JPH06290922A - Manufacture of r-fe-b sintered magnet by injection molding method - Google Patents

Manufacture of r-fe-b sintered magnet by injection molding method

Info

Publication number
JPH06290922A
JPH06290922A JP5097190A JP9719093A JPH06290922A JP H06290922 A JPH06290922 A JP H06290922A JP 5097190 A JP5097190 A JP 5097190A JP 9719093 A JP9719093 A JP 9719093A JP H06290922 A JPH06290922 A JP H06290922A
Authority
JP
Japan
Prior art keywords
binder
injection molding
alloy powder
agar
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5097190A
Other languages
Japanese (ja)
Inventor
Osamu Yamashita
治 山下
Masahiro Asano
正宏 浅野
Tsunekazu Saigo
恒和 西郷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP5097190A priority Critical patent/JPH06290922A/en
Priority to DE1993614098 priority patent/DE69314098T2/en
Priority to US08/080,771 priority patent/US5427734A/en
Priority to EP19930304944 priority patent/EP0576282B1/en
Publication of JPH06290922A publication Critical patent/JPH06290922A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PURPOSE:To enable an R-Fe-B sintered magnet to be prevented from deteriorating in magnetic properties and enhanced in injection molding properties by a method wherein material obtained by adding water to methyl cellulose, agar-agar, or composite of them which makes a sol-gel transformation at a prescribed temperature is used as binder which is added to R-Fe-B alloy powder. CONSTITUTION:Methyl cellulose and/or agar-agar which makes a sol-gel transformation at a prescribed temperature and water are added to R-Fe-B alloy powder (R denotes at least one element out of rare earth elements, including Y), kneaded, and molded into a body of certain shape through an injection molding method. The molded body is dehydrated, debindered in a flow of hydrogen, dehydrogenated, and sintered into an R-Fe-B sintered magnet. By this setup, a sintered magnet which is lessened in residual carbon, excellent in magnetic properties, and three-dimensionally complicated in a shape can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、射出成形によるR−
Fe−B系焼結異方性永久磁石を製造する方法に係わ
り、微細結晶化したR−Fe−B系合金微粉末と所定温
度によりゾル・ゲル反応を起こすバインダーとしてメチ
ルセルロースおよび/または寒天と水との混練物を射出
成形し、脱水処理した後、水素流気中での脱バインダー
処理、脱水素処理し、焼結することにより、焼結体中の
炭素量と酸素量の残留を抑制し、磁気特性の劣化防止と
ともに、射出成形時の成形性を向上させ、三次元的に複
雑な形状の焼結磁石が得られる射出成形による焼結異方
性磁石の製造方法に関する。
BACKGROUND OF THE INVENTION The present invention relates to R-molded by injection molding.
The present invention relates to a method for producing an Fe—B-based sintered anisotropic permanent magnet, wherein finely crystallized R—Fe—B-based alloy fine powder and methyl cellulose and / or agar and water are used as a binder to cause a sol-gel reaction at a predetermined temperature. After injection-molding a kneaded product with and dewatering it, debinding process in dehydrogenated hydrogen, dehydrogenation process, and sintering are performed to suppress the residual carbon amount and oxygen amount in the sintered body. The present invention relates to a method for producing a sintered anisotropic magnet by injection molding, which prevents deterioration of magnetic properties and improves moldability at the time of injection molding to obtain a sintered magnet having a three-dimensionally complicated shape.

【0002】[0002]

【従来の技術】今日、家電製品を初めコンピュータの周
辺機器や自動車等用途に用いられる小型モーターやアク
チュエータなどには、小型化、軽量化とともに高性能化
が求められており、その磁石材料も小型化、軽量化、薄
肉化からさらに三次元的に複雑な形状製品が要求されて
いる。
2. Description of the Related Art Today, compact motors and actuators used for home appliances, computer peripherals, automobiles, etc. are required to be compact and lightweight and have high performance. In order to reduce the weight, reduce the weight, and reduce the wall thickness, products with a three-dimensionally complicated shape are required.

【0003】複雑な形状の高性能永久磁石を得る方法と
して、Sm−Co系磁性材またはR−Fe−B系磁性材
を用いて樹脂バインダー等を混練して機械的に成形する
希土類系ボンド磁石の製造方法、あるいはR−Fe−B
系合金鋳塊を粉砕して得られた合金粉末と樹脂バインダ
ーを混練して射出成形し、脱バインダー後に焼結するR
−Fe−B系焼結永久磁石の製造方法(特開昭61−2
20315号公報、特開昭64−28302号公報、特
開昭64−28303号公報)が提案されている。
As a method of obtaining a high-performance permanent magnet having a complicated shape, a rare earth bond magnet is prepared by kneading a resin binder or the like using a Sm-Co magnetic material or an R-Fe-B magnetic material and mechanically molding it. Manufacturing method, or R-Fe-B
The alloy powder obtained by crushing the base alloy ingot and the resin binder are kneaded, injection-molded, and then sintered after debinding.
-Fe-B system sintered permanent magnet manufacturing method (JP-A-61-2
20315, JP 64-28302 A, JP 64-28303 A) have been proposed.

【0004】[0004]

【発明が解決しようとする課題】一般に、希土類元素
(R)を含有する金属間化合物はO、H、C、N等の元
素と反応し易く、当該系磁性粉と有機物バインダー等の
混練時、あるいは脱バインダー時に磁性粉中のR成分と
バインダーが反応し、磁気特性が劣化したり、特に射出
成形時の成形性が非常に悪くなり、複雑な形状が得難い
問題があった。
Generally, an intermetallic compound containing a rare earth element (R) easily reacts with an element such as O, H, C and N, and when kneading the magnetic powder and an organic binder, Alternatively, when the binder is removed, the R component in the magnetic powder reacts with the binder to deteriorate the magnetic properties, and particularly, the moldability at the time of injection molding becomes very poor, which makes it difficult to obtain a complicated shape.

【0005】従来の射出成形法で一般的に使用されてい
る熱可塑性のバインダー(アクリル系、ワックス系、ポ
リエチレン、ポリスチレン等のポリマー)をR−Fe−
B合金粉末に添加混合した場合、一般的に炭素と酸素の
含有量がRとの反応により増加するために、射出成形、
脱脂した後、焼結後でもかなりの炭素と酸素が残留し、
特に永久磁石の場合磁気特性の劣化を招き、射出成形法
による複雑形状品の磁石部品への応用の妨げになってい
る。
A thermoplastic binder (acrylic type, wax type, polymer such as polyethylene and polystyrene) generally used in the conventional injection molding method is used as R-Fe-
When added and mixed with the B alloy powder, the content of carbon and oxygen generally increases due to the reaction with R. Therefore, injection molding,
After degreasing, considerable carbon and oxygen remain even after sintering,
In particular, in the case of a permanent magnet, the magnetic properties are deteriorated, which hinders the application of complicated shaped products to the magnetic parts by the injection molding method.

【0006】そこで、発明者は、従来のパラフィン系ワ
ックスや熱可塑性樹脂からなるバインダーに代えて、メ
チルセルロースと水あるいはメチルセルロースと寒天と
水を主成分とするバインダーを用い、該バインダーのゾ
ル・ゲル反応を利用して射出成形することにより、バイ
ンダーとR成分との反応を抑制し、残留酸素、炭素量を
低減したR−Fe−B系焼結磁石の製造方法(特願平4
−191727号、特願平4−191728号)を提案
した。かかる方法にて総バインダー中の炭素量を低減し
たが、射出成形後に行う真空中で加熱する脱脂処理で完
全に除去することができず、焼結後の焼結体に若干量の
炭素が残留して磁気特性を劣化させる問題があった。ま
た、この射出成形法においてバインダー中の大部分が水
であるため、R−Fe−B合金粉末のRと水との反応に
より、合金粉末中の酸素量が増加し、焼結体の磁気特性
を劣化させる問題があった。
Therefore, the inventor used a binder containing methylcellulose and water or methylcellulose, agar and water as the main components instead of the conventional binder composed of paraffin wax or thermoplastic resin, and the sol-gel reaction of the binder. A method for producing an R—Fe—B based sintered magnet in which the reaction between the binder and the R component is suppressed by reducing the residual oxygen and the carbon content by injection molding using the method (Japanese Patent Application No.
No. 191727, Japanese Patent Application No. 4-191728). Although the amount of carbon in the total binder was reduced by such a method, it could not be completely removed by the degreasing treatment that is performed in a vacuum after injection molding, and some carbon remained in the sintered body after sintering. Then, there was a problem of deteriorating the magnetic characteristics. In addition, since most of the binder in the injection molding method is water, the amount of oxygen in the alloy powder increases due to the reaction between R of the R-Fe-B alloy powder and water, and the magnetic properties of the sintered body are increased. There was a problem that deteriorates.

【0007】この発明は、射出成形にて成形し、これを
焼結するR−Fe−B系焼結永久磁石の製造方法におい
て、R成分とバインダーとの反応や、炭素および酸素の
残留による磁気特性の劣化を防止し、射出成形性を向上
させて複雑な形状、特に小型製品のR−Fe−B系焼結
磁石が得られる製造方法の提供を目的としている。
The present invention relates to a method for producing an R-Fe-B system sintered permanent magnet which is formed by injection molding and is sintered, in which a magnet is formed by the reaction between the R component and the binder and the residual carbon and oxygen. It is an object of the present invention to provide a manufacturing method capable of preventing deterioration of characteristics, improving injection moldability, and obtaining an R-Fe-B based sintered magnet having a complicated shape, particularly a small product.

【0008】[0008]

【課題を解決するための手段】発明者らは、R−Fe−
B系合金粉末中のR成分とバインダーとの反応を抑制で
き、残留する炭素及び酸素量を低減できる方法を目的に
種々検討した結果、従来の射出成形法で一般的に使用さ
れている熱可塑性のバインダーの代わりに、バインダー
として所定温度によりゾル・ゲル変態を起こすメチルセ
ルロースまたは寒天あるいはそれらを複合したものに水
を添加したものを用い、あるいはさらにR−Fe−B系
合金粉末表面を樹脂被覆した合金粉末を使用し、水とR
との反応を抑制し、混練後の合金粉末の酸素量を安定化
させるとともに射出成形時の成形性を向上させ、さらに
射出成形時に金型内でゲル化させて硬化させて所定の形
状に成形し、脱水乾燥処理した後、水素流気中での脱バ
インダー処理することにより、R−Fe−B粉末中の残
留酸素量及び炭素量を大幅に減少でき、その後脱水素処
理、焼結することにより、優れた磁気特性を有する3次
元的に複雑な形状の焼結磁石が得られることを知見し、
この発明を完成した。
The inventors have found that R-Fe-
As a result of various studies aimed at a method capable of suppressing the reaction between the R component in the B-based alloy powder and the binder and reducing the amount of residual carbon and oxygen, the thermoplasticity generally used in the conventional injection molding method was found. Instead of the above binder, methyl cellulose or agar which causes a sol-gel transformation at a predetermined temperature or a mixture of these and water added is used as the binder, or the surface of the R-Fe-B alloy powder is further coated with a resin. Using alloy powder, water and R
Suppresses the reaction with and stabilizes the oxygen content of the alloy powder after kneading and improves the moldability during injection molding, and further gels and hardens it in the mold during injection molding to mold it into the desired shape After the dehydration and drying treatment, the residual oxygen content and the carbon content in the R-Fe-B powder can be greatly reduced by performing the binder removal treatment in flowing hydrogen, and then the dehydrogenation treatment and the sintering. It was found that a three-dimensionally complicated sintered magnet having excellent magnetic properties can be obtained by
Completed this invention.

【0009】すなわち、この発明は、R−Fe−B系合
金粉末(RはYを含む希土類元素の少なくとも1種)
に、バインダーとして所定温度によりゾル・ゲル反応を
起こすメチルセルロースおよび/または寒天と水とを加
えて混練した後、射出成形により成形体となし、該成形
体を脱水処理した後、水素流気中で脱バインダー処理
し、さらに脱水素処理後に焼結することを特徴とする射
出成形法によるR−Fe−B系焼結磁石の製造方法であ
る。また、この発明は、上記の構成において、原料微粉
末の表面に樹脂を被覆した後、射出成形することを特徴
とする射出成形法によるR−Fe−B系焼結磁石の製造
方法を提案する。また、上記の構成において、バインダ
ーに潤滑剤としてグリセリン、ステアリン酸、エマルジ
ョンワックス、水溶性アクリル樹脂の少なくとも1種を
0.1〜1.0wt%、水6〜18wt%を含有する組
成を、磁性粉末のバインダーとして用いる添加すること
を特徴とする射出成形法によるR−Fe−B系焼結磁石
の製造方法を提案する。さらに、この発明は、上記のい
ずれの構成においても、焼結体が含有する炭素量を70
0ppm以下、酸素量9000ppm以下にすることが
可能な射出成形によるR−Fe−B系焼結磁石の製造方
法である。
That is, the present invention provides an R—Fe—B alloy powder (R is at least one rare earth element containing Y).
In addition, methyl cellulose and / or agar which causes a sol-gel reaction as a binder at a predetermined temperature and water are added and kneaded, and then a molded body is formed by injection molding, and the molded body is dehydrated, and then in a stream of hydrogen. This is a method for producing an R—Fe—B based sintered magnet by an injection molding method, characterized by performing a binder removal treatment, and further performing a dehydrogenation treatment and then sintering. Further, the present invention proposes a method for producing an R-Fe-B system sintered magnet by an injection molding method, characterized in that the surface of a raw material fine powder is coated with a resin in the above-mentioned constitution, followed by injection molding. . Further, in the above-mentioned constitution, the composition containing 0.1 to 1.0 wt% of at least one of glycerin, stearic acid, emulsion wax, and water-soluble acrylic resin as a lubricant and 6 to 18 wt% of water in the binder is magnetic. A method for producing an R-Fe-B based sintered magnet by an injection molding method, which is characterized in that it is used as a powder binder, is proposed. Further, according to the present invention, in any of the above configurations, the amount of carbon contained in the sintered body is 70%.
This is a method for producing an R-Fe-B based sintered magnet by injection molding capable of reducing the oxygen content to 0 ppm or less and the oxygen content to 9000 ppm or less.

【0010】R−Fe−B系合金粉末 この発明において、R−Fe−B系合金粉末としては、
R(但しRはYを含む希土類元素のうち少なくとも1
種)8原子%〜30原子%、Fe42原子%〜90原子
%、B2原子%〜28原子%を主成分とする平均粒度1
〜10μmが望ましく、さらに1〜6μmの微粉末が好
ましい。希土類元素R(但しRはYを含む希土類元素の
うち少なくとも1種)は、Nd、Pr、Ho、Tbのう
ち少なくとも1種、あるいはさらにLa、Sm、Ce、
Er、Eu、Pm、Tm、Yb、Yのうち少なくとも1
種を含むものが好ましく、8原子%未満では結晶構造が
αー鉄と同一構造の立方晶組織となるため、高磁気特
性、特に高保磁力が得られず、30原子%を越えるとR
リッチな非磁性相が多くなり、残留磁束密度(Br)が
低下して、すぐれた特性の永久磁石が得られない。よっ
て、Rは8原子%〜30原子%が好ましい範囲である。
Bは、2原子%未満では菱面体組織となり、高い保磁力
(iHc)は得られず、28原子%を越えるとBリッチ
な非磁性相が多くなり、残留磁束密度(Br)が低下す
るため、すぐれた永久磁石が得られない。よって、Bは
2原子%〜28原子%が好ましい範囲である。Feは、
42原子%未満では残留磁束密度(Br)が低下し、9
0原子%を越えると高い保磁力が得られないので、Fe
は42原子%〜90原子%が好ましい。また、この発明
において、Feの一部をCoで置換することは、得られ
る磁石の磁気特性を損うことなく温度特性を改善するこ
とができるが、Co置換量がFeの50%を越えると、
逆に磁気特性が劣化するため好ましくない。また、下記
添加元素のうち少なくとも1種を添加することは、Fe
−B−R系永久磁石に対してその保磁力等を改善あるい
は製造性の改善、低価格化に効果がある。 Ti、N
i、V、Nb、Ta、Cr、Mo、W、Mn、Al、S
b、Ge、Sn、Zr、Bi、Hf、Cu、Si、S、
C、Ca、Mg、P、H、Li、Na、K、Be、S
r、Br、Ag、Zn、N、F、Se、Te、Pb。こ
の発明において、R−Fe−B系合金粉末の平均粒度は
1〜10μmが好ましく、合金粉末の平均粒径が1μm
未満では合金粉末の表面積が増大するため、混練物とす
るためのバインダー添加量を合金粉末との容積比で、
1:1.2に増加させる必要があり、射出成形後の焼結
品の焼結密度が95%程度と低下するため好ましくな
く、また、10μmを超える平均粒径では粒径が大きす
ぎて焼結密度が95%程度で飽和し、該密度の向上が望
めないため好ましくない。
R-Fe-B type alloy powder In the present invention, the R-Fe-B type alloy powder is
R (where R is at least 1 of rare earth elements including Y)
Seed) 8 atom% to 30 atom%, Fe42 atom% to 90 atom%, B2 atom% to 28 atom% as an average particle size 1
10 to 10 μm is desirable, and fine powder of 1 to 6 μm is more preferable. The rare earth element R (where R is at least one of rare earth elements including Y) is at least one of Nd, Pr, Ho and Tb, or further La, Sm, Ce,
At least 1 of Er, Eu, Pm, Tm, Yb, Y
It preferably contains a seed, and if it is less than 8 atom%, the crystal structure becomes a cubic crystal structure having the same structure as α-iron, so that high magnetic properties, particularly high coercive force cannot be obtained.
The rich non-magnetic phase increases, the residual magnetic flux density (Br) decreases, and a permanent magnet with excellent characteristics cannot be obtained. Therefore, R is preferably in the range of 8 atom% to 30 atom%.
When B is less than 2 atomic%, a rhombohedral structure is formed, and a high coercive force (iHc) cannot be obtained. When it exceeds 28 atomic%, the B-rich nonmagnetic phase increases and the residual magnetic flux density (Br) decreases. , I can't get a good permanent magnet. Therefore, B is preferably in the range of 2 atom% to 28 atom%. Fe is
If it is less than 42 atom%, the residual magnetic flux density (Br) is lowered,
If it exceeds 0 atom%, a high coercive force cannot be obtained.
Is preferably 42 atom% to 90 atom%. Further, in the present invention, substituting a part of Fe with Co can improve the temperature characteristics without deteriorating the magnetic characteristics of the obtained magnet, but when the Co substitution amount exceeds 50% of Fe. ,
On the contrary, the magnetic properties are deteriorated, which is not preferable. Further, adding at least one of the following additional elements means that
-It is effective in improving the coercive force and the like of the B-R permanent magnet, improving the manufacturability, and reducing the cost. Ti, N
i, V, Nb, Ta, Cr, Mo, W, Mn, Al, S
b, Ge, Sn, Zr, Bi, Hf, Cu, Si, S,
C, Ca, Mg, P, H, Li, Na, K, Be, S
r, Br, Ag, Zn, N, F, Se, Te, Pb. In the present invention, the average particle size of the R—Fe—B alloy powder is preferably 1 to 10 μm, and the average particle size of the alloy powder is 1 μm.
Since the surface area of the alloy powder is increased in the case of less than, the binder addition amount for forming a kneaded product is a volume ratio with the alloy powder,
It is necessary to increase the ratio to 1: 1.2, which is not preferable because the sintered density of the sintered product after injection molding is reduced to about 95%, and if the average particle size exceeds 10 μm, the particle size is too large and firing is not performed. It is not preferable because the consolidation density is saturated at about 95% and the improvement of the density cannot be expected.

【0011】また、R−Fe−B系合金粉末として、R
(但しRはYを含む希土類元素のうち少なくとも1種)
12原子%〜25原子%、B4原子%〜10原子%、C
o0.1原子%〜10原子%、Fe68原子%〜80原
子%を主成分とし、R2Fe1 4B相を主相とする平均粒
径1〜5μmの主成分系合金粉末と、R3Co相を含む
Co又はFeとRとの金属間化合物相に一部R2(Fe
Co)14B相等を含み、R(但しRはYを含む希土類元
素の内少なくとも1種)20原子%〜45原子%、Co
3原子%〜20原子%、B12原子%以下、残部Feと
する平均粒径8〜40μmの液相系化合物粉末を所定の
割合で配合混合した原料を用いることができる。これら
の合金粉末を用い2種類の原料の平均粒度を変えると同
時に、希土類元素の酸化物の発生を見込んで予め過剰の
R成分を添加することにより、過剰の液相系化合物粉末
の添加により焼結時の液相の発現を充分にすることが可
能で、R成分とバインダーとの反応による磁気特性の劣
化を防止することができる。上記の配合合金粉末におい
て、主成分系合金粉末を得るには、Rは、12原子%未
満では合金溶製時に晶出するα−Fe相が増加し好まし
くなく、Rが25原子%を超えると残留磁束密度(B
r)が低下するため、Rは12原子%〜25原子%が好
ましい。また、Bは、4原子%未満では高い保磁力(i
Hc)が得られず、10原子%を超えると残留磁束密度
(Br)が低下するため、Bは4原子%〜10原子%が
好ましい。主成分系合金粉末中のCoは、0.1原子%
以上含有すると、原料中の酸素量を低減させる効果があ
る。またCoが10原子%を超えると、R2Fe14B相
中のFeと置換されて保磁力を失うために、Coを含有
させる場合は0.1原子%〜10原子%が好ましい。さ
らに、残部はFeおよび不可避的不純物からなり、Fe
は68原子%未満では相対的に希土類元素がリッチとな
り、Rリッチ相が増加し、80原子%を超えると残留F
e部が増加しすぎて、相対的に希土類元素が少なくな
り、バインダーとの酸化反応により、液相焼結に必要な
希土類元素が消耗しすぎるため、68原子%〜80原子
%の範囲が好ましい。主成分系合金粉末には、主相とな
るR2Fe14B相とともに、焼結性の向上及び焼結後の
残留磁束密度の向上のため、4wt%〜20wt%のR
リッチ相を含有させることができる。R3Co相を含む
Co又はFeとRとの金属間化合物相(但しCoの1部
あるいは大部分をFeにて置換できる)からなる液相系
化合物粉末は、R3Co相あるいはR3Co相のCoの一
部Feで置換された相とからなり、中心相が、RC
5、R2Co7、RCo3、RCo2、R2Co3、R2Fe
17、RFe2、Nd2Co17、Nd5Co19、Dy6Fe2
DyFe等、及び前記金属間化合物相とR2(FeC
o)14B、R1.11(FeCo)44等のいずれかからな
る合金粉末である。液相系化合物粉末の組成は、前述の
如く、目的組成の希土類元素の種類とその量に応じて、
金属間化合物の含有希土類元素比率を変化させる。しか
し、Rが20%原子未満では主成分系原料と配合して磁
石を製造する際に、主成分系のRの一部酸化によるRの
消耗分の補充が充分でなく、焼結時の液相の発現が十分
でなくなる。また45原子%を超えると含有酸素量の増
加を招き好ましくない。また、Coは前記の化合物を形
成させるためには3原子%以上必要であり、20原子%
を超えると保磁力が低下するため、3〜20原子%と
し、残部はFeで置換することができる。さらに、Bは
12原子%を超えるとR2(FeCo)14B相以外にB
−rich相やFe−B化合物等が余剰に存在すること
となるので好ましくない。さらに、主成分系合金粉末お
よび/またはR3Co相を含むCo又はFeとRとの金
属間化合物相及びR2(FeCo)14B相等からなる液
相系化合物粉末に、Cu、S、Ni、Ti、Si、V、
Nb、Ta、Cr、Mo、W、Mn、Al、Sb、G
e、Sn、Zr、Hf、Ca、Mg、Sr、Ba、B
e、のうち少なくとも1種を添加含有させることによ
り、得られる永久磁石の高保磁力化、高耐食性化、温度
特性の改善が可能になる。上記の配合合金粉末におい
て、主成分系合金粉末の平均粒径が1μm未満では合金
粉末の表面積が増大するため、混練物とするためのバイ
ンダー添加量を合金粉末との容積比で、1:1.2に増
加させる必要があり、射出成形後の焼結品の焼結密度が
95%程度と低下するため好ましくなく、また、5μm
を超える平均粒径では粒径が大きすぎて焼結密度が95
%程度で飽和し、該密度の向上が望めないため、平均粒
径は1〜5μmの範囲が好ましい。一方、液相系化合物
粉末の平均粒径は、8μm未満ではバインダーとの反応
が単一組成の合金粉末(1〜5μmの平均粒径)と同程
度であり、主成分系粉末の添加の効果がほとんど見られ
ない。また合金粉末の平均粒径が、40μmを超えると
バインダーとの反応はかなり抑制されるが、逆に焼結時
の焼結性が悪化し、焼結密度が低下すると同時に保磁力
が低下するので、液相系の合金粉末の平均粒径は8〜4
0μmが好ましい。また、主成分系合金粉末と液相系化
合物粉末は、70〜97:30〜3の比率で配合するこ
とが好ましく、磁石特性に応じた複数種組成の合金粉末
を得ることができる。
Further, as R-Fe-B type alloy powder, R
(However, R is at least one of rare earth elements including Y)
12 atom% to 25 atom%, B4 atom% to 10 atom%, C
o Main component-based alloy powder having an average particle size of 1 to 5 μm, which contains 0.1 atom% to 10 atom% and Fe 68 atom% to 80 atom% as main components, and R 2 Fe 1 4 B phase as a main phase, and R 3 In the intermetallic compound phase of Co or Fe and R including the Co phase, R 2 (Fe
Co) 14 B phase and the like, R (where R is at least one of rare earth elements including Y) 20 atom% to 45 atom%, Co
It is possible to use a raw material prepared by mixing and mixing liquid phase compound powders having an average particle diameter of 8 to 40 μm with 3 atomic% to 20 atomic%, B 12 atomic% or less, and the balance Fe at a predetermined ratio. Using these alloy powders, the average particle size of the two kinds of raw materials is changed, and at the same time, the excess R component is added in advance in anticipation of the generation of oxides of rare earth elements. It is possible to sufficiently develop the liquid phase at the time of binding, and it is possible to prevent the deterioration of the magnetic properties due to the reaction between the R component and the binder. In order to obtain a main component alloy powder in the above compounded alloy powder, if R is less than 12 atomic%, the α-Fe phase crystallized during alloy melting increases, which is not preferable, and if R exceeds 25 atomic%. Residual magnetic flux density (B
Since r) decreases, R is preferably 12 atom% to 25 atom%. Further, B has a high coercive force (i
Hc) cannot be obtained, and the residual magnetic flux density (Br) decreases if it exceeds 10 atom%, so B is preferably 4 atom% to 10 atom%. Co in the main component alloy powder is 0.1 atom%
The above content is effective in reducing the amount of oxygen in the raw material. Further, when Co exceeds 10 atomic%, it is substituted with Fe in the R 2 Fe 14 B phase to lose the coercive force. Therefore, when Co is contained, 0.1 atomic% to 10 atomic% is preferable. Further, the balance consists of Fe and inevitable impurities,
Is less than 68 atomic%, the rare earth element becomes relatively rich and the R-rich phase increases, and when more than 80 atomic%, the residual F
The range of 68 at% to 80 at% is preferable because the amount of e is too large and the amount of rare earth elements becomes relatively small, and the rare earth elements required for liquid phase sintering are consumed too much due to the oxidation reaction with the binder. . The main component alloy powder contains 4 wt% to 20 wt% of R in order to improve the sinterability and the residual magnetic flux density after sintering together with the R 2 Fe 14 B phase which is the main phase.
A rich phase can be included. Liquid phase compound powders composed of Co containing R 3 Co phase or an intermetallic compound phase of Fe and R (provided that part or most of Co can be replaced by Fe) are R 3 Co phase or R 3 Co phase. The central phase is RC
o 5 , R 2 Co 7 , RCo 3 , RCo 2 , R 2 Co 3 , R 2 Fe
17 , RFe 2, Nd 2 Co 17 , Nd 5 Co 19 , Dy 6 Fe 2 ,
DyFe, etc., and the intermetallic compound phase and R 2 (FeC
o) An alloy powder composed of either 14 B, R 1.11 (FeCo) 4 B 4 or the like. The composition of the liquid phase compound powder is, as described above, according to the kind and the amount of the rare earth element of the target composition,
The ratio of the rare earth element contained in the intermetallic compound is changed. However, when R is less than 20% by atom, when the magnet is mixed with the main component-based raw material, the amount of R consumed by partial oxidation of the main component-based R is not sufficiently supplemented, and the liquid during sintering is not sufficiently supplemented. Insufficient phase development. Further, if it exceeds 45 atomic%, the oxygen content is increased, which is not preferable. Further, Co is required to be 3 atomic% or more to form the above compound, and 20 atomic%
If it exceeds, the coercive force will decrease, so the content can be 3 to 20 atomic%, and the balance can be replaced by Fe. Furthermore, when B exceeds 12 atomic%, B is contained in addition to the R 2 (FeCo) 14 B phase.
It is not preferable because the -rich phase, the Fe-B compound and the like are excessively present. Further, Cu, S, Ni is added to the liquid phase compound powder consisting of the main component alloy powder and / or the intermetallic compound phase of Co or Fe and R containing the R 3 Co phase and the R 2 (FeCo) 14 B phase. , Ti, Si, V,
Nb, Ta, Cr, Mo, W, Mn, Al, Sb, G
e, Sn, Zr, Hf, Ca, Mg, Sr, Ba, B
By adding and containing at least one of e, it becomes possible to increase the coercive force, corrosion resistance and temperature characteristics of the obtained permanent magnet. In the above compounded alloy powder, if the average particle size of the main component-based alloy powder is less than 1 μm, the surface area of the alloy powder increases, so the amount of binder added to form a kneaded product is 1: 1 by volume ratio with the alloy powder. It is not desirable because the sintered density of the sintered product after injection molding is reduced to about 95%, which is not preferable.
If the average particle size exceeds, the particle size is too large and the sintered density is 95
%, The average particle size is preferably in the range of 1 to 5 μm, since the density is saturated and the improvement in the density cannot be expected. On the other hand, when the average particle size of the liquid-phase compound powder is less than 8 μm, the reaction with the binder is about the same as that of the alloy powder of a single composition (average particle size of 1 to 5 μm), and the effect of addition of the main component system powder Is hardly seen. Further, when the average particle size of the alloy powder exceeds 40 μm, the reaction with the binder is considerably suppressed, but conversely, the sinterability during sintering is deteriorated, the sintered density is reduced, and at the same time the coercive force is reduced. , The average particle size of liquid phase alloy powder is 8 to 4
0 μm is preferable. The main component alloy powder and the liquid phase compound powder are preferably mixed in a ratio of 70 to 97:30 to 3, and alloy powders having a plurality of compositions according to the magnetic properties can be obtained.

【0012】上述のR−Fe−B系合金粉末の製造方法
としては、溶解・粉化法、超急冷法、直接還元拡散法、
水素含有崩壊法、アトマイズ法などの公知の方法を適宜
選定し、所要平均粒度の合金粉末を得ることができる。
いずれのR−Fe−B系合金粉末を用いても、平均粒度
をそれぞれ好ましい範囲とすることにより、一般的な射
出成形用の遷移金属粉末、例えばFe基合金粉末やCo
基合金粉末等の場合よりも、平均粒径が数分の1から1
0分の1程度となり、該遷移金属粉末を射出成形する際
に用いるバインダーの添加量よりも、大幅にバインダー
の添加量を低減することができる。
As the method for producing the above-mentioned R-Fe-B type alloy powder, a melting / pulverizing method, an ultra-quenching method, a direct reduction diffusion method,
A known method such as a hydrogen-containing disintegration method or an atomizing method can be appropriately selected to obtain an alloy powder having a required average particle size.
Regardless of which R-Fe-B based alloy powder is used, the transition metal powder for general injection molding, such as Fe-based alloy powder or Co, can be obtained by adjusting the average particle size to a preferable range.
Compared with the case of base alloy powder etc., the average particle size is a fraction to 1
The amount is about 1/0, and the addition amount of the binder can be significantly reduced as compared with the addition amount of the binder used in injection molding the transition metal powder.

【0013】樹脂被覆 上述の合金粉末に樹脂を被覆することは、バインダー混
練後の水とのR元素の反応、成形時のゲル化段階及び射
出成形後の脱水処理時の水とのR元素の反応を抑え、残
留酸素量の安定化及び低減化を図るために有効である。
合金粉末に被覆する樹脂としては、ポリメチルメタクリ
レート(PMMA)、ポリメチルアクリレート(PM
A)などのメタクリル樹脂、ポリプロピレン、ポリスチ
レン、ポリ酢酸ビニル、ポリ塩化ビニル、ポリエチレ
ン、ポリアクリロニトリルなどの熱可塑性樹脂の単独ま
たは複合したものを用いることが好ましい。樹脂の添加
量は、合金粉末に対して0.30wt%以下が好まし
い、これは樹脂の被覆膜厚が50Å〜200Åに相当
し、0.30wt%を超えると被覆樹脂からの残留酸素
量が増加するために好ましくない。しかし被覆樹脂の炭
素は、後述する水素流気中での脱バインダー処理により
ほぼ完全に除去できるので、被覆樹脂の添加量を増やし
ても残留炭素量は増加しない。被覆の方法は、通称メカ
ノフュージョンシステムあるいはハイブリダイゼーショ
ンシステムと呼ばれる方法やボールミルを用いる方法で
あり、被覆用樹脂粉末の粒径としては1000Å〜50
00Å位が好ましい。このように樹脂被覆した合金粉末
は、残留酸素量の点で比較的安定であるために、射出成
形時のリサイクルが可能であるという利点がある。また
樹脂被覆した合金粉末では、混練時に滑剤を添加しなく
ても射出成形できる利点もある。さらに、原料粉末が、
主成分系合金粉末と、R3Co相を含むCo又はFeと
Rとの金属間化合物相及びR2(FeCo)14B相等か
らなる液相系化合物粉末の場合は、主成分系合金粉末お
よび/または液相系化合物粉末に上記の樹脂被覆を行う
ことができ、さらには主成分系合金粉末に液相系化合物
粉末をメカノフュージョンシステムで被覆した後、上記
の樹脂被覆を行うこともでき、上述と同様の作用効果が
得られる。
Resin Coating Coating of the above alloy powder with a resin means the reaction of the R element with water after the binder is kneaded, the gelling stage during molding, and the R element with water during the dehydration treatment after injection molding. It is effective for suppressing the reaction and stabilizing and reducing the residual oxygen amount.
The resin used to coat the alloy powder includes polymethylmethacrylate (PMMA) and polymethylacrylate (PM).
It is preferable to use a methacrylic resin such as A) or a thermoplastic resin such as polypropylene, polystyrene, polyvinyl acetate, polyvinyl chloride, polyethylene or polyacrylonitrile alone or in combination. The amount of resin added is preferably 0.30 wt% or less with respect to the alloy powder, which corresponds to a resin coating film thickness of 50 Å to 200 Å. When it exceeds 0.30 wt%, the residual oxygen amount from the coating resin is increased. It is not preferable because it increases. However, the carbon of the coating resin can be almost completely removed by the debindering treatment in the flowing hydrogen described later, so that the residual carbon amount does not increase even if the addition amount of the coating resin is increased. The coating method is a method commonly called a mechanofusion system or a hybridization system or a method using a ball mill, and the particle diameter of the resin powder for coating is 1000Å to 50
A position of 00Å is preferred. The resin-coated alloy powder is relatively stable in terms of the amount of residual oxygen, and therefore has the advantage that it can be recycled during injection molding. Further, the resin-coated alloy powder has an advantage that it can be injection-molded without adding a lubricant during kneading. Furthermore, the raw material powder is
In the case of the liquid phase compound powder consisting of the main component alloy powder, the intermetallic compound phase of Co or Fe and R containing the R 3 Co phase, and the R 2 (FeCo) 14 B phase, etc., the main component alloy powder and / Or liquid phase compound powder can be subjected to the above resin coating, and further, after the main phase alloy powder is coated with the liquid phase compound powder by a mechanofusion system, the above resin coating can also be performed. The same effect as the above can be obtained.

【0014】バインダー成分 この発明において、射出成形用のバインダーには、所定
温度によりゾル・ゲル変態を起こすメチルセルロースま
たは寒天あるいはそれらを複合したものに水を添加した
ものを用いる。バインダーとして、メチルセルロースを
単独で用いる場合の含有量は、0.05wt%未満では
成形時の強度が著しく低下し、また0.50wt%を越
えると、残留炭素量と酸素量が増加して保磁力が下がり
磁気特性が劣化するので、0.05wt%〜0.50w
t%の含有量がこれらの点で好ましい。寒天を単独で用
いる場合の含有量は、0.2wt%未満では成形時の強
度が著しく低下し、また4.0wt%を越えると、残留
炭素量と酸素量が増加して保磁力が下がり、磁気特性が
劣化するので、0.2wt%〜4.0wt%の含有量が
これらの点で好ましい。またメチルセルロースと寒天を
複合して用いる場合は、0.2wt%未満になると成形
時の強度が著しく低下するとともに成形金型と成形体と
の離型性が悪化するため好ましくなく、また、4.0w
t%を超えると焼結後の焼結密度が低下するとともに残
留炭素量と酸素量が増加して得られる磁石の特性が劣化
し好ましくないため、0.2wt%〜4.0wt%が好
ましい。
Binder Component In the present invention, as the binder for injection molding, methyl cellulose or agar which causes sol-gel transformation at a predetermined temperature, or a mixture thereof, to which water is added, is used. When methyl cellulose is used alone as a binder, the strength at the time of molding is remarkably reduced when the content is less than 0.05 wt%, and when it exceeds 0.50 wt%, the residual carbon content and the oxygen content are increased to increase the coercive force. Decrease and the magnetic characteristics deteriorate, so 0.05 wt% to 0.50 w
A t% content is preferred in these respects. When agar is used alone, if the content is less than 0.2 wt%, the strength during molding remarkably decreases, and if it exceeds 4.0 wt%, the residual carbon amount and oxygen amount increase and the coercive force decreases. Since the magnetic properties deteriorate, the content of 0.2 wt% to 4.0 wt% is preferable in these respects. When methyl cellulose and agar are used in combination, if less than 0.2 wt%, the strength at the time of molding remarkably decreases and the releasability between the molding die and the molded body deteriorates. 0w
If it exceeds t%, the sintered density after sintering is lowered and the residual carbon amount and oxygen amount are increased, so that the characteristics of the obtained magnet are deteriorated, which is not preferable, so 0.2 wt% to 4.0 wt% is preferable.

【0015】この発明において、バインダーとしてメチ
ルセルロースおよび/または寒天とともに水を使用する
ことを特徴とするが、Rとの反応を抑制するために、脱
酸素処理した純水を使用することが望ましい。メチルセ
ルロースを単独で用いる場合の水の含有量は6wt%未
満では成形時の流動性が悪くなり、ショート・ショット
が発生しやすくなり、16wt%を越えると実質総バイ
ンダー量が増加するために、焼結後の焼結密度が低下す
ると同時に残留酸素量が増加し、磁気特性が劣化するの
で、6〜16wt%が最も好ましい。寒天を単独で用い
る場合の水の含有量は8wt%未満では成形時の流動性
が悪くなり、ショート・ショットが発生しやすくなり、
18wt%を越えると実質総バインダー量が増加するた
めに、焼結後の焼結密度が低下すると同時に残留酸素量
が増加し、磁気特性が劣化するので、8〜18wt%が
最も好ましい。またメチルセルロースと寒天を複合して
用いる場合は、メチルセルロースと寒天の割合を考慮し
て6〜18wt%の範囲から適宜選定される。寒天は、
一般によく知られているように、水の中で95℃前後に
加熱すると溶解して粘性のあるゾル状物質となり、約4
0℃以下に冷却すると弾性のあるゲル状物質となって固
化する。一方、メチルセルロースは、水に溶解した後約
50℃前後に加熱すると溶解して弾性のあるゲル 状物
質となって固化し、約35℃以下に冷却すると粘性のあ
るゾル状物質となり、寒天バインダーとは温度に対して
正反対にゾル・ゲル反応を起こす。この両者の性質を利
用すると、寒天バインダーを主成分として考えると、メ
チルセルロースの少量の添加により80℃前後の温度で
はゾル状態の粘度を向上させることができる。従って、
メチルセルロースの僅かの添加により、通常の寒天バイ
ンダーの添加量(約3wt%)の数分の1に減らすこと
が可能になる。このように水分を多量に含む割りには、
僅かの寒天バインダー量で粘弾性が発生するために、射
出成形用のバインダーとしては総バインダー中の炭素含
有量を大幅に減らすことができるのである。さらには脱
脂時には100℃までに総バインダー中の約99%の水
分が蒸発除去されるので、R−Fe−B粉末が活性にな
る温度では、すでに大量の水分に起因する酸素が抜けた
状態であるために、R−Fe−B合金粉末の酸化が大幅
の抑えられる利点がある。
In the present invention, water is used together with methyl cellulose and / or agar as a binder, but deoxidized pure water is preferably used in order to suppress the reaction with R. When methyl water is used alone, if the water content is less than 6 wt%, the fluidity at the time of molding will be poor, and short shots will easily occur. Since the sintered density after binding is reduced and the amount of residual oxygen is increased and the magnetic properties are deteriorated, 6 to 16 wt% is most preferable. When the content of water when agar is used alone is less than 8% by weight, the fluidity at the time of molding becomes poor and short shots are likely to occur.
If it exceeds 18 wt%, the substantially total amount of binder increases, so that the sintered density after sintering decreases, and at the same time, the amount of residual oxygen increases and magnetic properties deteriorate, so 8 to 18 wt% is most preferable. When methyl cellulose and agar are used in combination, they are appropriately selected from the range of 6 to 18 wt% in consideration of the ratio of methyl cellulose and agar. Agar
As is generally well known, when heated to around 95 ° C in water, it dissolves into a viscous sol-like substance,
When it is cooled to 0 ° C or lower, it becomes an elastic gel-like substance and solidifies. On the other hand, methyl cellulose dissolves in water and then is heated to about 50 ° C to dissolve and solidify into an elastic gel-like substance, and when cooled to about 35 ° C or less, it becomes a viscous sol-like substance, and becomes an agar binder. Causes a sol-gel reaction opposite to temperature. If both properties are used, considering the agar binder as the main component, the viscosity of the sol state can be improved at a temperature of around 80 ° C. by adding a small amount of methylcellulose. Therefore,
Even a small amount of methyl cellulose can be reduced to a fraction of the amount of the usual agar binder (about 3 wt%). Even if it contains a large amount of water like this,
Since viscoelasticity occurs with a small amount of agar binder, the carbon content in the total binder can be significantly reduced as a binder for injection molding. Furthermore, during degreasing, about 100% of the water in the total binder is evaporated and removed up to 100 ° C, so at the temperature at which the R-Fe-B powder becomes active, oxygen due to a large amount of water has already been released. Therefore, there is an advantage that the oxidation of the R-Fe-B alloy powder can be significantly suppressed.

【0016】またグリセリン、ワックスエマルジョン、
ステアリン酸、水溶性アクリル樹脂等の滑剤の含有量
は、メチルセルロース及び寒天ともに0.10wt%未
満では成形体の密度が不均一になりやすく、メチルセル
ロースを単独で用いる場合は0.30wt%を越える
と、寒天を単独で用いる場合は1.0wt%を越える
と、それぞれ成形体の強度が低下するので、0.10w
t%〜1.0wt%が最も好ましい。
Further, glycerin, wax emulsion,
If the content of lubricants such as stearic acid and water-soluble acrylic resin is less than 0.10 wt% for both methyl cellulose and agar, the density of the molded article tends to become non-uniform, and if methyl cellulose is used alone it exceeds 0.30 wt%. When using agar alone, if the content exceeds 1.0 wt%, the strength of the molded product will decrease, so 0.10w
Most preferred is t% to 1.0 wt%.

【0017】射出成形条件 射出条件はバインダーの添加量に応じて変動するが、メ
チルセルロースを単独で用いる場合は、金型温度は70
℃〜90℃が好ましく、70℃未満では成形後の取出時
に固化が不十分で変形する恐れがあり、また90℃を超
えると混練物の流動性が悪くなる。また、寒天を単独で
用いる場合は金型温度は10℃〜30℃が好ましく、1
0℃未満では流動性が悪くなり、30℃を超えると成形
後の取出時に固化が不十分で変形する恐れがある。ま
た、射出成形圧力は、30kg/cm2未満ではウエル
ドが発生し成形密度が不均一になり、焼結後に曲がりや
うねりが発生し、また、メチルセルロースを単独で用い
る場合は50kg/cm2を超えると、寒天を単独で用
いる場合は70kg/cm2を超えるとそれぞればりが
発生して好ましくないため、圧力は30〜70kg/c
2が好ましい。従って、メチルセルロースと寒天を複
合して用いる場合は、メチルセルロースと寒天の割合を
考慮して、金型温度や射出成形圧力等を上記の範囲から
適宜選定するとよい。焼結異方性磁石を得るための磁場
中射出成形時の磁場が10kOe未満では配向が不十分
なため、10kOe以上の磁場中射出成形が好ましい。
Injection molding conditions The injection conditions vary depending on the amount of binder added, but when methyl cellulose is used alone, the mold temperature is 70.
C. to 90.degree. C. is preferable, and if it is less than 70.degree. C., the solidification may be insufficient at the time of taking out after molding and deformation may occur. If it exceeds 90.degree. When agar is used alone, the mold temperature is preferably 10 ° C to 30 ° C, and 1
If the temperature is lower than 0 ° C, the fluidity is deteriorated, and if the temperature is higher than 30 ° C, the solidification may be insufficient at the time of taking out after molding, which may cause deformation. If the injection molding pressure is less than 30 kg / cm 2 , welds will be generated and the molding density will be non-uniform, and bending and waviness will occur after sintering, and if methylcellulose is used alone, it will exceed 50 kg / cm 2 . When using agar alone, burrs will be generated if the agar exceeds 70 kg / cm 2, which is not preferable. Therefore, the pressure is 30 to 70 kg / c.
m 2 is preferred. Therefore, when methyl cellulose and agar are used in combination, the mold temperature, injection molding pressure and the like may be appropriately selected from the above range in consideration of the ratio of methyl cellulose and agar. If the magnetic field during injection molding in a magnetic field for obtaining a sintered anisotropic magnet is less than 10 kOe, the orientation is insufficient, so injection molding in a magnetic field of 10 kOe or more is preferable.

【0018】脱バインダー処理 この発明の特徴である脱バインダー処理においては、ま
ず脱水処理をおこなうが処理方法は特に限定しない。例
えば、昇温乾燥方法の場合、昇温温度は選定した純水の
添加量に応じて変動するが、少なくとも20℃〜100
℃までの昇温速度を30〜60℃/時間にすることが好
ましく、30℃/時間未満では処理品が酸化する恐れが
あり、60℃/時間を超えると水の急激な気化蒸発のた
め、処理品にひび、割れを生じるため好ましくない。特
に処理品が小物である場合は、少なくとも20〜100
℃までの昇温速度を40〜60℃/時間にするとよく、
脱水処理がより簡素化できる。また、100℃までの昇
温中に水のほとんどが蒸発してしまうため、100℃を
超える温度域での脱水処理は不要である。また、脱水処
理を低温から高温まで連続して行い、またR−Fe−B
系合金粉末の酸化を抑えるためには、脱水雰囲気を1×
10-3Torr以下の真空中で行うことが好ましい。引
き続いて脱バインダー処理を行なうが、雰囲気は水素流
気中で、昇温速度は100〜200℃/時間で昇温し、
300〜600℃で1〜2時間保持することにより、ほ
ぼメチルセルロース、寒天バインダー及び被覆樹脂中の
全炭素が脱炭されるので、通常の有機バインダーの場合
よりも大幅に処理時間を短縮できる利点がある。R元素
を含む合金粉末は、水素を吸蔵しやすいために、脱バイ
ンダー処理後に脱水素処理工程が必要である。この脱水
素処理は、真空中で昇温速度は、50〜200℃/時間
で昇温し、500〜800℃で1〜2時間保持すること
により、吸蔵されていた水素はほぼ完全に除去される。
なお脱水素処理後は、引き続いて昇温加熱して焼結を行
うことが好ましく、500℃を超えてからの昇温速度は
任意に選定すればよく、例えば100〜300℃/時間
など、焼結に際して取られる公知の昇温方法を採用でき
る。
Debinding Process In the debinding process, which is a feature of the present invention, a dehydration process is first performed, but the treating method is not particularly limited. For example, in the case of the temperature-rise drying method, the temperature-rise temperature fluctuates depending on the selected amount of pure water added, but at least 20 ° C to 100 ° C.
It is preferable to set the rate of temperature rise to 30 ° C. to 30 to 60 ° C./hour, and if the temperature is less than 30 ° C./hour, the treated product may be oxidized. It is not preferable because the processed product will crack and crack. Especially when the processed product is a small item, at least 20 to 100
It is advisable to set the rate of temperature rise to 40 ° C to 60 ° C / hour,
The dehydration process can be further simplified. Further, most of the water evaporates during the temperature increase up to 100 ° C., so that dehydration treatment in a temperature range exceeding 100 ° C. is unnecessary. In addition, dehydration treatment is continuously performed from low temperature to high temperature, and R-Fe-B
In order to suppress the oxidation of the system alloy powder, a dehydration atmosphere of 1 ×
It is preferably performed in a vacuum of 10 −3 Torr or less. Subsequently, the binder removal treatment is performed, the atmosphere is hydrogen flow, and the temperature rising rate is 100 to 200 ° C./hour.
By holding at 300 to 600 ° C. for 1 to 2 hours, almost all the carbon in the methylcellulose, agar binder and coating resin is decarburized, so that there is an advantage that the treatment time can be significantly shortened as compared with the case of a normal organic binder. is there. Since the alloy powder containing the R element easily absorbs hydrogen, a dehydrogenation treatment step is required after the debinding treatment. In this dehydrogenation treatment, the stored hydrogen is almost completely removed by raising the temperature at a rate of 50 to 200 ° C./hour in vacuum and holding it at 500 to 800 ° C. for 1 to 2 hours. It
After the dehydrogenation treatment, it is preferable to subsequently perform heating and heating to perform sintering, and the temperature rising rate after the temperature exceeds 500 ° C. may be arbitrarily selected, and for example, 100 to 300 ° C./hour or the like. A publicly known temperature rising method taken at the time of binding can be adopted.

【0019】脱水処理後の成形品の焼結並びに焼結後の
熱処理条件は、選定した合金粉末組成に応じて適宜選定
されるが、従来公知のFe−B−R系焼結永久磁石の製
造条件と同様でよい。好ましい焼結並びに焼結後の熱処
理条件としては、1000〜1180℃、1〜2時間保
持する焼結工程、450〜800℃、1〜8時間保持す
る時効処理工程が好ましい。
Sintering of the molded product after the dehydration treatment and heat treatment conditions after the sintering are appropriately selected according to the selected alloy powder composition, but the production of a conventionally known Fe—B—R system sintered permanent magnet. The conditions may be the same. As preferable sintering and heat treatment conditions after sintering, a sintering step of holding at 1000 to 1180 ° C. for 1 to 2 hours and an aging treatment step of holding at 450 to 800 ° C. for 1 to 8 hours are preferable.

【0020】この発明において、焼結体が含有する炭素
量と酸素量の上限を規定するが、これは炭素量が700
ppmを越え、酸素量が9000ppmを越えると磁気
特性の劣化を招来し好ましくないためである。
In the present invention, the upper limits of the amount of carbon and the amount of oxygen contained in the sintered body are specified.
This is because if it exceeds ppm and the amount of oxygen exceeds 9000 ppm, the magnetic properties are deteriorated, which is not preferable.

【0021】[0021]

【作用】この発明は、R−Fe−B系合金粉末に加える
バインダーとして、所定温度によりゾル・ゲル変態を起
こすメチルセルロースまたは寒天あるいはそれらを複合
したものに水を添加したものを用いることにより、総バ
インダー中の炭素量を大幅に低減し、かつ射出成形時の
成形性を向上させるとともに、その後の脱脂工程におい
て、脱水乾燥処理し、水素流気中での脱バインダー処理
することにより、残留するほぼ全ての炭素を還元反応に
より除去でき、R−Fe−B粉末中の残留炭素量を大幅
に減少でき、その後脱水素処理、焼結することにより、
優れた磁気特性を有する3次元的に複雑な形状の焼結磁
石が得られる。さらに、予めR−Fe−B系合金粉末表
面に樹脂を被覆しておくことにより、水と合金粉末中の
R成分との反応を抑制し、混練後の各工程における合金
粉末の酸化を防止でき、得られる焼結体中の残留酸素量
を低減できるとともに、被覆した樹脂は水素流気中での
脱バインダー処理にてほぼ全てが除去できるので、焼結
体中の残留炭素量を増加させることがない。
According to the present invention, as a binder to be added to the R-Fe-B alloy powder, methyl cellulose or agar which causes a sol-gel transformation at a predetermined temperature or a mixture of them and water added thereto is used. The amount of carbon in the binder is greatly reduced, and the moldability during injection molding is improved, and in the subsequent degreasing process, dehydration and drying treatment and debinding treatment in hydrogen stream are performed to leave almost all of the residual carbon. All the carbon can be removed by a reduction reaction, the amount of residual carbon in the R-Fe-B powder can be greatly reduced, and then dehydrogenation treatment and sintering can be performed.
A three-dimensionally complicated shape sintered magnet having excellent magnetic properties can be obtained. Furthermore, by coating the surface of the R-Fe-B based alloy powder with a resin in advance, it is possible to suppress the reaction between water and the R component in the alloy powder and prevent the oxidation of the alloy powder in each step after kneading. , The residual oxygen amount in the obtained sintered body can be reduced, and almost all of the coated resin can be removed by the binder removal treatment in flowing hydrogen, so the residual carbon amount in the sintered body must be increased. There is no.

【0022】[0022]

【実施例】【Example】

実施例1 RとしてNd16.5at%、B5.7at%、残部は
Feおよび不可避的不純物からなる合金塊をArガス中
で高周波加熱溶解して作製したボタン状溶製合金を粗粉
砕した後、ジェットミル粉砕により微粉砕して得た平均
粒度3μmの微粉末と、バインダーとして、市販のメチ
ルセルロースの粉末を0.20wt%添加して室温で混
練し、さらに、95℃の温水に溶かした寒天(清水食品
製 MA−2000)を実質寒天重量が0.70wt%
となるように添加し、その後、水分量が12wt%にな
るように水を添加すると同時に、グリセリンを0.10
wt%添加して室温にて混練した。この混練ペレットを
射出温度を80℃に設定し、金型温度は25℃に保温し
て20mm×20mm×3mmの板に磁場中(15kO
e)で成形した。この成形体を真空中で室温から100
℃まで昇温速度50℃/Hで昇温し、この温度で1時間
保持し完全脱水乾燥した後、水素流気中で室温から50
0℃まで昇温速度150℃/Hで昇温し、この温度で1
時間保持し脱バインダー処理を行なった。さらに吸蔵さ
れた水素を除去するために、真空中で室温から500℃
まで昇温速度150℃/Hで昇温し、1時間保持し完全
脱水素処理を行なった後、さらに加熱して1100℃で
1時間保持して焼結した。焼結完了後にArガスを導入
して7℃/分の速度で800℃まで冷却し、その後10
0℃/時間で冷却して550℃、2時間保持する時効処
理を施した。得られた焼結体にはワレ、ヒビ、変形等は
全く見られなかった。この工程によって得られたこの発
明のNd−Fe−B焼結異方性磁石(本発明試料No.
1)の磁石特性並びに残留酸素量、残留炭素量の測定結
果を表1に示す。
Example 1 As R, a button-shaped ingot alloy produced by high-frequency melting of an alloy ingot having Nd of 16.5 at% and B of 5.7 at% and the balance of Fe and unavoidable impurities in Ar gas by high frequency heating was crushed and then jetted. Fine powder having an average particle size of 3 μm obtained by finely pulverizing with a mill and 0.20 wt% of commercially available methyl cellulose powder as a binder were added and kneaded at room temperature, and further, agar dissolved in warm water at 95 ° C. (fresh water) Foodstuff MA-2000) has a real agar weight of 0.70 wt%
So that the water content is 12 wt%, and at the same time adding glycerin to 0.10%.
wt% was added and kneading was performed at room temperature. The injection temperature of this kneaded pellet was set to 80 ° C., the mold temperature was kept at 25 ° C., and the plate was measured in a magnetic field (15 kO 2) on a 20 mm × 20 mm × 3 mm plate.
Molded in e). This molded body is heated in a vacuum from room temperature to 100
The temperature was raised to 50 ° C at a heating rate of 50 ° C / H, and the temperature was maintained for 1 hour to completely dehydrate and dry, and then from room temperature to 50
The temperature is raised to 0 ° C at a heating rate of 150 ° C / H, and at this temperature, 1
The binder was retained for a period of time for debinding. Further, in order to remove the stored hydrogen, room temperature to 500 ° C in vacuum
The temperature was raised at a temperature rising rate of 150 ° C./H, and held for 1 hour to perform complete dehydrogenation treatment, then further heated and held at 1100 ° C. for 1 hour for sintering. After the completion of sintering, Ar gas was introduced and the temperature was cooled to 800 ° C. at a rate of 7 ° C./min.
An aging treatment was carried out by cooling at 0 ° C / hour and holding at 550 ° C for 2 hours. No cracks, cracks, deformations, etc. were found in the obtained sintered body. The Nd-Fe-B sintered anisotropic magnet of the present invention obtained by this step (invention sample No.
Table 1 shows the magnetic properties of 1) and the measurement results of residual oxygen content and residual carbon content.

【0023】実施例2 RとしてNd16.5at%、B6.2at%、残部は
Feおよび不可避的不純物からなる合金塊をArガス中
で高周波加熱溶解して作成したボタン状溶製合金を粗粉
砕した後、ジェットミル粉砕により微粉砕して得た平均
粒度3μmの微粉末に疎水性の平均粒径0.15μmの
ポリメチルメタクリレート(PMMA)を0.20wt
%添加した合金粉末を300g、メカノフュージョンシ
ステムの容器内に投入し、温度を70℃に保持し、容器
の回転数を最高1800rpmで10分間保持して樹脂
被覆(膜厚約100Å)を行った。この被覆合金粉末に
バインダーとして寒天(清水食品製 MA−2000)
の粉末を2.0wt%と水を水分含有量が12wt%に
なるように添加して70℃で20分間混練し、さらに混
練途中にグリセリンを0.20wt%添加して10分間
混練した。この混練ペレットを射出温度90℃に設定
し、金型温度20℃に設定して20mm×20mm×3
mmの板に磁場中(15kOe)で成形した。この成形
体を真空中で室温から100℃まで昇温速度50℃/H
で昇温し、この温度で1時間保持し完全脱水乾燥した
後、水素流気中で室温から500℃まで昇温速度150
℃/Hで昇温し、この温度で1時間保持し脱バインダー
処理を行なった。さらに吸蔵された水素を除去するため
に、真空中で室温から500℃まで昇温速度150℃/
Hで昇温し、1時間保持し完全脱水素処理を行なった
後、さらに加熱して1100℃で1時間保持して焼結し
た。焼結完了後にArガスを導入して7℃/分の速度で
800℃まで冷却し、その後100℃/時間で冷却して
550℃、2時間保持する時効処理を施した。得られた
焼結体にはワレ、ヒビ、変形等は全く見られなかった。
この工程によって得られたこの発明のNd−Fe−B焼
結異方性磁石(本発明試料No.2)の磁石特性並びに
残留酸素量、残留炭素量の測定結果を表1に示す。
Example 2 As R, a button-shaped ingot alloy prepared by melting an alloy ingot having Nd of 16.5 at%, B of 6.2 at% and the balance of Fe and inevitable impurities by high frequency heating in Ar gas was roughly crushed. Then, 0.20 wt of hydrophobic polymethylmethacrylate (PMMA) having an average particle size of 0.15 μm is added to a fine powder having an average particle size of 3 μm obtained by pulverizing with a jet mill.
% Of the added alloy powder was placed in a container of a mechanofusion system, the temperature was maintained at 70 ° C., and the container rotation speed was maintained at a maximum of 1800 rpm for 10 minutes for resin coating (film thickness about 100 Å). . Agar (MA-2000 manufactured by Shimizu Foods) as a binder for this coated alloy powder
2.0 wt% of the powder and water were added so that the water content was 12 wt%, and the mixture was kneaded at 70 ° C. for 20 minutes. Further, 0.20 wt% of glycerin was added during the kneading and the mixture was kneaded for 10 minutes. The kneading pellets were set to an injection temperature of 90 ° C. and a mold temperature of 20 ° C. to obtain 20 mm × 20 mm × 3.
A mm plate was molded in a magnetic field (15 kOe). This molded body is heated from room temperature to 100 ° C in vacuum at a heating rate of 50 ° C / H.
The temperature is raised at room temperature, kept at this temperature for 1 hour, and completely dehydrated and dried.
The temperature was raised at ° C / H and the binder was removed by holding at this temperature for 1 hour. Further, in order to remove the stored hydrogen, the temperature rising rate from room temperature to 500 ° C in vacuum is 150 ° C /
The temperature was raised with H, and the mixture was kept for 1 hour to carry out a complete dehydrogenation treatment, then further heated and kept at 1100 ° C. for 1 hour for sintering. After the completion of sintering, Ar gas was introduced to cool to 800 ° C. at a rate of 7 ° C./minute, then cooled at 100 ° C./hour and held at 550 ° C. for 2 hours to perform an aging treatment. No cracks, cracks, deformations, etc. were found in the obtained sintered body.
Table 1 shows the magnetic characteristics of the Nd-Fe-B sintered anisotropic magnet of the present invention (Sample No. 2 of the present invention) obtained by this step, and the measurement results of the residual oxygen content and the residual carbon content.

【0024】実施例3 RとしてNd10.5原子%とPr3.1原子%、B
6.6原子%、Co3.0原子%、残部はFeおよび不
可避的不純物からなるR2Fe14B相とRリッチ相を有
する合金塊をArガス中で高周波加熱溶解して作成した
ボタン状溶製合金を粗粉砕した後、ジョークラッシャー
などにより平均粒径約15μmに粗粉砕し、更にジェッ
トミル粉砕により微粉砕して得た平均粒度3μmの主相
原料粉末と、Nd19.7原子%とPr0.8原子%、
Dy1.1原子%、Co15.0原子%、B4.5原子
%、残部Feからなる合金塊をArガス中で高周波加熱
溶解して作成したボタン状溶製合金をジョークラッシャ
ーなどにより平均粒径約14μmに粗粉砕した液相原料
粉末を重量比90:10の割合で配合し混合した。この
混合粉の分析値は、Nd11.4原子%とPr2.82
原子%、Dy0.11原子%、Co4.2原子%、B
6.4原子%、残部はFeからなるものであった。この
混合粉と、バインダーとして市販のメチルセルロースの
粉末を0.20wt%添加して室温で混練し、水分量が
10wt%になるように水を添加すると同時に、グリセ
リンを0.10wt%添加して室温にて混練した。この
混練ペレットを射出温度を25℃に設定し、金型温度は
80℃に保温して20mm×20mm×3mmの板に磁
場中(15kOe)で成形した。この成形体を真空中で
室温から100℃まで昇温速度50℃/Hで昇温し、こ
の温度で1時間保持し完全脱水乾燥した後、水素流気中
で室温から500℃まで昇温速度150℃/Hで昇温
し、この温度で1時間保持し脱バインダー処理を行なっ
た。さらに吸蔵された水素を除去するために、真空中で
室温から500℃まで昇温速度150℃/Hで昇温し、
1時間保持し完全脱水素処理を行なった後、さらに加熱
して1100℃で1時間保持して焼結した。焼結完了後
にArガスを導入して7℃/分の速度で800℃まで冷
却し、その後100℃/時間で冷却して550℃、2時
間保持する時効処理を施した。得られた焼結体にはワ
レ、ヒビ、変形等は全く見られなかった。この工程によ
って得られたこの発明のNd−Fe−B焼結異方性磁石
(本発明試料No.3)の磁石特性並びに残留酸素量、
残留炭素量の測定結果を表1に示す。
Example 3 As R, 10.5 atomic% of Nd, 3.1 atomic% of Pr, and B
6.6 at%, Co at 3.0 at%, the balance Fe and an unavoidable impurity R 2 Fe 14 B phase and R-rich phase alloy melted by high frequency heating in Ar gas After roughly crushing the alloy-made alloy, coarsely crushing it with a jaw crusher to an average particle size of about 15 μm, and then finely crushing it with a jet mill to obtain a main phase raw material powder with an average particle size of 3 μm, Nd of 19.7 atomic% and Pr0 .8 atom%,
A button-shaped ingot alloy made by melting an alloy lump consisting of Dy1.1 atom%, Co15.0 atom%, B4.5 atom%, and the balance Fe by high frequency heating in Ar gas with a jaw crusher, etc. Liquid-phase raw material powder roughly crushed to 14 μm was blended and mixed in a weight ratio of 90:10. The analytical values of this mixed powder are Nd11.4 atomic% and Pr2.82.
Atomic%, Dy 0.11 atomic%, Co 4.2 atomic%, B
6.4 atomic% and the balance being Fe. This mixed powder and 0.20 wt% of commercially available methyl cellulose powder as a binder are added and kneaded at room temperature. At the same time, water is added so that the water content is 10 wt%, and at the same time, 0.10 wt% of glycerin is added and the room temperature is added. Kneaded in. The injection temperature of the kneaded pellets was set to 25 ° C., the mold temperature was kept at 80 ° C., and the kneaded pellets were molded into a plate of 20 mm × 20 mm × 3 mm in a magnetic field (15 kOe). This molded body is heated in a vacuum from room temperature to 100 ° C at a heating rate of 50 ° C / H, held at this temperature for 1 hour and completely dehydrated and dried, and then heated from room temperature to 500 ° C in a hydrogen stream. The temperature was raised at 150 ° C./H and the temperature was maintained for 1 hour for debinding. Furthermore, in order to remove the stored hydrogen, the temperature is raised from room temperature to 500 ° C. at a heating rate of 150 ° C./H in vacuum,
After holding for 1 hour to perform complete dehydrogenation treatment, it was further heated and held at 1100 ° C. for 1 hour for sintering. After the completion of sintering, Ar gas was introduced to cool to 800 ° C. at a rate of 7 ° C./minute, then cooled at 100 ° C./hour and held at 550 ° C. for 2 hours to perform an aging treatment. No cracks, cracks, deformations, etc. were found in the obtained sintered body. The magnet characteristics and residual oxygen content of the Nd-Fe-B sintered anisotropic magnet of the present invention (Sample No. 3 of the present invention) obtained by this step,
Table 1 shows the measurement results of the residual carbon amount.

【0025】比較例 水素流気中脱バインダー処理と脱水素処理工程を行うこ
となく、真空中での昇温脱バインダー処理を行なう以外
は、実施例1,2,3に示す原料粉末を用いて全く同一
条件、工程を進めて焼結異方性磁石を得た。得られた比
較例のNd−Fe−B焼結異方性磁石(比較例試料N
o.1〜3)の磁石特性並びに残留酸素量、残留炭素量
の測定結果を表1に示す。
Comparative Example The raw material powders shown in Examples 1, 2 and 3 were used, except that the debindering treatment in flowing hydrogen gas and the dehydrogenation treatment step were not carried out, and the temperature rising debinding treatment was carried out in a vacuum. The same conditions and steps were carried out to obtain a sintered anisotropic magnet. The obtained Nd-Fe-B sintered anisotropic magnet of Comparative Example (Comparative Example Sample N
o. Table 1 shows the magnet characteristics of 1 to 3) and the measurement results of residual oxygen content and residual carbon content.

【0026】表1から明らかなように、メチルセルロー
ス及び/又は寒天バインダーを用いると、水分を多く含
んでいるために、水を含めた総バインダー中の炭素量が
実質的にかなり低く抑えられていること、また主にバイ
ンダーが水のため、R−Fe−B系合金粉末が活性にな
る温度では既に蒸発してなくなっていること、さらに、
実施例2において合金粉末を樹脂で100Å程度被覆し
ているために、酸化がかなり抑えられることにより、結
果的に残留炭素量が大幅に減少したと考えられる。ま
た、射出成形体を水素流気中で脱バインダーすることに
より、メチルセルロース及び/又は寒天あるいは被覆樹
脂中の炭素をほぼ完全に脱炭できたことにより、磁気特
性が大幅に向上したものと思われる。この時に樹脂被覆
をしていない合金粉末が水により酸化すると水素による
脱炭効果が大幅に低下することがわかる。
As is clear from Table 1, when the methylcellulose and / or agar binder is used, the amount of carbon in the total binder including water is suppressed to a substantially low level due to the high water content. In addition, since the binder is mainly water, the R-Fe-B alloy powder has already been evaporated at a temperature at which it becomes active.
It is considered that since the alloy powder was coated with resin in about 100 liters in Example 2, oxidation was suppressed considerably, and as a result, the residual carbon amount was significantly reduced. Moreover, it is considered that the magnetic properties were significantly improved by debinding the injection-molded body in a stream of hydrogen gas so that the carbon in the methylcellulose and / or agar or the coating resin could be almost completely decarburized. . At this time, it is understood that if the alloy powder not coated with the resin is oxidized by water, the decarburizing effect by hydrogen is significantly reduced.

【0027】[0027]

【表1】 [Table 1]

【0028】[0028]

【発明の効果】この発明は、R−Fe−B系合金粉末に
加えるバインダーとして、所定温度によりゾル・ゲル変
態を起こすメチルセルロースまたは寒天あるいはそれら
を複合したものに水を添加したものを用いることによ
り、総バインダー中の炭素量を大幅に低減し、かつ射出
成形時の成形性を向上させるとともに、その後の脱脂工
程において、脱水乾燥処理し、水素流気中での脱バイン
ダー処理することにより、残留するほぼ全ての炭素を還
元反応により除去でき、しかも従来の有機バインダーに
比べて脱バインダー処理時間を短縮することができ、そ
の後脱水素処理、焼結することにより、焼結体中の残留
炭素量を大幅に減少できる、従って、この発明による射
出成形法にて、優れた磁気特性を有する3次元的に複雑
な形状の焼結磁石を提供することができる。さらに、バ
インダーとの混練前に予めR−Fe−B系合金粉末表面
に樹脂を被覆しておくことにより、水と合金粉末中のR
成分との反応を抑制し、混練後の各工程における合金粉
末の酸化を防止でき、得られる焼結体中の残留酸素量を
低減できるとともに、被覆した樹脂は水素流気中での脱
バインダー処理にてほぼ全てが除去できるので、焼結体
中の残留炭素量を増加させることがなく、優れた磁気特
性を有する3次元的に複雑な形状の焼結磁石を提供する
ことができる。
EFFECTS OF THE INVENTION According to the present invention, as a binder to be added to the R-Fe-B alloy powder, methyl cellulose or agar which causes a sol-gel transformation at a predetermined temperature, or a mixture of them and water is added. By significantly reducing the amount of carbon in the total binder and improving the moldability during injection molding, dehydration and drying treatment in the subsequent degreasing process, and debinding treatment in flowing hydrogen, It is possible to remove almost all of the carbon that is used by the reduction reaction, and the debinding process time can be shortened compared to conventional organic binders. The amount of residual carbon in the sintered body can be reduced by dehydrogenation and sintering. Therefore, the injection molding method according to the present invention can produce a three-dimensionally complicated shape sintered magnet having excellent magnetic characteristics. It can be provided. Furthermore, by coating the resin on the surface of the R-Fe-B based alloy powder before kneading with the binder, water and R in the alloy powder are mixed.
The reaction with the components can be suppressed, the oxidation of the alloy powder in each step after kneading can be prevented, the amount of residual oxygen in the obtained sintered body can be reduced, and the coated resin is debindered in flowing hydrogen. Since almost all can be removed by the method described above, it is possible to provide a sintered magnet having a three-dimensionally complicated shape having excellent magnetic characteristics without increasing the amount of residual carbon in the sintered body.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01F 7/02 C 41/02 G 8019−5E ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI technical display location H01F 7/02 C 41/02 G 8019-5E

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 R−Fe−B系合金粉末(RはYを含む
希土類元素の少なくとも1種)に、バインダーとして所
定温度によりゾル・ゲル反応を起こすメチルセルロース
および/または寒天と水とを加えて混練した後、射出成
形により成形体となし、該成形体を脱水処理した後、水
素流気中で脱バインダー処理し、さらに脱水素処理後に
焼結することを特徴とする射出成形法によるR−Fe−
B系焼結磁石の製造方法。
1. R-Fe-B alloy powder (R is at least one of rare earth elements containing Y) is added with methyl cellulose and / or agar which causes a sol-gel reaction as a binder at a predetermined temperature and water. After kneading, a molded body is formed by injection molding, and the molded body is dehydrated, then debindered in flowing hydrogen, and then dehydrogenated and sintered. Fe-
A method for manufacturing a B-based sintered magnet.
【請求項2】 原料微粉末の表面に樹脂を被覆した後、
射出成形することを特徴とする請求項1記載の射出成形
法によるR−Fe−B系焼結磁石の製造方法。
2. After coating the surface of the raw material fine powder with a resin,
The method for producing an R-Fe-B system sintered magnet according to claim 1, wherein the method is injection molding.
【請求項3】 バインダーに潤滑剤としてグリセリン、
ステアリン酸、エマルジョンワックス、水溶性アクリル
樹脂の少なくとも1種を0.1〜1.0wt%、水6〜
18wt%を含有する組成を、磁性粉末のバインダーと
して用いる添加することを特徴とする請求項1または請
求項2記載の射出成形法によるR−Fe−B系焼結磁石
の製造方法。
3. A binder containing glycerin as a lubricant,
At least one of stearic acid, emulsion wax, and water-soluble acrylic resin is 0.1 to 1.0 wt% and water is 6 to
The method for producing an R-Fe-B system sintered magnet by the injection molding method according to claim 1 or 2, wherein a composition containing 18 wt% is added as a binder for the magnetic powder.
【請求項4】 焼結体が含有する炭素量を700ppm
以下、酸素量9000ppm以下にすることを特徴とす
る請求項1、請求項2または請求項3記載の射出成形法
によるR−Fe−B系焼結磁石の製造方法。
4. The amount of carbon contained in the sintered body is 700 ppm
The method for producing an R-Fe-B system sintered magnet by the injection molding method according to claim 1, claim 2 or claim 3, wherein the oxygen content is 9000 ppm or less.
JP5097190A 1992-06-24 1993-03-30 Manufacture of r-fe-b sintered magnet by injection molding method Pending JPH06290922A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP5097190A JPH06290922A (en) 1993-03-30 1993-03-30 Manufacture of r-fe-b sintered magnet by injection molding method
DE1993614098 DE69314098T2 (en) 1992-06-24 1993-06-24 Process for producing R-Fe-B type sintered magnets by injection molding
US08/080,771 US5427734A (en) 1992-06-24 1993-06-24 Process for preparing R-Fe-B type sintered magnets employing the injection molding method
EP19930304944 EP0576282B1 (en) 1992-06-24 1993-06-24 A process for preparing R-Fe-B type sintered magnets employing the injection molding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5097190A JPH06290922A (en) 1993-03-30 1993-03-30 Manufacture of r-fe-b sintered magnet by injection molding method

Publications (1)

Publication Number Publication Date
JPH06290922A true JPH06290922A (en) 1994-10-18

Family

ID=14185666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5097190A Pending JPH06290922A (en) 1992-06-24 1993-03-30 Manufacture of r-fe-b sintered magnet by injection molding method

Country Status (1)

Country Link
JP (1) JPH06290922A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6387293B1 (en) 1998-07-21 2002-05-14 Seiko Epson Corporation Composition for rare earth bonded magnet use, rare earth bonded magnet and method for manufacturing rare earth bonded magnet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6387293B1 (en) 1998-07-21 2002-05-14 Seiko Epson Corporation Composition for rare earth bonded magnet use, rare earth bonded magnet and method for manufacturing rare earth bonded magnet

Similar Documents

Publication Publication Date Title
US5427734A (en) Process for preparing R-Fe-B type sintered magnets employing the injection molding method
JP2002093610A (en) Method of manufacturing anisotropic magnet powder, material powder of anisotropic magnet powder, and bonded magnet
JP3393018B2 (en) Method for producing thin R-Fe-B sintered magnet
JP3229435B2 (en) Method for producing sintered R-Fe-B magnet by injection molding method
JPH08316014A (en) Magnet and its manufacture
EP0576282B1 (en) A process for preparing R-Fe-B type sintered magnets employing the injection molding method
CN114223044B (en) Method for producing sintered magnet
JP2960629B2 (en) Method for producing sintered R-Fe-B magnet by injection molding method
JPH06290922A (en) Manufacture of r-fe-b sintered magnet by injection molding method
JP2954816B2 (en) Method for producing sintered R-Fe-B magnet by injection molding method
JPH04338605A (en) Manufacture of metallic bonded magnet and metallic bonded magnet
JP3174443B2 (en) Method for producing sintered R-Fe-B magnet by injection molding method
JP4650218B2 (en) Method for producing rare earth magnet powder
JPH06168810A (en) Manufacture of r-fe-b series sintering magnet by injection molding
JP3037917B2 (en) Radial anisotropic bonded magnet
JP3338590B2 (en) Method for producing R-Fe-B based sintered magnet by injection molding method
JPH0677028A (en) Manufacture of r-fe-b base sintered magnet by injection molding process
JP3078633B2 (en) Manufacturing method of sintered anisotropic magnet
JP3174442B2 (en) Method for producing R-Fe-B sintered anisotropic permanent magnet
JP3351554B2 (en) Manufacturing method of sintered anisotropic magnet
JP2989420B2 (en) Preservation method of R-Fe-B alloy kneaded products for injection molding
JPH0677029A (en) Manufacture of r-fe-b base sintered magnet by injection molding process
JPH0888112A (en) Manufacture of r-fe-b sintered permanent magnet
JP3736830B2 (en) Rare earth-Fe-Co-B magnet powder and bonded magnet excellent in squareness and thermal stability
JPH06235002A (en) Alloy powder for sintered magnet and its production