JPH06290927A - Soft ferrite magnetic material excellent in magnetic property - Google Patents

Soft ferrite magnetic material excellent in magnetic property

Info

Publication number
JPH06290927A
JPH06290927A JP5074377A JP7437793A JPH06290927A JP H06290927 A JPH06290927 A JP H06290927A JP 5074377 A JP5074377 A JP 5074377A JP 7437793 A JP7437793 A JP 7437793A JP H06290927 A JPH06290927 A JP H06290927A
Authority
JP
Japan
Prior art keywords
powder
magnetic material
particle size
classification
ferrite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5074377A
Other languages
Japanese (ja)
Inventor
Fumihiko Hasegawa
史彦 長谷川
Norimasa Sasaki
教真 佐々木
Kaoru Ito
薫 伊藤
Koji Watanabe
宏二 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP5074377A priority Critical patent/JPH06290927A/en
Publication of JPH06290927A publication Critical patent/JPH06290927A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/36Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites in the form of particles

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Magnetic Ceramics (AREA)
  • Soft Magnetic Materials (AREA)
  • Compounds Of Iron (AREA)

Abstract

PURPOSE:To prevent the components of magnetic material powder from segregating so as to obtain a soft ferrite magnetic material low in power loss by a method wherein hydrothermal synthetic powder is used as material powder. CONSTITUTION:Hydrothermal synthetic ferrite powder, which is 0.3 to 8mum in average grain diameter, equal in composition, so uniform in grain diameter and so optionally controlled in grain size as to make a figure obtained by dividing its standard deviation by average grain diameter smaller than 0.20 and to satisfy formulas, log (d10/d)>=-0.38 and log (d90/d)<=0.30, (d denotes average diameter of ferrite powder, and d10 and d90 represent diameters of ferrite powder which amounts to 1094 and 90% of total amount of ferrite powder in a grain diameter cumulative distribution), is used as soft ferrite magnetic material. By this setup, a soft ferrite magnetic material uniform in grain diameter, fine in crystalline structure, less segregated, small in number of voids, uniform in void distribution, and low in power loss can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、磁気特性に優れたソフ
トフェライト磁性材料の製法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a soft ferrite magnetic material having excellent magnetic properties.

【0002】[0002]

【従来の技術】近年、スイッチング電源のスイッチング
周波数の高周波化に伴い、トランスなどの磁心に使用さ
れているソフトフェライト磁性材料は、高周波において
も低損失であることが要望されている。このような高周
波においても低損失のソフトフェライト磁性材料は、結
晶粒が微細で整っており、磁壁移動の妨げとなる気孔が
少なく、かつ、成分偏析が少ない組織をもつことが必要
である。
2. Description of the Related Art In recent years, with the increasing switching frequency of switching power supplies, soft ferrite magnetic materials used for magnetic cores such as transformers are required to have low loss even at high frequencies. A soft ferrite magnetic material having a low loss even at such a high frequency is required to have a structure in which crystal grains are fine and regular, there are few pores that hinder the domain wall movement, and there is little component segregation.

【0003】従来、このような組織をもつソフトフェラ
イト磁性材料を得るために、特開平1−296602
号、特開平1−136309号、特開平1−11270
7号、特開平1−179756号公報などにみられるよ
うな微量添加物による方法が試みられてきた。しかしな
がら、この微量添加物による方法では、添加物が微量で
あるため秤量が難しく、また、ボールミルなどによる方
法では容易に混合分散させ難く均質な仮焼・粉砕粉がで
きない。そのため、異常粒成長が生じたり、成分偏析が
残ったりし、本来得られる磁気特性が得られないことが
多いのが現状である。また、結晶粒径を整え、成分偏析
を少なくするために仮焼・粉砕粉を分級することが検討
されている。しかし、この方法では、分級粒度毎に成分
偏析が起こる問題がある。
Conventionally, in order to obtain a soft ferrite magnetic material having such a structure, Japanese Patent Laid-Open No. 1-296602 has been proposed.
No. 1-136309, No. 1-111270
No. 7, JP-A-1-179756, and the like have been tried. However, with this method using a small amount of additive, it is difficult to weigh it due to the small amount of additive, and it is difficult to mix and disperse easily with a method using a ball mill or the like, and homogeneous calcination / crushed powder cannot be obtained. Therefore, under the present circumstances, abnormal grain growth occurs or component segregation remains, and the originally obtained magnetic characteristics cannot be obtained in many cases. Further, in order to adjust the crystal grain size and reduce the segregation of components, it has been studied to classify the calcined / crushed powder. However, this method has a problem that component segregation occurs for each classified particle size.

【0004】[0004]

【発明が解決しようとする課題】本発明は、従来の方法
では得られない均質な原料フェライト粉を使用すること
により、結晶粒径の整った、微細な組織をもち、成分偏
析が少なく、気孔の少ない気孔分布の整った損失特性に
優れたソフトフェライト磁性材料を得る方法を提供する
ことを目的とする。
DISCLOSURE OF THE INVENTION The present invention uses a homogeneous raw material ferrite powder which cannot be obtained by a conventional method, and has a fine structure with a uniform crystal grain size, a small component segregation, and pores. It is an object of the present invention to provide a method for obtaining a soft ferrite magnetic material having a uniform pore distribution and excellent loss characteristics.

【0005】[0005]

【課題を解決するための手段】発明者らは、平均粒径が
0.3〜8μm、標準偏差を平均粒径で割った値が0.
20以下で、かつlog(d10% /d)≧−0.38,
log(d90% /d)≦0.30、(ここで、dはフェ
ライト粉の平均粒径、d10% ,d90% はフェライト粉の
粒径の累積分布において、それぞれ10%,90%とな
るときの粒径を表す。)である粒径の整った、かつ任意
に大きさを制御した組成の均質な水熱合成フェライト粉
を使用し、上記課題の損失特性に優れたソフトフェライ
ト磁性材料を得た。ここで使用する水熱合成フェライト
粉は、特願平4−66426号公報に示された第一鉄イ
オンを含む水溶液にMn,Znの二価金属イオンを添加
し、PH8以上で160〜300℃に加熱して加水分解反
応により粒径の整ったMnZnフェライト粒子を製造す
る方法で得られたものである。
The inventors have found that the average particle size is 0.3 to 8 μm and the value obtained by dividing the standard deviation by the average particle size is 0.
20 or less and log (d 10% /d)≧−0.38,
log (d 90% /d)≦0.30, (where d is the average particle size of the ferrite powder, d 10% and d 90% are 10% and 90%, respectively, in the cumulative distribution of the particle size of the ferrite powder. When using a homogeneous hydrothermally synthesized ferrite powder with a uniform particle size and a composition whose size is arbitrarily controlled, the soft ferrite magnetism excellent in the loss characteristics of the above problems is obtained. Got the material. The hydrothermally synthesized ferrite powder used here is obtained by adding divalent metal ions of Mn and Zn to an aqueous solution containing ferrous ions disclosed in Japanese Patent Application No. 4-66426, and a pH of 8 to 160 ° C. to 300 ° C. It is obtained by a method of producing MnZn ferrite particles having a uniform particle size by heating to and by a hydrolysis reaction.

【0006】[0006]

【作用】通常、空気中で仮焼したソフトフェライトの仮
焼粉は、フェライトのスピネル相とヘマタイト相および
他の酸化物の相とから成り立っている。これら仮焼粉を
構成する種々の物質は、相平衡の条件や成長速度の違い
などにより大きさが異なる。また、微量添加物が加えら
れている場合、添加物の濃度の濃い部分と薄い部分では
焼結反応性が異なるため、仮焼粉の粒径が異なる。した
がって、仮焼粉を構成する粒では、その粒径の違いが成
分の違いを表していると考えられる。さらに、仮焼直後
の粒径の違いや仮焼粉を構成する種々の物質の粉砕に対
する強さの違いにより、粉砕粉においてもその粒度分布
がなんらかの成分分布を表していると考えられる。発明
者らは、このような考え方に基づき実験を行った結果、
仮焼・粉砕粉を分級することによって成分偏析を少なく
できることをすでに見出している。
The calcined powder of soft ferrite calcined in air is usually composed of a spinel phase of ferrite, a hematite phase and a phase of another oxide. The size of various substances forming these calcined powders varies depending on the condition of phase equilibrium and the difference in growth rate. Further, when a trace amount of the additive is added, the sintering reactivity differs between the portion where the concentration of the additive is high and the portion where the concentration of the additive is low, and therefore the particle size of the calcined powder is different. Therefore, it is considered that the difference in the particle size of the particles forming the calcined powder represents the difference in the components. Furthermore, due to the difference in particle size immediately after calcination and the difference in the strength of various substances constituting the calcinated powder against crushing, it is considered that the particle size distribution of crushed powder represents some kind of component distribution. The inventors conducted an experiment based on this idea,
It has already been found that component segregation can be reduced by classifying the calcined and crushed powder.

【0007】焼結反応はカチオンの移動とアニオンの移
動とによって進むが、このイオン分布の差の大きいとこ
ろではイオンの移動が容易に起こり焼結が進み易く、イ
オン分布の差の小さいところでは進みにくい。したがっ
て、本焼結時の組成分布が均質でないと焼結反応の速度
が速い部分と遅い部分が存在するために結晶粒径の整っ
た焼成体は得られない。水熱合成粉は、水溶液中での均
一反応により生成するため、組成の均質さにおいて有利
である。また、焼成温度を高く、時間を十分にかけるこ
とにより、結晶粒を肥大化すれば焼成体の結晶粒径は整
う傾向に向かうが、高周波でのうず電流損失を低減する
ためには、微細な組織が望ましい。したがって、低温焼
成により粒成長を抑えることが有効であり、そのために
は原料粉末の粒径を整えることが必要となる。なお、原
料粉末の大きさと得られる焼成体の大きさには相関関係
があることも確認されている。
The sintering reaction proceeds due to the migration of cations and the migration of anions. Ion migration easily occurs where the difference in ion distribution is large, and sintering proceeds easily, and progresses where the difference in ion distribution is small. Hateful. Therefore, if the composition distribution at the time of main sintering is not uniform, a sintered body with a uniform crystal grain size cannot be obtained because there are portions where the rate of the sintering reaction is fast and portions where the rate of the sintering reaction is slow. Since the hydrothermal synthetic powder is produced by a homogeneous reaction in an aqueous solution, it is advantageous in the homogeneity of the composition. Also, by increasing the firing temperature and taking sufficient time, the crystal grain size of the fired body tends to be adjusted if the crystal grains are enlarged, but in order to reduce the eddy current loss at high frequency, Organization is desirable. Therefore, it is effective to suppress grain growth by low temperature firing, and for that purpose, it is necessary to adjust the grain size of the raw material powder. It has also been confirmed that there is a correlation between the size of the raw material powder and the size of the obtained fired body.

【0008】ここで分級法によって得られた粉を使用し
て、整粒効果を十分に引き出すための条件は、log
(d10% /d)≧−0.38,log(d90% /d)≦
0.30と求められている。dは分級後の仮焼・粉砕粉
の平均粒径、d10% ,d90% は、分級後の仮焼・粉砕粉
の累積分布で、それぞれ10%,90%となるときの粒
径を示す。半値巾をとらず、d,d10% ,d90% で領域
を定義したのは、半値巾では焼結に影響を及ぼす微粉、
粗粉について制限を定められないからである。なお、こ
の関係は粉の粒径が20μm以下の仮焼・粉砕粉に適用
され、20μm以上の仮焼・粉砕粉では分級前と分級後
で差は認められていない。これは、20μm以上の仮焼
・粉砕粉では粒径が大きすぎるため、通常の焼成条件で
は焼成体の焼結が充分進まないためと考えられる。
[0008] Here, using the powder obtained by the classification method, the conditions for sufficiently bringing out the sizing effect are:
(D 10% /d)≧−0.38, log (d 90% / d) ≦
It is required to be 0.30. d is the average particle size of the calcined / crushed powder after classification, d 10% and d 90% are the cumulative distributions of the calcined / crushed powder after classification, which are the particle sizes at 10% and 90%, respectively. Show. The area was defined by d, d 10% and d 90% without taking the full width at half maximum because the fine powder which affects the sintering at full width at half maximum,
This is because no restrictions can be set for coarse powder. This relationship applies to calcined and crushed powders having a particle size of 20 μm or less, and no difference is observed between calcinated and crushed powder having a particle size of 20 μm or more before and after classification. It is considered that this is because the particle size of the calcined / crushed powder of 20 μm or more is too large, and thus the sintering of the fired body does not proceed sufficiently under normal firing conditions.

【0009】log(d10% /d)≧−0.38は微粉
に関する条件であり、この条件よりはずれた微粉が増加
すると異常結晶粒が発生し磁気特性が悪化する。また、
log(d90% /d)≦0.30の条件は粗粉に関する
ものであり、この条件よりはずれた粗粉が増加すると焼
結体の成分組成が不均質になり分級の効果がみられなく
なる。水熱合成粉は、この粒径分布の条件を十分に満た
しており、したがって、粒径の整った組成の均質な水熱
合成フェライト粉を原料として使用することにより、結
晶粒径の整った、微細な組織をもち、成分偏析が少な
く、気孔の少ない気孔分布の整った磁気特性に優れたソ
フトフェライト磁性材料を得ることができる。
Log (d 10% / d) ≧ −0.38 is a condition relating to fine powder, and if the fine powder deviating from this condition increases, abnormal crystal grains are generated and the magnetic characteristics deteriorate. Also,
The condition of log (d 90% / d) ≤ 0.30 relates to coarse powder, and if the amount of coarse powder deviating from this condition increases, the component composition of the sintered body will become inhomogeneous and the classification effect will not be seen. . Hydrothermal synthetic powder sufficiently satisfies the conditions of this particle size distribution, therefore, by using a homogeneous hydrothermal synthetic ferrite powder having a composition with a uniform particle size as a raw material, a uniform crystal particle size, It is possible to obtain a soft ferrite magnetic material having a fine structure, a small amount of component segregation, a small number of pores, a uniform pore distribution, and excellent magnetic characteristics.

【0010】[0010]

【実施例】【Example】

実施例1 特願平4−66426号公報に示された第一鉄イオンを
含む水溶液にZn,Mnの二価金属イオンを添加し、PH
8以上で160〜300℃に加熱して加水分解反応を行
う製造法により、3種類の粒径の整ったMnZnフェラ
イト粒子を製造した。3種類の粉および比較のための従
来プロセス粉の成分分析値、平均結晶粒径、log(d
10% /d)およびlog(d90% /d)の値を表1に示
す。
Example 1 A divalent metal ion of Zn and Mn was added to an aqueous solution containing ferrous iron shown in Japanese Patent Application No. 4-66426, and PH was added.
MnZn ferrite particles having three types of ordered particle sizes were manufactured by a manufacturing method in which a hydrolysis reaction was carried out by heating to 160 to 300 ° C. at 8 or higher. Component analysis value, average crystal grain size, log (d
The values of 10% / d) and log (d 90% / d) are shown in Table 1.

【0011】[0011]

【表1】 [Table 1]

【0012】3種類の水熱合成粉を平均粒径の小さい方
から水熱粉A、水熱粉B、水熱粉Cと呼ぶことにする。
成分分析値はそれぞれの粉を5gずつサンプリングし、
定量発光分析によって得たものである。従来プロセス
粉、水熱粉A、水熱粉B、および水熱粉Cを1250℃
で焼成した。焼成体を切断、研磨し、エッチングした面
の組織を見ると、水熱粉A、水熱粉B、および水熱粉C
を使用したものは異常粒成長がなく、気孔も少ない。1
000個の結晶の粒径を測定し、その平均と標準偏差を
求めると表2のようになる。
The three types of hydrothermal powders will be referred to as hydrothermal powder A, hydrothermal powder B, and hydrothermal powder C in order of decreasing average particle size.
As for the component analysis value, 5g of each powder was sampled,
It was obtained by quantitative luminescence analysis. Conventional process powder, hydrothermal powder A, hydrothermal powder B, and hydrothermal powder C at 1250 ° C
It was baked in. Looking at the texture of the etched surface of the fired body after cutting, polishing, and etching, hydrothermal powder A, hydrothermal powder B, and hydrothermal powder C
There is no abnormal grain growth and there are few pores. 1
Table 2 shows the average grain size and standard deviation of the grain size of 000 crystals measured.

【0013】[0013]

【表2】 [Table 2]

【0014】水熱合成粉を使用したものは従来プロセス
粉と比較すると、標準偏差が小さく結晶粒径が整ってい
ることがわかる。また、気孔について同様に径を測定し
平均径と標準偏差をもとめた結果を表3に示す。
It can be seen that, when the hydrothermal synthetic powder is used, the standard deviation is small and the crystal grain size is uniform as compared with the conventional process powder. Table 3 shows the results of similarly measuring the diameters of the pores and determining the average diameter and the standard deviation.

【0015】[0015]

【表3】 [Table 3]

【0016】水熱粉の気孔については標準偏差が小さく
整っていることがわかる。従来プロセス粉および水熱粉
Bを用いた焼成体の研磨面上の50mm×50mmの領域に
ついて、2μm×2μmのスポット径をもつ電子線を照
射し特性X線を調べることによって得たFe2 3 ,M
nO,ZnOの成分のばらつきの様子を図1に示す。図
の横軸は最も多く検出される成分値を原点にとり、その
成分値からのずれをパーセンテージで表したものであ
り、縦軸は検出頻度を任意目盛りでとってある。図1か
ら明らかなように、水熱粉Bの粉を用いた焼成体は、従
来プロセス粉を用いた焼成体に比べ成分のばらつきが小
さく均質であることがわかる。水熱粉A、水熱粉Cを用
いても同様な結果が得られている。
It can be seen that the standard deviation of the pores of the hydrothermal powder is small and uniform. Fe 2 O obtained by irradiating a 50 mm × 50 mm area on the polished surface of a fired body using the conventional process powder and hydrothermal powder B with an electron beam having a spot diameter of 2 μm × 2 μm and examining characteristic X-rays 3 , M
FIG. 1 shows how the components of nO and ZnO vary. The horizontal axis of the figure shows the component value detected most often as the origin, and the deviation from the component value is expressed as a percentage, and the vertical axis shows the detection frequency on an arbitrary scale. As is clear from FIG. 1, the calcined body using the powder of the hydrothermal powder B is homogeneous with less variation in components than the calcined body using the conventional process powder. Similar results were obtained using hydrothermal powder A and hydrothermal powder C.

【0017】比較例1 空気中950℃で仮焼を行い、ボールミルによる粉砕を
施したMnZnソフトフェライト粉(従来プロセス粉)
を、本発明の条件に従って平均粒径の異なる3種類の粉
に分級した。分級方法には遠心力を利用した方法やフィ
ルターを通す方法などいろいろあるが、本実施例ではコ
アンダ効果を利用した分級器を用いた。
Comparative Example 1 MnZn soft ferrite powder (conventional process powder) calcinated in air at 950 ° C. and crushed by a ball mill.
Were classified into three types of powders having different average particle sizes according to the conditions of the present invention. There are various classification methods such as a method using centrifugal force and a method using a filter. In this example, a classifier using the Coanda effect was used.

【0018】分級前の粉(従来プロセス粉)と分級後の
3種類の粉の成分分析値、平均結晶粒径、log(d
10% /d)およびlog(d90% /d)の値を表4に示
す。
Component analysis values of the powder before classification (conventional process powder) and the three kinds of powder after classification, average crystal grain size, log (d
The values of 10% / d) and log (d 90% / d) are shown in Table 4.

【0019】[0019]

【表4】 [Table 4]

【0020】分級後の3種類の粉を平均粒径の小さい方
から分級後A、分級後B、分級後Cと呼ぶことにする。
成分分析値はそれぞれの粉を5gずつサンプリングし、
定量発光分析によって得たものである。分級前の粉(従
来プロセス粉)のFe2 3 ,MnO,ZnOの組成比
は混合前の秤量比と同じになっているが、分級後の平均
粒径の異なる粉はいずれもその組成比からずれている。
このことは、粒径の違う粉の成分組成が異なっているこ
とを示唆している。対象が粉であるため組成のミクロな
偏析を調べることは難しいが、後に示すように分級後
A、分級後B、分級後Cの粉を用いた焼成体の成分偏析
は分級前の粉(従来プロセス粉)を使用したものより少
なく、間接的に分級後の粉が成分偏析の少ないものであ
ることを示している。
The three types of powders after classification will be referred to as A after classification, B after classification, and C after classification, in order of decreasing average particle size.
As for the component analysis value, 5g of each powder was sampled,
It was obtained by quantitative luminescence analysis. The composition ratio of Fe 2 O 3 , MnO, and ZnO of the powder before classification (conventional process powder) is the same as the weighing ratio before mixing, but the composition ratio of all powders with different average particle sizes after classification is the same. It is out of alignment.
This suggests that powders with different particle sizes have different composition. Since the target is powder, it is difficult to examine the microscopic segregation of the composition, but as will be shown later, the segregation of the components of the fired body using the powders after classification A, after classification B, and after classification C It is shown that the powder after classification indirectly has less component segregation than the powder using the process powder).

【0021】上記分級前(従来プロセス粉)、分級後
A、分級後B、および分級後Cの粉を1250℃で焼成
した。焼成体を切断、研磨し、エッチングした面の組織
を見ると、分級後A、分級後B、および分級後Cの粉を
使用したものは異常粒成長がなく、気孔も少ない。10
00個の結晶の粒径を測定し、その平均と標準偏差を求
めると表5のようになる。
The powders before classification (conventional process powder), after classification A, after classification B, and after classification C were fired at 1250 ° C. Looking at the texture of the etched surface of the fired body after cutting, polishing, and etching, those using the powders after classification A, after classification B, and after classification C did not show abnormal grain growth and had few pores. 10
Table 5 shows the average grain size and standard deviation obtained by measuring the grain size of 00 crystals.

【0022】[0022]

【表5】 [Table 5]

【0023】分級した粉を使用したものは水熱粉と同様
に従来プロセス粉と比較すると、分散が小さく結晶粒径
が整っていることがわかる。また、気孔について同様に
径を測定し平均径と標準偏差をもとめた結果を水熱粉と
の比較のために表3に示す。分級後の気孔については標
準偏差が小さく整っていることがわかる。分級前(従来
プロセス粉)および分級後Aを用いた焼成体の研磨面上
の50mm×50mmの領域について、2μm×2μmのス
ポット径をもつ電子線を照射し特性X線を調べることに
よって得たFe2 3 ,MnO,ZnOの成分のばらつ
きの様子を水熱粉の結果と合わせて図2に示す。図の横
軸は最も多く検出される成分値を原点にとり、その成分
値からのずれをパーセンテージで表したものであり、縦
軸は検出頻度を任意目盛りでとってある。図2から明ら
かなように、分級後Aの粉を用いた焼成体は、分級前の
粉(従来プロセス粉)を用いた焼成体に比べ水熱粉の結
果と同様に成分のばらつきが小さく均質であることがわ
かる。分級後B、分級後Cについても同様な結果が得ら
れている。
As with hydrothermal powder, it can be seen that when the classified powder is used, the dispersion is small and the crystal grain size is uniform as compared with the conventional process powder. Further, the diameters of the pores were measured in the same manner, and the average diameter and the standard deviation were obtained and the results are shown in Table 3 for comparison with the hydrothermal powder. It can be seen that the standard deviation of the pores after classification is small and well arranged. It was obtained by irradiating an electron beam having a spot diameter of 2 μm × 2 μm on a region of 50 mm × 50 mm on the polished surface of the fired body using A before classification (conventional process powder) and after classification by characteristic X-rays FIG. 2 shows the variation of the components of Fe 2 O 3 , MnO, and ZnO together with the results of hydrothermal powder. The horizontal axis of the figure shows the component value detected most often as the origin, and the deviation from the component value is expressed as a percentage, and the vertical axis shows the detection frequency on an arbitrary scale. As is clear from FIG. 2, the calcined body using the powder of A after classification has less variation in the components and is homogeneous as compared with the result of the hydrothermal powder as compared with the calcined body using the powder before classification (conventional process powder). It can be seen that it is. Similar results were obtained for post-classification B and post-classification C.

【0024】比較例2 分級による効果が成分の違いによるものではないことを
示すために分級後の粉の成分組成が分級前の粉(従来プ
ロセス粉)の成分組成と同じになるように、仮焼・粉砕
粉の分級を行った。分級した仮焼・粉砕粉は比較例1で
述べたものである。この分級粉と分級前の粉(従来プロ
セス粉)および実施例1で述べた水熱合成粉を1200
℃で焼成し、損失の温度依存性を測定した結果を図3に
示す。図中の数字は測定した周波数と磁束密度である。
図3から明らかなように粒径の整った粉から得た焼成体
の損失は低く、周波数500kHz 、磁束密度50mTの条
件においては、従来プロセス粉を用いた焼成体の損失の
約半分になるまで損失が改善されている。
Comparative Example 2 In order to show that the effect of classification is not due to the difference in composition, the composition of the powder after classification should be the same as that of the powder before classification (conventional process powder). The baked and crushed powder was classified. The classified calcined / crushed powder is that described in Comparative Example 1. The classified powder, the powder before classification (conventional process powder), and the hydrothermal synthetic powder described in Example 1 were 1200
FIG. 3 shows the result of measuring the temperature dependence of loss by firing at ℃. The numbers in the figure are the measured frequency and magnetic flux density.
As is clear from FIG. 3, the loss of the fired body obtained from the powder having a uniform grain size is low, and under the conditions of a frequency of 500 kHz and a magnetic flux density of 50 mT, it is about half of the loss of the fired body using the conventional process powder. Losses have been improved.

【0025】このように粒径の整った水熱合成粉を使用
することにより、損失の著しい改善がみられるが、粒径
分布効果は分級によって得られた粉により確認された。
成分組成が同じになるようにして、log(d10%
d),log(d90% /d)の値を変えたときの損失の
最低値の変化を図4に示す。ただし、微粉側の条件を変
えるときは粗粉側の条件を満たすようにし、粗粉側の条
件を変えるときは微粉側の条件を満たすようにした。図
4から改善効果は前述の粒径分布範囲をはずれるとみら
れなくなることがわかる。
Although the loss was remarkably improved by using the hydrothermal synthetic powder having a uniform particle size, the particle size distribution effect was confirmed by the powder obtained by classification.
With the same composition of components, log (d 10% /
FIG. 4 shows the change in the minimum loss when the values of d) and log (d 90% / d) are changed. However, when changing the conditions on the fine powder side, the conditions on the coarse powder side were satisfied, and when changing the conditions on the coarse powder side, the conditions on the fine powder side were satisfied. It can be seen from FIG. 4 that the improvement effect cannot be seen if the particle size distribution is out of the above range.

【0026】本発明の水熱合成粉は本条件を満たしてお
り、分級によって整粒された粉よりも更に損失特性に優
れたソフトフェライト磁性材料が得られることが示され
た。
It has been shown that the hydrothermal synthetic powder of the present invention satisfies the above conditions, and that a soft ferrite magnetic material having more excellent loss characteristics than the powder obtained by sizing by classification is obtained.

【0027】[0027]

【発明の効果】本発明の水熱合成粉を原料粉として使用
することにより粉の成分偏析をなくし、スイッチング電
源等の電子部品に使用する高周波においても損失特性に
優れる結晶粒径の整った、微細な組織をもち、成分偏析
が少なく、気孔の少ない気孔径分布の整ったソフトフェ
ライト磁性材料が得られる。
EFFECT OF THE INVENTION By using the hydrothermal synthetic powder of the present invention as a raw material powder, segregation of powder components is eliminated, and the crystal grain size is excellent, which is excellent in loss characteristics even at high frequencies used for electronic parts such as switching power supplies, It is possible to obtain a soft ferrite magnetic material having a fine structure, less segregation of components, and less pores and a uniform pore size distribution.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来プロセス粉使用焼成体、水熱粉使用焼成体
の成分偏析を示す図である。
FIG. 1 is a diagram showing component segregation of a fired body using conventional process powder and a fired body using hydrothermal powder.

【図2】従来プロセス粉使用焼成体、水熱粉使用焼成体
および分級粉使用焼成体の成分偏析を示す図である。
FIG. 2 is a diagram showing component segregation of a fired body using a conventional process powder, a fired body using hydrothermal powder, and a fired body using classified powder.

【図3】周波数100kHz 、磁束密度200mTおよび周
波数500kHz 、磁束密度50mTの損失の温度依存性を
示す図である。
FIG. 3 is a diagram showing temperature dependence of loss at a frequency of 100 kHz, a magnetic flux density of 200 mT, a frequency of 500 kHz, and a magnetic flux density of 50 mT.

【図4】粒径分布範囲と損失値との関係を示す図であ
る。
FIG. 4 is a diagram showing a relationship between a particle size distribution range and a loss value.

フロントページの続き (72)発明者 渡邉 宏二 神奈川県川崎市中原区井田1618番地 新日 本製鐵株式会社先端技術研究所内Front page continuation (72) Inventor Koji Watanabe 1618 Ida, Nakahara-ku, Kawasaki-shi, Kanagawa Nippon Steel Corporation Advanced Technology Research Laboratories

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 平均粒径が0.3〜8μm、標準偏差を
平均粒径で割った値が0.20以下で、かつ下記数式を
満足する粒径の整った、かつ任意に大きさを制御した組
成の均質な水熱合成フェライト粉を使用することを特徴
とする損失特性に優れたソフトフェライト磁性材料。 log(d10% /d)≧−0.38, log(d90% /d)≦0.30 ここで、dはフェライト粉の平均粒径、d10% ,d90%
はフェライト粉の粒径の累積分布において、それぞれ1
0%,90%となるときの粒径を表す。
1. An average particle size of 0.3 to 8 μm, a value obtained by dividing a standard deviation by the average particle size is 0.20 or less, and a particle size satisfying the following mathematical formula is adjusted and an arbitrary size is set. A soft ferrite magnetic material with excellent loss characteristics, characterized by using a homogeneous hydrothermally synthesized ferrite powder having a controlled composition. log (d 10% / d) ≧ −0.38, log (d 90% / d) ≦ 0.30 where d is the average particle diameter of the ferrite powder, d 10% , d 90%
Is 1 in the cumulative distribution of the particle size of the ferrite powder.
It represents the particle size when it becomes 0% or 90%.
JP5074377A 1993-03-31 1993-03-31 Soft ferrite magnetic material excellent in magnetic property Pending JPH06290927A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5074377A JPH06290927A (en) 1993-03-31 1993-03-31 Soft ferrite magnetic material excellent in magnetic property

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5074377A JPH06290927A (en) 1993-03-31 1993-03-31 Soft ferrite magnetic material excellent in magnetic property

Publications (1)

Publication Number Publication Date
JPH06290927A true JPH06290927A (en) 1994-10-18

Family

ID=13545422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5074377A Pending JPH06290927A (en) 1993-03-31 1993-03-31 Soft ferrite magnetic material excellent in magnetic property

Country Status (1)

Country Link
JP (1) JPH06290927A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005145803A (en) * 2003-11-20 2005-06-09 Jfe Chemical Corp Mn-Zn-BASED FERRITE AND METHOD FOR MANUFACTURING THE SAME
JP2005145802A (en) * 2003-11-20 2005-06-09 Jfe Chemical Corp Mn-Zn-BASED FERRITE AND METHOD FOR MANUFACTURING THE SAME
JP2005272229A (en) * 2004-03-25 2005-10-06 Jfe Ferrite Corp HIGH SATURATION MAGNETIC FLUX DENSITY Mn-Zn-Ni-BASED FERRITE
JP2016225604A (en) * 2015-05-29 2016-12-28 サムソン エレクトロ−メカニックス カンパニーリミテッド. Coil electronic component and method of manufacturing the same
WO2019225699A1 (en) * 2018-05-24 2019-11-28 京セラ株式会社 Ferrite sintered compact and noise filter

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005145803A (en) * 2003-11-20 2005-06-09 Jfe Chemical Corp Mn-Zn-BASED FERRITE AND METHOD FOR MANUFACTURING THE SAME
JP2005145802A (en) * 2003-11-20 2005-06-09 Jfe Chemical Corp Mn-Zn-BASED FERRITE AND METHOD FOR MANUFACTURING THE SAME
JP2005272229A (en) * 2004-03-25 2005-10-06 Jfe Ferrite Corp HIGH SATURATION MAGNETIC FLUX DENSITY Mn-Zn-Ni-BASED FERRITE
JP2016225604A (en) * 2015-05-29 2016-12-28 サムソン エレクトロ−メカニックス カンパニーリミテッド. Coil electronic component and method of manufacturing the same
US9852842B2 (en) 2015-05-29 2017-12-26 Samsung Electro-Mechanics Co., Ltd. Coil electronic component
WO2019225699A1 (en) * 2018-05-24 2019-11-28 京セラ株式会社 Ferrite sintered compact and noise filter
JPWO2019225699A1 (en) * 2018-05-24 2021-04-30 京セラ株式会社 Ferrite sintered body and noise filter

Similar Documents

Publication Publication Date Title
KR101858484B1 (en) Sintered ferrite magnet and its production method
KR101649242B1 (en) Method for producing sintered ferrite magnet, and sintered ferrite magnet
KR20150038410A (en) Process for producing ferrite sintered magnet and ferrite sintered magnet
KR101836965B1 (en) Ferrite sintered magnet and method for producing same
EP1101736B1 (en) Mn-Zn ferrite and production thereof
Zhu et al. Reducing dielectric losses in MnZn ferrites by adding TiO/sub 2/and MoO/sub 3
JP6742440B2 (en) MnCoZn ferrite and method for producing the same
CHOL Influence of Milled Powder Particle Size Distribution on the Microstructure and Electrical Properties of Sintered Mn‐Zn Ferrites
KR20080037521A (en) Hexagonal z type ferrite sintered material and method of fabricating the same
EP1512668B1 (en) Ferrite material, ferrite sintered body, and inductor
JPH06290927A (en) Soft ferrite magnetic material excellent in magnetic property
JP2001064076A (en) Magnetic ferrite material and its production
JP2002362968A (en) Method of producing hexagonal ferrite sintered compact
KR102281215B1 (en) Ferrite plastic body, ferrite sintered magnet and manufacturing method thereof
JP2003151811A (en) Sintered ferrite magnet and its manufacturing method
JP6730546B1 (en) MnCoZn ferrite and method for producing the same
CN112041951B (en) MnCoZn-based ferrite and method for producing same
JP3115466B2 (en) Method for producing hexagonal ferrite particles
WO2022120149A1 (en) Copper oxide doped ni-co-zn ferrite for very high frequency and ultra high frequency applications and process methodology
JP2000331813A (en) Ferrite magnet powder
CN113436823A (en) Ferrite sintered magnet
JP2002305106A (en) Method for manufacturing dry mold sintered magnet
JPH08104563A (en) High magnetic permeability manganese-zinc ferrite and its production
Ali et al. The influence of the addition of CaO on the magnetic and electrical properties of Ni–Zn ferrites
CN110418775A (en) MnCoZn class ferrite and its manufacturing method

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020702