱膨張の差は、約1×10-6/℃から2
×10-6/℃程度であり、熱可塑性接着剤に比べて正常
度が非常に高く信頼性が高いが、接着に高温が必要とな
る欠点のあるポリイミド系接着剤3を用いても、熱によ
る残留歪の影響が殆どなくなる。この結果、良好なフレ
ーム形状を得ることができる。
The difference in thermal expansion between 42Ni of the lead frame 2 and AlN of the heat sink 4 is about 1 × 10 -6 / ° C.
It is about × 10 -6 / ° C, which is much higher in normality and more reliable than a thermoplastic adhesive, but even if a polyimide-based adhesive 3 is used, which has the drawback of requiring high temperature for adhesion, The effect of residual strain due to is almost eliminated. As a result, a good frame shape can be obtained.

【0017】尚、AlNとレジンとの密着性を更に向上
させる場合には、AlNの表面に金などを蒸着させる
か、或いは適当な接着剤もしくはプライマを全体もしく
は一部に塗布する,或いは表面に適当な粗さやロックホ
ール等を設けることによって対応することができる。
In order to further improve the adhesion between AlN and the resin, gold or the like is vapor-deposited on the surface of AlN, or an appropriate adhesive or primer is applied to the whole or part of the surface, or the surface is coated. This can be dealt with by providing an appropriate roughness or a lock hole.

【0018】図2には、本発明の第2の実施例として、
リードフレーム2と放熱板4を熱硬化性接着剤8を介し
て積層一体化した構成が示されている。この実施例にお
いても、熱による残留歪の影響をほとんどなくすことが
でき、第1の実施例と略同等の効果を得ることができ
る。
FIG. 2 shows a second embodiment of the present invention.
A structure in which the lead frame 2 and the heat dissipation plate 4 are laminated and integrated via a thermosetting adhesive 8 is shown. Also in this embodiment, the influence of residual strain due to heat can be almost eliminated, and an effect substantially equivalent to that of the first embodiment can be obtained.

【0019】図3には、本発明の第3の実施例として、
放熱板4のリードフレーム2と反対側の面がモールドレ
ジン5より露出させた構成が示されている。この実施例
の場合、前述した第1,及び第2の実施例に加えて放熱
板4を露出させている分だけ放熱性を高めることができ
る。
FIG. 3 shows a third embodiment of the present invention.
The structure is shown in which the surface of the heat dissipation plate 4 opposite to the lead frame 2 is exposed from the mold resin 5. In the case of this embodiment, in addition to the above-described first and second embodiments, the heat radiation performance can be improved by the amount that the heat radiation plate 4 is exposed.

【0020】図4には、本発明の第4の実施例として、
AlN放熱板4にフィン4aを形成した構成が示されて
いる。この実施例では、強制対流によってより大きな放
熱効果を得ることができ、また、図5に示すように、フ
ィン4aをモールドレジン5より突出させると更にその
効果を高めることができる。
FIG. 4 shows a fourth embodiment of the present invention.
A structure in which fins 4a are formed on the AlN heat dissipation plate 4 is shown. In this embodiment, a greater heat dissipation effect can be obtained by the forced convection, and as shown in FIG. 5, the effect can be further enhanced by projecting the fin 4a from the mold resin 5.

【0021】[0021]

【発明の効果】以上説明したように、本発明の熱放散型
リードフレームによると、放熱板を熱伝導率100W/
mK以上、且つ、熱膨張係数10×10-6/℃以下のセ
ラミック板より構成したため、パッケージ構造としたと
き、各構成材料の熱膨張係数の整合が図れ、熱による残
留応力を抑えることができ、且つ、製造時にフレーム形
状に変形が生じるのを防ぐことができる。
As described above, according to the heat dissipating lead frame of the present invention, the heat dissipation plate has a heat conductivity of 100 W /
Since it is composed of a ceramic plate with a coefficient of thermal expansion of mK or more and a coefficient of thermal expansion of 10 × 10 −6 / ° C. or less, the coefficient of thermal expansion of each constituent material can be matched in a package structure, and residual stress due to heat can be suppressed. Moreover, it is possible to prevent the frame shape from being deformed during manufacturing.

【0022】更に具体的には、以下の効果を奏すること
ができる。 (1) 従来の銅の熱放散型リードフレームに比べて、熱膨
張差を約半分にすることができ、熱による残留応力を約
半分に抑えることができる。この結果、半田リフロー等
の信頼性が大幅に向上する。 (2) 放熱性に劣る42Ni合金フレームを使用しても、
AlN放熱板の使用によりパッケージ全体の放熱性を高
めることができる。42Niは銅系に比べ非常に材料強
度が大きいので、ピン幅が0.1mm程度と小さくなっ
ても、良好な強度を保つことができ、特に、極細ピン化
の必要な超多ピンパッケージでも十分な強度を有するア
ウターリードを得ることができる。 (3) AlNは同等に比べ、約1/3程度の比重であるの
で、特に厚さの大きい放熱板を対象にする場合、全体の
重量を大幅に低減することができる。この結果、基板実
装の際にパッケージのチャックミス等が大幅に低減でき
る。
More specifically, the following effects can be obtained. (1) Compared with the conventional copper heat dissipation type lead frame, the difference in thermal expansion can be reduced to about half, and the residual stress due to heat can be reduced to about half. As a result, reliability such as solder reflow is significantly improved. (2) Even if a 42Ni alloy frame with poor heat dissipation is used,
The use of the AlN heat dissipation plate can improve the heat dissipation of the entire package. 42Ni has a much higher material strength than copper-based materials, so it can maintain good strength even if the pin width is as small as 0.1 mm. In particular, it is sufficient for ultra-multi-pin packages that require ultrafine pinning. It is possible to obtain an outer lead having various strengths. (3) AlN has a specific gravity of about 1/3 of that of the equivalent, so that the weight of the whole can be significantly reduced especially when a radiator plate having a large thickness is targeted. As a result, it is possible to significantly reduce package chucking mistakes when mounting on a substrate.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例を示す断面図。FIG. 1 is a sectional view showing a first embodiment of the present invention.

【図2】本発明の第2の実施例を示す断面図。FIG. 2 is a sectional view showing a second embodiment of the present invention.

【図3】本発明の第3の実施例を示す断面図。FIG. 3 is a sectional view showing a third embodiment of the present invention.

【図4】本発明の第4の実施例を示す断面図。FIG. 4 is a sectional view showing a fourth embodiment of the present invention.

【図5】本発明の第5の実施例を示す断面図。FIG. 5 is a sectional view showing a fifth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 半導体素子 2 リ
ードフレーム 3 ポリイミド系熱可塑性接着剤 4 放
熱板 4a フィン 5 モ
ールドレジン 6 ボンディングワイヤ 7 素
子固定接着剤 8 熱効果性接着剤
1 Semiconductor Element 2 Lead Frame 3 Thermoplastic Polyimide Adhesive 4 Heat Sink 4a Fin 5 Mold Resin 6 Bonding Wire 7 Element Fixing Adhesive 8 Thermo-Effective Adhesive

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01L 23/50 F 9272−4M G 9272−4M H01L 23/36 M (72)発明者 佐藤 巧 茨城県土浦市木田余町3550番地 日立電線 株式会社システムマテリアル研究所内 (72)発明者 萩谷 重男 茨城県土浦市木田余町3550番地 日立電線 株式会社システムマテリアル研究所内 (72)発明者 高萩 茂治 茨城県土浦市木田余町3550番地 日立電線 株式会社システムマテリアル研究所内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Reference number within the agency FI Technical indication location H01L 23/50 F 9272-4M G 9272-4M H01L 23/36 M (72) Inventor Takumi Sato Ibaraki 3550, Kitayo-cho, Tsuchiura-shi, Hitachi, Ltd. In the System Materials Laboratory, Hitachi Cable Co., Ltd. (72) Inventor Shigeo Hagiya, 3550, Kitayo-cho, Tsuchiura-shi, Ibaraki Hitachi, Ltd. System Materials Laboratory (72) Inventor Shigeharu Takahagi Tsuchiura, Ibaraki Prefecture 3550 Yoyomachi, Kida City, Hitachi Cable Systems Materials Research Center

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 タブなしリードフレームのインナーリー
ドの先端に、半導体素子を搭載するための所定の厚さの
放熱板を絶縁性接着層を介して一体化した熱放散型リー
ドフレームにおいて、 前記放熱板は、熱伝導率100W/mK以上、且つ、熱
膨張係数10×10-6/℃以下のセラミック板より成る
ことを特徴とする熱放散型リードフレーム。
1. A heat-dissipating lead frame in which a heat-dissipating plate having a predetermined thickness for mounting a semiconductor element is integrated at the tip of an inner lead of a tabless lead frame via an insulating adhesive layer, The heat-dissipating lead frame is characterized in that the plate is a ceramic plate having a thermal conductivity of 100 W / mK or more and a thermal expansion coefficient of 10 × 10 −6 / ° C. or less.
【請求項2】 前記セラミック板は、AlN(チッ化ア
ルミ)を主成分としている構成の請求項1の熱放散型リ
ードフレーム。
2. The heat-dissipating lead frame according to claim 1, wherein the ceramic plate contains AlN (aluminum nitride) as a main component.
【請求項3】 前記絶縁性接着剤は、ポリイミド系熱可
塑性接着剤である請求項1の熱放散型リードフレーム
3. The heat dissipative lead frame according to claim 1, wherein the insulating adhesive is a thermoplastic polyimide adhesive.
【請求項4】 前記リードフレームは、42Ni合金等
の熱膨張係数が8×10-6/℃以下の材料より成る請求
項1の熱放散型リードフレーム。
4. The heat dissipation lead frame according to claim 1, wherein the lead frame is made of a material having a coefficient of thermal expansion of 8 × 10 −6 / ° C. or less, such as 42Ni alloy.
JP9552493A 1993-03-30 1993-03-30 Heat dissipation type lead frame Pending JPH06291217A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9552493A JPH06291217A (en) 1993-03-30 1993-03-30 Heat dissipation type lead frame

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9552493A JPH06291217A (en) 1993-03-30 1993-03-30 Heat dissipation type lead frame

Publications (1)

Publication Number Publication Date
JPH06291217A true JPH06291217A (en) 1994-10-18

Family

ID=14139954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9552493A Pending JPH06291217A (en) 1993-03-30 1993-03-30 Heat dissipation type lead frame

Country Status (1)

Country Link
JP (1) JPH06291217A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0690501A3 (en) * 1994-07-01 1997-03-26 Saint Gobain Norton Ind Cerami Integrated circuit package with diamond heat sink
US6661081B2 (en) 2000-10-20 2003-12-09 Hitachi, Ltd. Semiconductor device and its manufacturing method
JP2010199494A (en) * 2009-02-27 2010-09-09 Mitsubishi Electric Corp Semiconductor device and manufacturing method of the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0690501A3 (en) * 1994-07-01 1997-03-26 Saint Gobain Norton Ind Cerami Integrated circuit package with diamond heat sink
US5696665A (en) * 1994-07-01 1997-12-09 Saint-Gobain/Norton Industrial Ceramics Corporation Integrated circuit package with diamond heat sink
US6466446B1 (en) 1994-07-01 2002-10-15 Saint Gobain/Norton Industrial Ceramics Corporation Integrated circuit package with diamond heat sink
US6661081B2 (en) 2000-10-20 2003-12-09 Hitachi, Ltd. Semiconductor device and its manufacturing method
US6962836B2 (en) 2000-10-20 2005-11-08 Renesas Technology Corp. Method of manufacturing a semiconductor device having leads stabilized during die mounting
JP2010199494A (en) * 2009-02-27 2010-09-09 Mitsubishi Electric Corp Semiconductor device and manufacturing method of the same

Similar Documents

Publication Publication Date Title
JP2974552B2 (en) Semiconductor device
US8053876B2 (en) Multi lead frame power package
JPH07106477A (en) Heat sink assembly with heat conduction board
JPH0883818A (en) Electronic parts assembly body
JP3070579B2 (en) Semiconductor device mounting structure and mounting method
US20070087478A1 (en) Semiconductor chip package and method for manufacturing the same
US20050136640A1 (en) Die exhibiting an effective coefficient of thermal expansion equivalent to a substrate mounted thereon, and processes of making same
JP2003347354A (en) Manufacturing method of semiconductor device and semiconductor device, and semiconductor device unit
US6770513B1 (en) Thermally enhanced flip chip packaging arrangement
US6784536B1 (en) Symmetric stack up structure for organic BGA chip carriers
JPH06291217A (en) Heat dissipation type lead frame
JPH0846086A (en) Mounting structure of bare chip and heat sink
JP2004158726A (en) Semiconductor element with heat spreader and semiconductor package
JP2004087700A (en) Semiconductor device and its manufacturing method
JPH05206320A (en) Multi-chip module
JPH05136303A (en) Heat sink for electronic device
JPH07235633A (en) Multi-chip module
JPS6010633A (en) Semiconductor device
JPS60136348A (en) Semiconductor device
JPH10125831A (en) Heat sink radiation fin
JP2804765B2 (en) Substrate for mounting electronic components
JPH06196614A (en) Lead frame
JP2761995B2 (en) High heat dissipation integrated circuit package
JP2845634B2 (en) Ceramic package
JPS6184043A (en) Plug-in package